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Abstract

This paper presents an autonomous vision-based ob-

stacle avoidance system. The system consists of three

independent vision modules for obstacle detection, each

of which is computationally simple and uses a di�er-

ent criterion for detection purposes. These criteria

are based on brightness gradients, RGB (Red, Green,

Blue) color, and HSV (Hue, Saturation, Value) color,

respectively. Selection of which modules are used to

command the robot proceeds exclusively from the out-

puts of the modules themselves. The system is imple-

mented on a small monocular mobile robot and uses

very low resolution images. It has been tested for over

200 hours in diverse environments.

Keywords: Vision-based navigation, space explo-

ration, modular design, reactive control, unstructured

terrain.

1 Introduction

This work addresses the problem of developing a mo-

bile robot to avoid obstacles while traveling in unstruc-

tured environments, that is, environments for which

there is no strong prior knowledge of the appearance

of the ground or the locations or appearance of the

obstacles. An autonomous vision-based system is pre-

sented that performs obstacle detection and avoidance

in such environments. It has been implemented on a

small mobile robot with a single camera and tested in

a range of environments.

The problem of vision-based navigation has been

previously examined from a number of di�erent ap-

proaches. Variations have included using sensory input

from stereo vision, monocular vision, and the combi-

nation of vision with other sensors. Methods also vary

in how they deal with temporal information, from us-

ing individual frames exclusively [6] to computing op-

tical 
ow �elds from multiple frames. Domains include

road and o�-road travel [5, 10, 14, 3, 16, 4] and indoor

robotic navigation [6, 2, 12, 11]. One motivating goal

of the current work is autonomous exploration of the

surface of Mars. Many researchers are addressing the

problem of navigation in this domain [9, 7, 13, 8].

The current system is most closely related to Hor-

swill's work [6], which used low-level environment-

dependent algorithms for vision-based navigation. The

current work modi�es and extends such obstacle avoid-

ance techniques to handle a di�erent class of environ-

ments, including domains in which the ground may

have rich visual texture. This work also draws on vi-

sual routines theory in that it combines separate low-

level vision algorithms in a similar manner [15].

Further, the obstacle detection method presented is

reactive, storing almost no memory of obstacle loca-

tions, but rather using current images directly. That

is, percepts are converted to actions without the use

of complicated internal state. The system also draws

from the behavior-based subsumption architecture ap-

proach for combining routines [1]. Alternative ar-

chitectures integrate information from multiple rou-

tines according to pre-set weights for each routine [10].

While a part of the current system uses a related ap-

proach, the weights are automatically computed in-

stead of pre-set by the user.

Note that the robot's only goal is to move safely

within cluttered environments; it has no target loca-

tion. Applications include exploration, in which video

or other data could be acquired, and more general

navigation tasks when combined with a technique for

moving toward a speci�c goal location. In a subsump-

tion architecture approach, for example, another layer

of behavior incorporating the goal location could be

combined with the current obstacle avoidance system.

This paper thus presents a system which deals with

unknown environments and obstacles, utilizes a visual

routines framework for combining multiple visual cues,

and utilizes an environment-dependent algorithms ap-

proach to obstacle detection and navigation.

2 Modular Obstacle Avoidance

The high-level structure of the system is illustrated

in Figure 1. Each of three visual processing modules

takes as input the image frame from the robot's cam-

era and generates a coarse image-based representation
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Figure 1: Control 
ow of system.

of depth in that image. This representation is called an

obstacle boundary. These obstacle boundaries from the

individual modules are combined into a single obsta-

cle boundary which is converted to motor commands.

Finally, a routine checks if the robot is \stuck", in

which case it is directed to turn in place until a safe

path is detected. Else the motor commands from the

combiner are sent directly to the motors.

2.1 Platform

The system is housed in the Pebbles III Robot, built

by IS Robotics, Inc. Pebbles has a tracked base and

is driven by independent left and right motors. It

is equipped with a Motorola 68332 processor and an

uncalibrated Chinon 3mm camera positioned at the

front of the robot 10.5 inches o� the ground. The

system uses the Cheap Vision Machine (CVM) visual-

processing hardware system, designed by DIdeas, Inc.

and Ian Horswill at the MIT AI Laboratory. The pro-

cessor is a Texas Instruments C30 DSP. The vision

software is written in C and runs on the CVM. The

system also runs a control program, written in L (a

subset of Common Lisp) on the 68332. All processing

is performed on-board the robot, and the images used

have a resolution of only 64 x 64 pixels.

2.2 Vision Modules

Each vision module generates an obstacle boundary

based on the current image frame. The modules share

a common framework, varying only in the particular

low-level properties used in the computation of the ob-

stacle boundary. The low-level properties in the cur-

rent system are color and edge distributions, which are

discussed following the discussion of the framework.

Framework. Several constraints underly the frame-

work given below: the ground type at the robot's ini-

tial location is considered favorable, boundaries be-

tween safe ground and obstacles are visible in single

image frames, the ground is 
at, and all objects rest

on the ground. The last two constraints imply that dis-

tant objects appear higher in the image than nearby

objects. This property is known as the ground plane

constraint.

The initial location is favorable, and it is assumed

that this favorable ground extend far enough in front

of the robot to be visible in the image. This constraint

together with the ground plane constraint implies that

nearby obstacles can be detected by starting at the

bottom of a single image (the bottom region then cor-

responds to safe ground) and scanning up the image

until the type of ground changes. The height of this

\change" corresponds to the image height of the obsta-

cle. The measure used to determine this change varies

across the modules.

Regarding implementation, the upward scan of the

image is performed on vertical slices of the image which

are 20 pixels wide, compared with the total image

width of 64 pixels. The window that is moved up these

slices is 20 pixels wide by 10 pixels high (Figure 2).

Vertical slices are taken at horizontal shifts of one-pixel

increments, and an obstacle height is obtained for each

slice. These heights are stored in a one-dimensional ar-

ray indexed by the x-coordinate of the (center of the)

vertical slice. This array is the obstacle boundary for

the given image and the given module. Three such

arrays are illustrated Figure 4a. In this way, heights

are obtained separately at each x-coordinate except for

those at the far edges of the image which are never at

the middle of a window. There are 10 and 9 such co-

ordinates for the left and right sides respectively since

the center pixel is de�ned to be the 11th pixel of the

window. This yields 64 � 10 � 9 = 45 separate mea-

surements. Moreover, when scanning up the individ-

ual slices a module only shifts each window vertically

by one pixel to obtain the next window so the height

values are found at single-pixel precision.

Module-Speci�c Measures. The framework just

described can be implemented with a variety of mea-

sures to yield many di�erent modules. The measures

in the current system are each based on the histogram

of a di�erent image property over a given window of

the image. They compute the value of the module-

speci�c property centered at each pixel in that window

and generate a histogram of the values.

Note that each histogram need not be computed



Figure 2: Image from Pebbles' camera, illustrating a

vertical slice and a window.
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Figure 3: The sample histograms were generated from

the windows of the �rst image. The obstacle seen in

the higher window is green, and the ground is gray.

from scratch for each window as the window is shifted

up the image. Since the shift occurs in single-pixel in-

crements, the system can simply add the top row of

the new window to the histogram and subtract the bot-

tom row of the previous window from the histogram.

Horizontal shifts are analogous. This observation sig-

ni�cantly reduces computation time.

The metric used for histogram comparison is the

area between the histogram of the \safe" (bottom)

window and the histogram of the current window. The

di�erence area is given by

area =
X

v

jhcurrent(v)� hsafe(v)j

where the v's are the potential values attained by the

particular image property, hcurrent is the histogram of

the current window, and hsafe is the histogram of the

bottom window of the current image column. When

this area is large, the current window is assumed to

contain an obstacle.

The image properties used in the respective modules

are brightness gradient magnitude, normalized RGB

Figure 4: a) Obstacle boundaries from the edge

(white), RGB (gray), and HSV (black) modules over-

laid on the image. There is a large rock in the upper

right portion of the image, correctly detected by the

RGB and HSV modules. b) Outputs of the smooth-

ness (gray) and median (white) combination methods,

for the individual boundaries shown in (a).

(Red, Green, Blue) color, and normalized HSV (Hue,

Saturation, Value) color. Brightness gradient mag-

nitudes are calculated by blurring the image slightly,

computing gradients from vertical and horizontal pixel

di�erences, and normalizing the magnitudes to lie in

the range [0,31]. To normalize the color modules by in-

tensity, only two dimensions are used instead of three.

In the RGB module, only the red and the green chan-

nels are used; in the HSV module, only hue and satu-

ration are used. Further, hue and saturation values are

ignored for pixels with saturation less than 3.3% of full

saturation. The single histogram approach is extended

to use a pair of histograms for measures whose value

computed at a pixel is actually a pair of values. In

such cases, the di�erence between windows is the sum

of the di�erences in the areas under the corresponding

histograms, as illustrated in Figure 3.

2.3 Fusing the Modules

Two methods, one based on smoothness and one based

on median, are presented. Only the median method is

used by the current system.

Actual obstacle boundaries in the environments con-

sidered for this work are likely to be smooth. For ex-

ample, in Figure 4a, notice that the smooth gray and

black arrays are more accurate than the jagged white

array. Accordingly, each array is assigned a coe�cient

proportional to its smoothness, computed as the in-

verse of second di�erences. The smoothness coe�cient

si of the array mi of the ith module is given by

si =
1

1

n

Pn
x=1 jmi(x+ 1)� 2mi(x) +mi(x� 1)j

where n is the width of the image.

An overall obstacle boundary is produced by point-

wise averaging the values in the individual arrays,

weighted by the smoothness coe�cients. The overall



array a is de�ned as

a(x) = s1 �m1(x) + s2 �m2(x) + s3 �m3(x)

for each x-coordinate.

The second criterion for combining the arrays from

the three modules relies on choosing the median value

at each x-coordinate. The two methods are illustrated

by Figure 4b.

In the �nal system, the median method is used ex-

clusively; the smoothness method is presented for com-

parison purposes only. Both the smoothness and me-

dian approaches gave very similar results in the test en-

vironments, but there are potential situations in which

linear combination is inappropriate for sensor fusion.

An example is a case of two equally smooth boundaries

indicating obstacles at di�erent image locations. The

median method was chosen for this reason.

2.4 From Obstacle Boundaries to Mo-

tor Commands

The �nal processing step for each image is the determi-

nation of the motor commands for the robot based on

the obstacle boundary generated by fusing the outputs

of the individual vision modules. The ground plane

constraint implies that the lowest obstacle heights in

the array of the boundary correspond to the closest

obstacles across the image.

Motor Command Computations. The robot

should turn away from obstacles that are nearby, and

the degree of this turn should depend on the proxim-

ity of the obstacle for a smooth trajectory. Thus the

desired turn angle is proportional to the di�erence be-

tween the average image heights of obstacles on the

left and right sides of the image:

turnangle = c1 �
1

n=2
(

n=2X

x=1

a(x) �

nX

x=n=2

a(x))

where a is the overall array, c1 is a constant dependent
on the robot's motors, and n is the width of the image.

The forward speed should be large if obstacles are

far away and should be small if obstacles are close, per-

haps even negative. Accordingly, it is proportional to

the average image height of obstacles over the whole

length of the image. Some constant k is �rst sub-

tracted from the average height to achieve reverse mo-

tion when obstacles are too close. Varying k changes

how close the robot can get to obstacles before backing

up. The equation is

forwardspeed = c2 � ((
1

n

nX

x=1

a(x))� k)

where c2 is another motor calibration constant.

A simple conversion yields left and right motor com-

mands: commandleft = forwardspeed � turnangle,
and commandright = forwardspeed+ turnangle.

One Bit of State. Normally, the commands calcu-

lated above are passed directly to the robot's motors.

However, when obstacles are very close to the robot,

the obstacle boundary appears low in the image, so

the corresponding motor commands are small. Thus

when these commands fall beneath a threshold, the

robot enters the \stuck" state. In this state, the robot

is directed to turn in place regardless of the commands

computed from the image.

When subsequent commands exceed a larger thresh-

old, indicating a clear path ahead, the robot exits this

state and the computed commands resume control of

the motors. The bit of information signifying whether

or not the robot is in the stuck state is necessary for

hysteresis, the use of di�erent thresholds for entering

and exiting that state. This bit is the only \map"

stored by the system. Otherwise, it is completely re-

active.

2.5 E�ciency Analysis

Let w and h be the width and height pixels of the

image, m be the width of the window, and n be the

length of the histogram. Assuming a �xed number of

modules, the running time is O(wh(m + n)) per im-
age, as follows. Initial processing such as color conver-

sion and gradient detection is O(wh). For each win-

dow location, a row of the window is added to and

subtracted from the previous histogram, so generating

the histograms is O(whm). Each histogram compari-

son takes O(n), so that total is O(whn). Combining

the modules and generating the motor commands is

O(w).

3 Experimental Results

The system has been run cumulatively for over 200

hours. Although more human intervention was re-

quired during testing of individual modules and de-

bugging, the level of autonomy of the complete sys-

tem is demonstrated in section 3.4 below. It has

been tested in diverse cluttered environments, includ-

ing test sites at the MIT AI Laboratory and two sim-

ulated Mars sites at the Jet Propulsion Laboratories

in Pasadena, California. The results discussed here

are those of the complete system, although some dis-

cussion of the performance of individual modules is

included. The speed of the robot is approximately 0.3

meters/second, and the processing speed is approxi-

mately 4 frames/second.

3.1 Test Conditions

Testing sites for the system are pictured in Figure 5.

The \sandbox," is a 15ft x 10ft room in which the



ground is coarse gravel of various shades of gray, and

larger rocks are obstacles. The second site is a lounge

area covered with a carpet of varying shades of orange.

Obstacles include walls, sofas, bookcases, tables, and

chairs. During testing in all locations, people stepped

in front of the robot and placed other objects in its

path.

The system was tested in two simulated Mars en-

vironments at the Jet Propulsion Laboratories (JPL)

in Pasadena, California. The �rst environment was a

large room in which the ground was sand and the ob-

stacles were rocks of various sizes, colors, and textures.

The second environment was JPL's \MarsYard", an

outdoor area approximately 80ft x 60ft in which the

ground is reddish brown sand and sloping in places.

The colors, textures, sizes, and distributions of rocks

are based on those found on Mars.

Success was measured by observing both the robot's

behavior and the obstacle boundaries found for indi-

vidual frames. Successful behavior was de�ned as trav-

eling around a cluttered environment, moving straight

forward when the path ahead is clear and navigat-

ing around obstacles when encountered. The obstacle

boundaries were transmitted from the robot to a video

monitor for veri�cation.

3.2 Individual Modules

All three modules reliably detected obstacles in many

scenarios. To contrast the modules, however, several

situations are described in which they performed dif-

ferently.

In the lounge site, both the edge module and the

HSV module consistently detected obstacles such as

walls, sofas, and people. However, the edge module

occasionally missed a smooth brown bookcase, but the

HSV module consistently detected it. The opposite

situation occurred in the case of a particular style of

chairs which had metallic legs that re
ected the color

of the carpet. In the brightly lit room of sand at JPL,

the ground occasionally appeared white in parts of the

image due to the camera angle and re
ections; HSV is

worse than RGB in this situation. Conversely, in the

lounge site, the HSV module out-performed the RGB

module, which occasionally falsely reported obstacles

at areas of the carpet that were slightly faded or in

shadow. In the sandbox test site, the color modules

were preferable to the edge module due to the variable

texture of the gravel. In all �ve of these cases, the

combination of the three modules compensated for the

failure of an individual module.

3.3 Complete System

For testing in the sandbox, the obstacles were moved

into many con�gurations, additional obstacles were

added, and people interacted with Pebbles by stepping

in its way. Normally the space between obstacles was

Figure 5: Testing at various sites: sandbox, lounge,

JPL indoor site, JPL outdoor MarsYard

only slightly larger than the robot's width. In this sit-

uation, the robot navigated safely for large amounts of

time. No e�ort was made to control the lighting condi-

tions, and, as a result, they often varied. Performance

was not harmed by these variations. The run-time of

the robot was limited primarily by hardware concerns

and occasionally by the failure modes mentioned be-

low.

Further, the system avoided obstacles in the lounge.

Walls, sofas, boxes, chairs, and people were consis-

tently avoided. Corridor following, even at corners,

was easily accomplished by the system. Again, mod-

erate lighting variations caused no di�culty. These

results were repeated in other rooms where di�erences

included the type and amount of clutter and the pat-

tern of the carpet. Some pictures of Pebbles operating

in various environments are given in Figure 5.

In the JPL indoor room of sand and rocks, the sys-

tem achieved performance equivalent to that observed

in the sandbox test site. It should be stressed that this

performance was achieved without any customization

whatsoever to this environment, as compared with the

initial development environments at MIT. Moreover,

performance in the outdoor JPL MarsYard supported

the use of this approach on a Mars rover, perhaps in

conjunction with other techniques. The system suc-

ceeded in many situations in this environment, again

with no changes to the code. Di�culty with late after-

noon shadows was observed, and is discussed below.

3.4 Example Run

A continuous 20-minute sample run was performed in

the sandbox environment whose layout is shown in Fig-

ure 6. Figure 7 depicts the approximate trajectory for

this run. The X indicates the situation where one of

Pebbles' treads became stuck on a rock to the side of

the robot, and the robot needed to be moved slightly
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Figure 6: Layout of sandbox test environment.

by hand. The rest of the trajectory was completely

autonomous. Many such runs have been performed,

and the trajectory displayed is representative of the

system's performance. Recall that no environmental

map was stored across frames and that the robot had

no goal location, but rather motor commands were de-

termined directly from each image.

3.5 Failure Modes

The system failed when obstacles were outside the

�eld-of-view of the camera. This failure mode is not a

shortcoming of the vision software, but rather of the

hardware con�guration of the camera and the robot

as compared with the reactive navigation algorithm.

That is, when no map is stored, the focal length of

the camera must be small enough to fully accommo-

date the width of the robot. This requirement was not

met, so for example, the failure occasionally happened

when a small obstacle was directly in front of one of

Pebbles' treads, and Pebbles had just turned sharply

away from a di�erent obstacle so that the troublesome

obstacle had never been within the camera's view.

Regarding the vision algorithms, it is assumed that

the 
oor pattern can be e�ectively modeled by a single

image patch. Consequently, carpets with broad pat-

terns or boundaries between distinct patterns resulted

in false alarms. Sharp shadows also posed a problem

in bright outdoor sunlight when shadows were some-

times classi�ed as obstacles. Similarly, bright specu-

larities on a shiny 
oor occasionally caused the system

to falsely report obstacles. Prior knowledge of such

patterns or an additional method for depth estimation

would be required to resolve these issues.

Note, however, that the method presented could

be easily extended to use histograms of higher-order

statistics of intensities to handle texture changes as

well as intensity changes. In this way, it could be ap-

plied to a larger class of environments.

X

start

Figure 7: Example: 20-minute continuous run of the

system. It is shown across ten (consecutive) images

for clarity only.

3.6 Robustness

The system is relatively insensitive to slight changes in

thresholds and constants. Thresholds for determining

if the measure of a window is di�erent from the stored

measure can be varied by about 15 percent without

harming performance. Image resolutions and window

sizes of up to four times the current dimensions have

been tested with good results. Further, performance

is not harmed by relaxing the ground plane constraint

to included rough, slightly sloping surfaces such as the

sandbox test site.

4 Conclusions

This paper describes an autonomous visually-guided

obstacle avoidance system implemented onboard a mo-

bile robot using a single uncalibrated camera and very

low resolution images. The system is comprised of

multiple independent visual processing modules each

of which is computationally simple and segments ob-

stacles in the image based on a single visual prop-



erty such as intensity gradients or color information.

Each module receives the image directly from the cam-

era and returns a one-dimensional array indicating the

perceived locations of obstacles. These arrays are com-

bined into a single array from which motor commands

are generated.

The system is adaptive to new environments since it

obtains a new model for ground from any current en-

vironment during run-time. Thus, no prior customiza-

tion or training is needed for many new environments.

Further, the described approach of combining multiple

computationally simple modules into a system for ro-

bustness across widely varying environments can also

be applied to multiple cameras, other sensors, or a

combination of various sensors.
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