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INTRODUCTION

How can we build artificial creatures which inhabit the same
world as us? To me this has always been the romance of Artificial
Intelligence.

Artificial Intelligence as a discipline has gotten bogged down
in subproblems of intelligence. These subproblems are the result
of applying reductionist methods to the goal of creating a
complete artificial thinking mind. In Brooks (1987) 1 have argued
that these methods will lead us to solving irrelevant problems;
interesting as intellectual puzzles, but useless in the long run for
creating an artificial being.

Thus, my goal over the last few years has been to build
complete creatures that can exist in a dynamic people-populated
world.

But having rejected reductionism as an approach how can this
goal be achieved? We can begin by making the following
observation inspired by nature.

Trying straight up for human level intelligence is obviously
difficult and is not necessarily the only valid approach.
Evolution, after all, built a large number of prototypes; less
intelligent than humans before incrementally reaching the
intelligence of homo sapiens. In building artificial creatures we
might well make progress by starting with low expectations and
gradually building upon our experience. Note that we are not
saying we should build creatures in simple worlds and then
gradually increase the complexity of the worlds. Rather we are
arguing for building simple creatures in the most complex world
we can imagine and gradually increasing the complexity of the
creatures.

One approach then, is to aim initially for the intelligence level
of lower animals (e.g., insects) and respect the constraints that
biology seems to have worked under. This approach may not
produce the "optimal" intelligence in some sense, but it may have
a chance where other approaches have failed.

In looking at lower animals one sees that most of their activity
is concerned with rather mundane aspects of simply existing in
the world (e.g., Moravec, 1984). Very little of their activity has
an obvious component that would match any piece of existing
work in Artificial Intelligence. To list just of few examples, i t
seems highly unlikely that a house fly is:

• recovering three dimensional surface descriptions of all the
objects within its field of view,

• reasoning about threats from a human poised with a fly swatter,
in particular about the human's goal structures, intents or beliefs,

• representing prototypes and instances of humans (or coffee pots,
or windows, or napkins),

• making analogies concerning suitability for egg laying between
dead pigs and other dead four legged animals, or

• constructing naive physics theories of how to land on the
ceiling.

It seems much more likely that:

• there is very close connection of sensors to actuators (especially
given the low speed of neural hardware and the fast reaction time
of the fly)

• there are pre-wired patterns of behavior

• the fly uses simple navigation techniques

• and it is almost characterizable as a deterministic machine.

In this chapter we show how systems with such capabilities can
be built from a collection of simple machines, with no shared
representations, no central control, and only very low switching
rates and low bandwidth communication.

Agre and Chapman (1987) have gone further and argued that
much of human activity is simply a matter of following routines
and that in fact very little of the traditional AI sorts of processes
mentioned above go on in humans for much of their mundane day



to day activity. They implement their systems in combinational
circuits.

Like Minsky (1987) we believe that human level coherence
during many activities may only be in the eye of the beholder; the
behavior is generated by a large collection of simpler behaviors
which do not have the rationality generating them that we might
normally attribute to humans.

In fact, we hypothesize that all human behavior is simply the
external expression of a seething mass of rather independent
behaviors without any central control or representations of the
world. Maybe there is only chaos from which order appears to
emerge.

THE SUBSUMPTION ARCHITECTURE

The subsumption architecture Brooks (1986) is a parallel and
distributed computation formalism for connecting sensors to
actuators in robots. A traditional way of describing these
connections would be to say the subsumption architecture
provides a way of writing intelligent control programs for mobile
robots.

One writes a subsumption program by specifying layers of
networks of augmented finite state machines. These are finite state
machines augmented with timers which can be set to initiate a
state change after some fixed time period has passed.

The two key aspects of the subsumption architecture are that (a)
it imposes a layering methodology in building intelligent control
programs, and that (b) within each network the finite state
machines give the layer some structure and also provide a
repository for state.

Subsumption Details

Although there are a number of variations of the subsumption
architecture in active use (see below), they all share a common
base.

Each augmented finite state machine has a number of states and
a set of input and output ports. Each input port has a buffer register
that always contains the most recently arrived message on that
port. The networks are built by wiring output ports of machines to
inputs of others. Messages are sent over these wires. The
messages on a given wire are all the same number of bits long (or
wide).

Beside input registers a finite state machine can have additional
instance variable registers in which extra state can be stored.

There are four types of states possible in a finite state machine:

• An output state outputs a message to a designated port, then
switches to a specified state. The message is a peripheral function
of input and instance variable registers. In the early versions of

the subsumption architecture a peripheral function was allowed to
be an arbitrary supplied piece of Lisp code.

• A conditional-dispatch state tests the value of a peripheral
function and conditionally branches to one of two designated
states.

• A self state computes a peripheral function of input and
instance variable registers, sets an instance variable register to
the new value and branches to a designated state.

• An event-dispatch state waits in parallel for a number of
different events and when one happens branches to the designated
state. Each event is a boolean combination of message arrivals on
input ports and the expiration of a timer initialized when the state
was first entered.

Examples of all these types of states can be seen in Figure 8. 1 .
Additionally there is a reset line into each finite state machine; a
message arriving on this line forces the machine into a
distinguished state without resetting any of the register contents.

(defmodule avoid 1
:inputs (force heading)
:outputs (command)
:instance-vars (resultforce)
:states

 ((nil (event-dispatch (and force heading) plan))
 (plan (setf resultforce (select-direction force heading))
             go)
 (go (conditional-dispatch(significant-force-p resultforce 1.0)
                                start
                                nil))
 (start (output command (follow-force resultforce))
              nil)))

FIG. 8.1.

There are two other types of connection interaction allowed.
An output port can have an inhibiting side tap added, where any
message arriving on the side tap inhibits all output on the port
from some specified time period. Any existing wire can have a
suppressing side tap placed on it, where a message arriving on the
side tap is propagated along the wire as though it had originated at
the original source, and furthermore all messages from the
original source, for some specified time period, are totally
suppressed and discarded.

Figure 8.2 shows a schematic representation of a finite state
machine with inputs, outputs and a reset, along with a suppressed
input and an inhibited output.



FIG. 8.2. A module has input and output lines. Input signals can be
suppressed and replaced with the suppressing signal. Output signals can be
inhibited. A module can also be reset to state NIL.

Variations on the Theme

The details of the subsumption architecture are very fluid, and
indeed many people now use distinct versions, although all are
strongly of the above described flavor.

Connell (1987) and Brooks (1988a) have explored the idea of
simplifying all peripheral computations to the point where they
are implementable in combinatorial logic or table lookup. For
creatures with insect level intelligence this has not proved to be a
serious constraint. It removes an ugly wart on earlier versions of
the subsumption architecture by removing an escape mechanism
into Turing-equivalent arbitrary computations, and hence puts a
bound on the computational power necessary to implement a
subsumption program.

Connell (1988a) has proposed it subsumption model where all
messages have a continuous nature. When one layer wants to
subsume another it must continually send messages to keep
control. Messages might have the flavor of “go forward,” “go
forward” “go forward,” etc. Once the higher layer is satisfied i t
stops sending this message and hence relinquishes control. This
version of the subsumption architecture does not make use of
inhibition or resetting and suppression nodes have no timeout
period. The new version is implementable, in the original version
however. Viola (1988) has reimplemented a number of earlier
creatures in the continuous model of the subsumption architecture.
It seems to simplify the subsumption programs markedly.

Cudhea (1988) has added a layer of abstraction to the
subsumption architecture which lets users define programs in
terms of instantiating finite state machine schemas. Ibis makes i t
easy to write subsumption programs where there are many
instances of a single finite state machine.

Horswill and Brooks (1988) have augmented the underlying
subsumption architecture with high bandwidth vision busses.
Simple means of combination (such as MUXes and logical
combination) of vision signals, along with local operators, delay
elements and region to coordinate mapping functions, allow the
implementation of a number of low level visual navigation
techniques useful for insect level navigation. Standard
subsumption architecture finite state machines monitor and switch
the visual pathways, and translate the outputs into actuator
commands.

THE PHILOSOPHY AND CONSEQUENCES OF
SUBSUMPTION

Given these mechanics of the subsumption architecture a wide
range of programming styles are possible. However there are
some underlying considerations which distinguish a "good"
subsumption program from a "bad" subsumption program.

The design of the subsumption architecture has been influenced
by a philosophy of no global world models and no traditional Al
planning. In turn, the experiments we have done with real robots
controlled by the subsumption architecture have fed back on this
philosophy, refining it and our understanding of the essential
aspects of the subsumption architecture.

The underlying architecture is very distributed. There is no
"free" communication network or any shared memory between
computational elements. Any communication path must be made
quite explicit by specifying a wire. It is thus difficult to maintain a
central world model. Indeed it often becomes easier to use the
world as its own model, and sense the pertinent aspects of the
world when it is necessary. This is a good idea as the world really
is a rather good model of itself. It automatically adds robustness to
the system as there is neither a tendency for the world model to be
out of date, nor are large amounts of computation poured into
making sure that its not. We take this idea even further and often
actually use the world as the communication medium between
distributed parts of the subsumption program. Thus one layer
senses what really happened in the world, rather than being told
what another layer expects to happen.

Given that there is no world model there is also no place for
traditional AI planning which examines a world model and reasons
about consequences of actions. Rather, in the subsumption
architecture it is more natural to locally react to sensed aspects of
the world, and let a pre-wired priority scheme resolve any
conflicts generated within the distributed system. It is entirely
plausible for different parts of the system to "believe" wildly
inconsistent things about the world. Of course belief is all in the
mind of an outside observer as there are no explicit symbolic
representations of any believed facts within the subsumption
architecture.

Lastly, with no central world model there is no need for sensor
fusion in the usual sense of the phrase. There is no "perception"
system which delivers descriptions of the world to a "central"
system which controls and "actuation" system, In the
subsumption architecture the fusion of data from different sensors,
or even from different processing applied to the same sensor (e.g.
stereo and motion algorithms applied to the same carriers inputs)
data, does not happen in the "perception" end at all. Individual
strands of perceptual data are delivered to individual subsumption
layers and then actuator commands are generated. Fusion happens
in resolving conflicts between these commands.



EXAMPLES

In this section we briefly review some successful creatures built
with the subsumption architecture and highlight the ways in
which they have exploited or epitomize that architecture. Finally
we outline a subsumption program for a complex visually guided
creature (named Seymour) that is currently under development.

A l l e n

Our first robot, Allen, had sonar distance sensors and odometry
onboard and used an offboard lisp machine to simulate the
subsumption architecture. In Brooks (1986) we described three
layers of control implemented in the subsumption architecture.
The wiring diagram is shown in Figure 8.3.

The first layer let the robot avoid both static and dynamic
obstacles; Allen would happily sit in the middle of a morn until
approached, then scurry away, avoiding collisions as it went. The
internal representation used was that every sonar return
represented a repulsive force with an inverse square drop off in
strength. The vector sum of the repulsive forces, suitably
thresholded, told the robot in which direction it should move. An
additional reflex halted the robot whenever there was something
right in front of the robot and it was moving forward (rather than
turning in place).

The second layer made the robot randomly wander about. Every
10 seconds or so, a desire to head in a random direction would be
generated. That desire was coupled with the instinct to avoid
obstacles by vector addition. The summed vector suppressed the
more primitive obstacle avoidance vector, but the obstacle
avoidance behavior still operated, having been subsumed by the
new layer, in its account of the lower level's repulsive force.
Additionally the halt reflex of the lower level operated
autonomously and unchanged.

The third layer made the robot look (with its sonars) for distant
places and try to head towards them. The third layer monitored
progress through odometry, generating a desired heading which
suppressed the direction desired by the wander layer. It was thus fed
into a vector addition with the instinctive obstacle avoidance
layer. The physical robot did not therefore remain true to the
desires of the upper layer. The upper layer had to watch what
happened in the world, through odometry, in order to understand
what was really happening in the lower control layers, and send
down correction signals.

In Brooks and Connell (1986) we described another set of layers
for the robot Allen. See Figure 8.4 for the wiring diagram. The
first was identical; avoiding obstacles both static and dynamic.
The second layer implemented wall following by treating a wall to
the right, say, of the robot as an attractive force slightly ahead
and to the right of the robot. This attraction fought with the
repulsive force of the wall, and together they formed an attractive
vector which made the robot hug the wall. The wall follower
breezes right past open doors. A third layer examines the sonar
data looking for doorways. When it sees one it sets up a goal as in
the previous set of experiments, and servoes through the doorway
using odometry. Now however the repulsive forces from the
lowest obstacle avoidance layer are crucial to line the robot up
with the center of the doorway so that it can squeeze through. The
door finder only has a very rough idea of where the door is, so the
third layer only has a very crude world model. The lowest layer
uses the world as its own best model in order to get the robot
through the door. Note that the upper layer does not involve the
lower layer as a subroutine. The lower layer is just doing its job as
best it understands it as it always has. Figure 8.5 shows the
behavior of a simulated version of Allen with one, two, and three
control layers activated.



Tom and Jerry

Tom and Jerry (Connell, 1987) were two identical robots built
to demonstrate just how little raw computation is necessary to
support the subsumption architecture. A three layer subsumption
program for the robots is shown in Fig. 8.6. All data paths are one
bit wide, and the whole program is implemented on a single 256
gate PAL (Programmable Array of Logic). Tom and Jerry
physically are toy cars with three one bit infrared proximity
sensors mounted on the front of them, and one identical sensor
mounted at the rear. The sensors are individually tuned to a
proximity distance at which they will fire. The central front
sensor fires only on much closer objects than the two others
which point slightly outwards.

The lowest layer of Tom and Jerry implements our standard pair
of behaviors, using a vector sum of repulsive forces from
obstacles and a halt reflex to stop when something is too close
ahead, as detected by the central front looking sensor. There are
extra complications in that we need to use the subsumption
architecture to implement an active braking scheme because of the
high speed of the robots relative to their sensor sensitivities.
Tom and Jerry's second layers are much like Allen's original
second layer—an urge to wander about, implemented by an
attractive force which gets added to the repulsive forces from

obstacles. The third layer detects relatively moving objects using
the front three sensors. When something is detected it is attracted
towards them. The lower level collide behavior stops the robot
from actually hitting the target however. While the robot i s
chasing a target the wander behavior is suppressed.

We see with Tom and Jerry both the notion of independent
behaviors combining without knowing about each other (chasing
obstacles but staying back from them a little ways) and the idea
again of using the world as its own best model. It demonstrated
that the subsumption architecture could be compiled (by hand)
down to the gate level, and also that it could be run at clock speeds
of a few hundred Hertz. This has inspired us to automate the
compilation process (Brooks, 1988b).

Herbert

Herbert (Brooks, Connell, & Ning, 1988) is a physically much
more ambitious robot which is now physically complete. It has a
24 processor distributed loosely coupled onboard computer to run
the subsumption architecture. The processors are slow CMOS (low
electrical power; an important consideration when carrying
batteries around to power them) 8 bit microprocessors, which can
communicate only by slow serial interfaces (maximum 10 packets
each 24 bits wide per second). Onboard Herbert the wires in the
diagrams shown in this paper for subsumption programs have
physical embodiments as copper wires which provide the medium
to support the serial sensing of messages.

Herbert has 30 infrared proximity sensors for local obstacle
avoidance, an onboard manipulator with a number of simple
sensors attached to the hand, and a laser light stripping system to
collect three dimensional depth data in 60 degree wide swath in
front of the robot out to a range of about 12 feet. A 256 pixel wide
by 32 pixel high depth image is collected every second. Through a
special purpose distributed serpentine memory, some number of
the onboard 8 bit processors are able to expend about 30
instructions to each data pixel. By linking the processors in a
chain we are able to implement quite good performance vision
algorithms.

Connell (1988b) is programming Herbert to wander around
office areas, go into peoples offices and steal empty soda cans
from their desks. He has demonstrated obstacle avoidance and wall
following, real-time recognition of soda can like objects and desk
like objects, and a set of 15 behaviors (Connell, 1988b) which
drive the arm to physically search for a soda can in front of the
robot, locate it and pick it up. These fifteen behaviors are shown
as fifteen separate finite state machines in Figure 8.7.

Herbert shows many instances of using the world as its own
best model and as a communication medium.

The laser-based table-like-object finder initiates a behavior
which drives the robot closer to a table. It doesn't communicate
with any other subsumption layers. However when the robot i s
close to a table there is a better chance that the laser-based
soda-can-like-object finder will trigger. In turn it centers the robot



on the detected object, but does not communicate anything to
other subsumption layers. The arm control behaviors notice that
the robot is stationary, and reach out looking for a soda can. The
advantage of this approach is that there is no need to set up
internal expectations for what is going to happen next; this
means that the control system can both (a) be naturally
opportunistic if fortuitous circumstances present themselves, and
(b) it can easily respond to changed circumstances, such as some
other object approaching it on a collision course.

Likewise the arm and hand do not communicate directly. The
band has a grasp reflex that operates whenever something breaks
an infrared beam between the fingers. When the arm locates a soda
can with its local sensors it simply drives the hand so that the two
fingers are on either side of the can. The hand then independently
grasps the can. Given this arrangement it is possible for a human
to hand a soda can to the robot. As soon as it is grasped the arm
retracts—it doesn't matter whether it was a soda can that was
intentionally grasped, or one that magically appears.

Seymour

Seymour is a new robot we are building with all onboard
processing to support vision processing of 8 to 10 low resolution
cameras at approximately 10 frames per second. The cameras will
feed into different subsumption layers which will act upon those
aspects of the world they perceive. For instance, one layer might
use a camera looking at ceiling lights to direct the robot down a
corridor. Another might use motion stereo to detect obstacles in
the path of the robot and force deviations from the simple corridor
following path.

While the robot and its computers are under construction we
have begun testing a number of low level visually guided
navigation routines on Allen using an offboard Lisp machine to

do the computations. We will transfer these routines to the robot
when it is built.

Horswill and Brooks (1988) describe a subsumption program
that controls two simple and unreliable visual processing routines
to producer a reliable behavior which follows moving objects
using vision. The subsumption network is shown in Figure 8.8.
One vision process tracks a single moving blob. It gets
bootstrapped by another process which overlays the blob image
with an indication of where motion is seen. The robot then tries to
servo a selected blob to stay in a fixed location in image
coordinates. The blob tracker often loses the blob it is tracking.
The motion finder produces a lot of noise especially when the
robot is moving. But between the two of them they let the robot



reliably follow a moving object (any moving object; we have
seen the robot chase a pink plastic flamingo and a black trash can
dragged by a string, a radio controlled toy blue car on a blue floor,
a grey notebook on a grey carpeted floor, and a drinking mug
moved around by hand), by switching back and forth between the
visual routines as either one fails. The subsumption program
nowhere has the notion of an identifiable object internally, but to
an outside observer it certainly appears to follow a moving object
well.

CONCLUSION

By trying to build complete creatures we have found it useful to
place a different emphasis on many aspects of intelligence than
has been traditional in AI research. The key problems in building
a complete creature are:

• providing fast and adequate response in a dynamic changing
environment,

• providing a way to make sense of sensory data in an
incompletely understood world, and

• providing a mechanism where the goals of a creature are not
routinely overwhelmed in dealing with the interruptions provided
by the world.

At least for simple creatures we have found little use for
complete world models, planning, search, explicit knowledge
representation, truth maintenance or control of reasoning.

Inspired by Minsky (1986) we hypothesize that the same will
hold true as we move up the evolutionary train in the complexity
of creatures we build. In our more radical moments we believe that
this will hold true all the way through to human level intelligence.
We are further inspired by the following observation.

Nature has shown us that intelligence is possible with very low
switching speeds in the substrate used for computation. Indeed
every single example of biological systems with any form of
cognition operates on hardware that can propagate signals at no
more than a kiloHertz or two. Yet all of these systems can react
and operate in a fraction of a second. But they can do more than
just react in those time frames. Humans, for instance, can often
perceive, reason, understand and plan actions in subsecond time
frames. In fact they can produce continuous streams of speech at
many words per second. Thus we have an existence proof that it i s
possible to achieve intelligence with very shallow computational
processes. Interestingly we have no existence proof that it i s
possible to do it any other way. The subsumption architecture
similarly provides intelligence to simple creatures with hardware
that need only be clocked at a few hundred Hertz (Brooks, 1988b).
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