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Abstract

There are a number of reasons to be interested in

building humanoid robots. They include (1) since al-

most all human artifacts have been designed to easy

for humans to interact with, humanoid robots provide

backward compatibility with the existing human con-

structed world, (2) humanoid robots provide a nat-

ural form for humans to operate through telepres-

ence since they have the same kinematic design as

humans themselves, (3) by building humanoid robots

that model humans directly they will be a useful tool

in understanding how humans develop and operate as

they provide a platform for experimenting with dif-

ferent hypotheses about humans and (4) humanoid

robots, given su�cient abilities, will present a nat-

ural interface to people and people will be able to

use their instinctive and culturally developed sub-

conscious techniques for communicating with other

people to communicate with humanoid robots. In

this paper we take reason (4) seriously, and examine

some of the technologies that are necessary to make

this hope a reality.

1 Scenarios

We outline three scenarios where a humanoid robot

(Brooks 1996) might be used in the future. In each

case the robot is to be instructed by a person on how

to carry out its tasks. By using natural communica-

tions methods the instruction process is easy for the

person, and does not require that they be specially

trained to instruct a robot. The highlighted num-

bers refer to the numbered subsections of section 2

following these three scenarios. These subsections il-

luminate the research issues that must be solved in

order to build humanoid robots that can perform as

suggested in the scenarios. We also give a summary

of our own results in these directions using our robots

Cog and Kismet, pictured in �gures 1 and 2.

Figure 1: The robot Cog, using neural oscillators to

carry out a complex manipulation task without any

model of kinematics or dynamics.

[a] Opening a gas tank

Suppose a robot is to be tasked with �lling the gas

tanks at a gas station, where many di�erent makes

and models of cars, SUVs, and trucks will need to be

serviced. The human instructor calls the robot over

to an example automobile, and instructs it to watch

how to open the gas tank. The person looks over his

shoulder to con�rm that the robot is looking in the

right place (1{the robot should not imitate this and
look over its shoulder every time it opens a gas tank).
The person 
ips open the gas �ller cover door with

one hand and glances up at the robot (6{the robot
must give some sign, through nodding, or vocalizing,
that it is following), then twists o� the gas cap with

his other hand (2{the robot needs to realize that it



Figure 2: The robot Kismet, interacting with a per-

son through facial expressions.

can use its one and only arm to do both tasks, 4{the
robot must chain together the two sequential actions,
but then later not be confused as to what to do �rst
on a vehicle that is missing the cover door, 1,2{the
robot notes the way the person's elbow swings about
as he is twisting the cap, but must realize that it need
not swing its own elbow to achieve the same result as
the kinematics of its arm are di�erent from those of a
human). The person hands the tank cap to the robot

and tells it to put things back (4{now the robot must
reverse the chain of events, 5{generalize the individ-
ual steps so that it can reverse them, and 3{evaluate
how well it does the job and improve its performance
over time; the robot must also generalize the task to
other models of cars when it is confronted with them).

[b] Earthquake reconnaissance

In an earthquake disaster a reconnaissance robot is

to be sent down a street between unsafe tall build-

ings and o� to the right at a particular intersection

to check for signs of survivors in a side street. There

is heaving construction equipment moving concrete

slabs, and the situation is noisy and confusing. The

operator gestures down the street and yells to the

robot to go that way (6{the robot must give some
indication that it is following what is being said, es-
pecially given the noisy situation, 2{the robot must
understand the command as a gesture telling it what
to do with its body as a whole, not asking it to point

its hand in the same direction), then waves his hand

to the right (6{the robot acknowledges), and tells the

robot to turn at the intersection with the crushed red

car partially blocking it (6{the robot gestures to the
right, looking for con�rmation from the person on the
required direction, and the operator instinctively nods
his head \yes"), and to check for survivors and re-

port back (4{the robot must understand the sequence
of operations that it is to do, and when it is in the side
street and the intersection has a broken water main
making it impossible to return by the route it came,
5{the robot must be able to generalize that the goal is
to get back to the operator, and 3{re-plan a di�erent
homeward path).

[c] Loading a truck

A humanoid robot is to drive a fork-lift vehicle to

load a truck with un-palletized bags of rice during

a humanitarian relief operation. The human shows

the robot the pile of bags, then takes the robot over

to the truck (1{the robot realizes that this is all part
of the instruction process), then uses hand gestures

to indicate the desired orientation of the bags (2{so
the robot must be able to map the hand motions to
the relative dimensions of the sides of the bag, and
1{understand that these placements are the principal
things it must imitate in loading the truck), and uses

placing motions to indicate how they should be layed

down in a regular pattern (5{the robot must gener-
alize from a few places to a pattern which covers the
whole truck 
oor, and 4{it must chain the placement
actions and the transport actions into a more com-
plex sequence of actions), and all the time glances

at the robot to receive con�rmation that it is under-

standing the instructions (6{ the robot must interpret
these glances as the cues for when it should give ei-
ther positive or negative feedback to the person that it
is understanding what he is saying).

2 Issues

Each of the scenarios previously described raises a

number of di�cult practical and research issues. We

believe the following six research areas are the critical

ones.

2.1 Knowing what to imitate

One of the most di�cult problems in complex robotic

systems is determining which of the incoming sensory

signals are relevant to the current task. The robot

must both segment the incoming visual signals into



salient objects and determine which are relevant to

the task at hand. For example, in scenario [a], the
robot must observe the entire scene and segment it

into salient objects (such as the instructor's hand,

the cover to the gas tank, the vehicle's tires, a side

of the vehicle) and actions (the instructor's moving

hand twisting the gas cap, the movement of a tree

blowing in the wind in the background, and the in-

structor's head turning toward the robot). The robot

must determine which of these objects and events are

necessary to the task at hand (such as the gas tank

and the movement of the instructor's elbow), which

events and actions are important to the instructional

process but not to the task itself (such as the move-

ment of the instructor's head), and which are incon-

sequential (such as the instructor wiping his brow or

the movement of the trees in the background). The

robot must also determine to what extent each action

must be imitated. For example, in scenario [c], the
robot must determine that a relevant part of the task

is to load bags but that the exact ways in which the

instructor handles the bags or the instructor's pos-

ture while lifting need not be mimicked.

We have been developing techniques to solve these

problems: recognizing inherent saliency in objects

and recognizing objects and actions that are salient

because the instructor is attending to them. Mea-

sures of inherent object saliency, (e.g. color, texture,

and face detection) can be combined with an atten-

tional system to generate initial estimations of rele-

vant objects. Additional re�nement can be obtained

by observing the attentional states and social actions

of the instructor.

2.2 Mapping between bodies

Once the robot has identi�ed salient aspects of the

scene, how does it determine what actions it should

take? When the robot observes the instructor grasp-

ing the cap to the gas tank in scenario [a], how does

the robot convert that perception into a sequence of

motor actions that will bring its arm to achieve the

same result? Mapping from one body to another in-

volves not only determining which body parts have

similar structure but also transforming the observed

movements into motions that the robot is capable of

performing. For example, if the instructor is turning

the lid of a gas cap, the robot must �rst identify that

the motion of the arm and hand are relevant to the

task and determine that its own hand and arm are

capable of performing this action. The robot must

then observe the movements of the instructor's hand

and arm and map those movements into the motor

coordinates of its own body.

To constrain the space of potential mappings we

will use the connection between how events are sensed

and the reactions they generate. By also attending

to both the static properties of objects and the cur-

rent social situation, the number of potential motor

responses can be limited. For example, in scenario

[c], the size and shape of the bag limits the num-

ber of ways in which the robot can handle the bag

while the social cues from the instructor constrains

the potential responses.

2.3 Recognizing success

Once a robot can observe an action and attempt to

imitate it, how can the robot determine whether or

not it has been successful? Further, if the robot has

been unsuccessful, how does it determine which parts

of its performance were inadequate? If the robot is

attempting to load bags into a truck as in scenario [c],
has the robot been successful if it picks up the bag

that the instructor has already loaded and moves it

to a di�erent position in the truck? Is the robot suc-

cessful if it picks up a new bag, attempts to place the

bag in the same space as the bag that the instructor

already loaded and in doing so pushes the other bag

out of the truck? Is the robot successful if it picks

up a new bag and loads it on top of another bag in

an unstable pile? In all of these cases, how does the

robot determine which parts of its actions have been

inadequate?

In the case of imitation, the di�culty of obtain-

ing a success criterion can be simpli�ed by exploiting

the natural structure of social interactions. As the

robot performs its task, the facial expressions, vocal-

izations, and actions of the instructor all provide feed-

back that will allow the robot to determine whether

or not it has achieved the desired goal. Imitation is

also an iterative process; the instructor demonstrates,

the student performs, and then the instructor demon-

strates again, often exaggerating or focusing on as-

pects of the task that were not performed success-

fully. By repeatedly responding to the social cues

that initially allowed the robot to understand and

identify which salient aspects of the scene to imitate,

the robot can incrementally re�ne its approximation

of the actions of the instructor.

2.4 Chaining

To perform many goal-oriented tasks a robot must

be capable of chaining together imitations of simpler

tasks. Combining simple tasks into a 
exible and ro-

bust action plan is vital for success. For example,

in scenario [b], the robot must maintain a sequence



of directions (going down the street, turning at the

intersection, checking for survivors, and returning to

report) which must be performed in order, and each

of which consists of a number of sub-parts that must

be performed in sequence. Each of these behaviors

must be 
exible to deal with unforeseen situations

while remaining robust to the changes in the envi-

ronment. The behaviors must also be combined in

a 
exible manner; depending on environmental con-

ditions, the order of the behaviors may need to be

altered or certain behaviors may need to be omit-

ted. For example, if the intersection is blocked, a

new route must be found.

Recognizing what sequence of actions is necessary

can be simpli�ed by recognizing the social context of

the situation. In the same way that social cues limit

motor actions, social signals indicate which actions

can be performed at a particular time. Low-level

behavior driven responses combined with high-level

planned actions provide robustness and 
exibility.

2.5 Generalizing

Once a robot has learned to imitate an action, it

should be able to utilize that skill to simplify learn-

ing other tasks. For example, in scenario [c], once the
robot has learned to load bags into the truck, learning

to load boxes should be simpli�ed by the previously

acquired knowledge. The robot must have the abil-

ity to recognize and modify applicable skills that it

has acquired. It should also be capable of extracting

invariants about the world from its interactions and

thus acquire \common-sense" knowledge. For exam-

ple, the robot might apply the concept of support

from learning to stack boxes in a truck to assembly

tasks.

The robot must be capable of taking learned se-

quences and treating them as \primitives" for combi-

nations into even more complex behaviors while still

allowing the feedback from the instructor to drive op-

timization of individual sub-parts. For example, in

[c] the robot could learn that a sequence for picking

up an object has the same overall structure applicable

to di�erent types of objects (all involve approaching

an object, moving your arms to a point near the ob-

ject and then grasping it) but might require di�erent

optimizations to the sub-components (picking up a

bag of rice requires a di�erent grasp than picking up

a box of provisions).

2.6 Making interactions intuitive

To make a robotic system useful, it must have a

simple and intuitive interface. Our goal is to build

robotic systems that can capitalize on the natural

social signals humans subconsciously use in commu-

nication with each other. For example, in [a], the
robot must provide feedback to the instructor that it

has understood its instructions, signal when it does

not understand, extrapolate the importance of each

piece of the task based on the instructor's emotional

cues, and recognize the start and end of the instruc-

tion period. A system that operates using natural hu-

man social expressions allows anyone, without prior

instruction, to instruct the robot in a simple, natu-

ral, and intuitive manner. Because so many of these

social signals are completely unconscious for humans,

the task of teaching is simpli�ed.

Utilizing these signals requires highly specialized

perceptual systems that are sensitive to the types

of social cues that humans use. For example, hu-

mans are extremely sensitive to the direction of gaze,

the tone of voice, and facial expressions. Recogniz-

ing these cues in natural environments requires high

accuracy (such as �nding the angle of gaze) and high

speed (so that it can respond quickly enough to main-

tain social convention) without relying upon simpli-

�ed environmental invariants.

3 Coordinating the issues

We have attacked these six issues by carrying out

work under four research themes.

I We have built systems that allow robots to en-

gage in social interactions with humans by utiliz-

ing normal cross-cultural human-to-human sub-

linguistic interactions.

II We organize the subsystems of our robots to follow

human-like developmental paths so that we can

exploit the solutions that evolution has painstak-

ingly discovered. A developmental strategy al-

lows increasingly more complex skills and com-

petencies to be layered on top of continuously

self-calibrating simpler competencies. It also or-

ganizes knowledge of the world in the same man-

ner as that used by humans and thus contributes

to intuitive understanding.

III Our subsystems exploit the embodiment in the

world, of the robots they control. Embodiment

facilitates a robot using the world as a tool for

organizing and manipulating knowledge. At the

same time, just as with humans, it directs choices

away from what could be done only with great

di�culty and towards what can be done nat-

urally and in keeping with the physics of the

world.
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Figure 3: The �rst stage of gaze detection is �nding

faces and eyes. This shows the system we have built

for both Cog and Kismet which �nds faces in the

periphery, saccades to them, them and knows where

to look for the eyes.

IV Our humanoid robots are highly integrated which
maximize the e�ciency and accuracy of comple-

mentary sensory and motor systems.

In the following subsections we outline these four

methodologies and explicitly relate their techniques

to the solutions of our six key problems.

3.I Social interaction

Humans socially engage each other for assistance,

teaching, and information. People are able to com-

municate rapidly, e�ciently, and 
uidly because we

share the same set of social conventions, display and

interpret common social cues, and possess common-

sense social knowledge. Furthermore, humans in-

stinctively instruct and learn from each other in social

scenarios. New skills are transferred between people

through mimicry or imitation, through direct tute-

lage, or by sca�olding (actively assisting the learning

process by reducing distractions, directing attention

to the task's critical attributes, decomposing the task

into more manageable chunks, or providing rich and

ongoing reinforcement).

Similarly, social interaction can be used as a means

of natural human-machine interaction and a powerful

way for transferring important skills, tasks, and in-

formation to a robot. Were a robot to possess similar

social skills and knowledge as people, humans would

have a natural way of communicating e�ectively with

the robot and vice versa. Tasking the robot would not

require any special training, and would be as natural

as tasking any other person. Furthermore, a socially

competent robot could take advantage of the same

sorts of social learning and teaching scenarios that

humans readily engage. Hence, people could instruct

the robot in an intuitive manner and the robot could

take advantage of various social cues to facilitate its

own learning of a task.

Facilitates knowing what to imitate. Social in-

teraction plays a critical role in facilitating imitative

forms of learning. Fundamental social cues, such as

gaze direction (see �gure 3), and basic social skills,

such as shared attention, can be used by a robot to

determine the important features of the task. Human

instructors naturally attend to the key aspects of a

task when demonstrating a task to someone else. For

example, in [a], the person will naturally look at the

gas �ller cover door as he 
ips it open and will watch

his own hand as he twists o� the cap. By directing its

own attention to the object of the human's attention

the robot will automatically attend to the critical as-

pects of the task. The robot's gaze direction can also

serve as an important feedback signal for the human;

the person looks over his shoulder to con�rm that the

robot is looking in the right place. If this is not the

case, then the person can actively direct the robot's

attention to the gas tank cover, perhaps by pointing

to it or tapping on it. In general, if the robot has basic

social knowledge, then it will be able to distinguish

acts for communication from acts directly related to

the task being taught.

Facilitates knowing when you have it right.
Social interaction can also play a critical role in help-

ing the robot identify the relevant success criteria

for a task as well as identifying when success has

been achieved. Human instructors serve as natural

progress estimators and progress evaluators to a per-

son learning a task. Typically this information is

given through facial expressions (smiles or frowns),

gestures (nodding or shaking of the head) and verbal

feedback (\Yes, that's right.", \No, not quite.").

Without human instruction, designing suitable

reinforcement functions or progress estimators for

robots is a notoriously di�cult problem that often

leads to learning brittle behaviours. This aspect of

the learning problem could be greatly facilitated if

the robot could exploit the instructor's social feed-

back cues, query the instructor or make use of read-

ily available feedback. Humans naturally query their

instructor by simply glancing back to his face with

an inquisitive expression. The robot could use the

same social skill to query the human instructor, as

illustrated in scenario [b].

Facilitates the teaching process. In general, a

wide variety of social cues can play a powerful role

in tuning the teaching process to be suitable for the



Figure 4: Kismet is able to display a wide range

of facial expressions, based on an underlying three

dimensional expression space.

learner. Basic social skills such as turn taking are

critical for social learning; instruction is often an iter-

ative process where the instructor and student alter-

nate turns. The instructor continually modi�es the

way he performs the task, perhaps exaggerating those

aspects that the student performed inadequately, in

an e�ort to re�ne the student's subsequent perfor-

mance.

Furthermore, while taking his turn, the instructor

often looks to the student's face to determine whether

the student appears confused or understands what is

being demonstrated. Expressive displays are e�ort-

lessly used by people to control the rate of informa-

tion exchange, to speed it up, slow it down, or elabo-

rate as appropriate. If the student appears confused,

the instructor slows down the training scenario until

the student is ready to proceed. Hence, displaying

facial expressions (�gure 4) is an important cue for

the instructor as well as the student. Overall, the

ability to take turns and display expressive feedback

are important social skills for a robot to possess if

it is to participate in this sort of natural training

process. This is illustrated in scenario [c] where the
human looks to the robot for con�rmation that it

understands what it is being shown. Without these

skills, it will be di�cult for the human instructor to

promote and maintain an appropriate learning envi-

ronment for the robot. This may result in wasting

time teaching the robot what it already understands,

or proceeding at such a fast rate that the robot is

unable to learn the task.

Promotes an intuitive interface. Above, we

have argued how social interaction can facilitate both

the learning process for the robot as well as the teach-

ing process for the human. The argument can be

easily extended to include building social skills and

knowledge into a robot so that it is easy to com-

municate with in general. This includes having the

robot more e�ectively understand the human as well

as having the human more e�ectively understand the

robot. By implementing cross-cultural sub-linguistic

interactions, the robot will more readily be able to

express its internal state (emotions, drives, goals)

in a manner that is intuitively understood by peo-

ple without relying on some arti�cial vocabulary. A

robot with social knowledge can recognize the goals

and desires of others and more accurately react to

the emotional, attentional, and cognitive states of the

observer, learn to anticipate the reactions of the ob-

server, and modify its own behavior accordingly. For

example, in scenario [b], the robot must comprehend

the urgency and risk of its mission, as communicated

by its instructor, in order to direct its choice of task

execution.

Current progress. A machine that can interact

socially with a human instructor requires a variety of

perceptual, cognitive, and motor skills. Over the last

several years our research group has begun building

the foundational skills for three aspects of social in-

teraction: recognizing and responding to attentional

cues, producing and recognizing emotional expres-

sion, and regulating interactions to facilitate learning.

Interaction intensity is regulated through displayed

facial expressions. The robot's reactions to external

stimuli depend upon its internal motivational state,

the quality of the incoming stimulus and the history

of interaction.

Recognizing the attentional states of the instructor

assists in knowing what to imitate (1), evaluating suc-
cess (3), and in providing an intuitive interface (6).
To allow our robots to recognize attentional states,

we have already implemented a face and eye detec-

tion system (see �gure 3), which allows the robot to

detect faces, move its eyes to foveate the face, and

extract a high-resolution image of the eye (Scassel-

lati 1998). We are currently adding image analy-

sis and geometric interpolation algorithms to extract

the direction of gaze and interpolate to an object in

the world (Scassellati 1999). We propose extending

this system to recognize other forms of joint attention

(such as pointing) and to produce predictive models

of the instructor's goals, beliefs, and desires.

Identifying the emotional states of the instructor

and responding with its own emotional displays will

assist our robot in knowing what to imitate (1), eval-



uating success (3), and in providing a natural inter-

face (6). We have developed robots with the abil-

ity to display facial expressions and have developed

emotional models that drive them based upon envi-

ronmental stimuli and internal motivations (Breazeal

& Scassellati 2000, Breazeal & Scassellati 1999). We

have been exploring the role of emotions in learn-

ing, and have successfully demonstrated fear condi-

tioning (using color and sound stimuli) on a mobile

robot (Velasquez 1998). We are continuing to develop

these ideas to eventually train a robot using emotive

feedback from the instructor (Breazeal & Velasquez

1998).

To successfully learn any social task, the robot

must also be capable of regulating the rate and inten-

sity of instruction to match its current understanding

and capabilities (3). The robot Kismet di�erentiates

between salient social stimuli (things that have faces)

and those that are interesting but non-social (such as

brightly colored or moving objects). Just as infants

manipulate their parents, Kismet can utilize its facial

expressions to naturally in
uence the rate and con-

tent of the instructor's lessons. For example, if the

instructor is moving too quickly, the robot responds

with a frustrated and angry expression. These social

cues are unconsciously interpreted by the instructor,

who modi�es his behavior to maintain the interac-

tion. We propose extending this capability to allow

the robot to optimize its own learning environment

through social manipulations of the instructor.

We have also developed an attentional system

that integrates motion, color, and face saliency cues

(Breazeal & Scassellati 1999). A saliency map is com-

puted for each feature, and these are combined by a

weighted average into an attentional map. The atten-

tional map represents a landscape, where regions of

high saliency are represened as peaks in this map. A

habituation mechanisms is included so that the robot

is not held inde�nitly captive on a particular stimu-

lus. Motivational factors (drives, emotions, behav-

iors) can in
uence the gains, to heighten attention

to those features that are particularly behaviorally

relevent to the robot at that time. The robot's eyes

�xate on the most salient stimuli.

3.II Developmental approach

Humans are not born with complete reasoning sys-

tems, complete motor systems, or even complete sen-

sory systems. Instead, they undergo a process of

development where they perform incrementally more

di�cult tasks in more complex environments en route
to the adult state. In a similar way, we do not expect

our robots to perform completely correctly without

any experience in the world. We have been study-

ing human development both as a tool for building

robotic systems and as a technique which facilitates

learning.

The most important contribution of a developmen-

tal methodology is that examples of structured skill

decomposition and shows how the complexity of a

task can be gradually increased in step with the com-

petency of the system. Human development provides

us with insight into how complex behaviors and skills

(such as manipulating an object such as a gas cap

in [a] or perceiving that the instructor's attention is

focused on a particular bag of food in [c]) can be bro-

ken down into simpler behaviors. Already acquired

sub-skills and knowledge are re-usable, place simplify-

ing constraints on ongoing skill acquisition, and min-

imize the quantity of new information that must be

acquired. By exploiting a gradual increase in both in-

ternal complexity (perceptual and motor) and exter-

nal complexity (task and environmental complexity

regulated by the instructor), while reusing structures

and information gained from previously learned be-

haviors, we hope to be able to learn increasingly so-

phisticated behaviors.

Development simpli�es knowing what to im-
itate. A developmental approach keeps the neces-

sary perceptual tasks in step with gradually increas-

ing capabilities and optimizes learning by matching

the complexity of the task with the current capabili-

ties of the system. For example, infants are born with

limited visual input (low acuity). Their visual perfor-

mance develops in step with their ability to process

the in
ux of stimulation (Johnson 1993). By hav-

ing limited quality and types of perceptual informa-

tion, infants are forced �rst to learn skills loosely and

then to re�ne those skills as they develop better per-

ception. In a similar way, our robotic systems will

�rst utilize simpler perceptual abilities to recognize

the general perceptual qualities (such as object posi-

tion and motion) which will gradually be re�ned with

more complex perceptual properties (such as better

resolution vision, more complex auditory scene anal-

ysis, face detection, etc.). This allows us to �rst con-

centrate on imitating the overall scene properties such

as moving a bag of food from one place to another in

[c] without getting lost in the details of the action.

Development facilitates mapping between
bodies. A developmental approach simpli�es the

mapping problem (2) by providing a methodology for

incremental re�nement of the perceptual and motor

mapping. In human development, newborn infants
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  do not have independent control over each degree of

freedom of their limbs, but through a gradual increase

in the granularity of their motor control they learn

to coordinate the full complexity of their bodies. A

process in which the acuity of both sensory and mo-

tor systems are gradually increased signi�cantly re-

duces the di�culty of the learning problem (Thelen &

Smith 1994). Using a method of incremental re�ne-

ment, our robots will �rst learn to imitate large-scale

motions indicated by the instructor. Once the mo-

tion has been successfully learned and optimized at

this rough granularity, the robot will begin to re�ne

its approximation of the movement at a �ner granu-

larity. For example, the action of opening a gas tank

cover in scenario [a] can �rst be learned by attending

only to the gross movements of the instructor's arm

and later re�ned to match detailed movements of the

wrist and elbow.

Development provides a \road-map" for
chaining and generalizing behaviors. A devel-

opmental methodology also provides a \road-map"

of how simple skills combine to build complex skills.

One problem that is encountered both with chain-

ing together actions (4) and with generalizing imi-

tated actions into di�erent and more complex tasks

(5) is recognizing the appropriate decomposition of

the complex action. For example, in learning to reach

out and grasp an object (such as the bag of food in

scenario [c], or the gas tank cover in scenario [a]),
we must identify the smaller action components that

make up this intermediate-level task. By studying

the development of reaching and grasping in human

infants we have obtained not only a set of poten-

tial behavior primitives but also one way to combine

these primitives into more complex behaviors (Dia-

mond 1990). By examining the ways that evolution

has combined skills into complex behaviors, we gain

valuable insight on ways to decompose our robotic

problems.

Development promotes an intuitive interface.
Building a system that can recognize and produce

complex social behaviors such as cross-cultural cues

(6) requires a skill decomposition that maintains the

complexity and richness of the behaviors while still

being simple enough to implement. Evidence from

the development of these non-verbal social skills in

children (Hobson 1993) and autistics (Baron-Cohen

1995, Frith 1990), and evolutionary studies of non-

verbal communication (Povinelli & Preuss 1995), all

demonstrate that the development of complex social

skills can be decomposed into a sequence of simpler

Figure 5: A developmental approach allows e�cient

re-use of knowledge. Learning how to saccade to a

target facilitates learning to reach toward a target.

The saccade map is used both to get the eyes to

the target, and to interpret where the arm ends up

in terms of where the robot would have had to be

looking for that to be a good reach. This provides

an error signal in the right coordinate system (gaze

coordinates) in order to learn the reaching map.

behaviors. The basis of this developmental chain is

a set of behaviors that allow an individual to share

with another person the experience of a third object

(Wood, Bruner & Ross 1976). For example, the stu-

dent might point to an object, or alternate between

looking at the instructor and the object. These tech-

niques for obtaining joint (or shared) attention follow

a strict developmental progression beginning with de-

tection of eye contact, incremental re�nement of eye

gaze detection, recognition of pointing gestures, and

culminating in the ability to attribute beliefs, desires,

and goals to other individuals.

Current progress. Developmental methodologies

provide us with decomposition methods and incre-

mental strategies for re�ning robotic perceptual, mo-

tor, and cognitive abilities. Building a robotic system

that can imitate the actions of an instructor requires

basic eye motor skills, face and gaze detection, deter-

mination of eye direction, gesture recognition, atten-

tional systems that allow for social behavior selection

at appropriate moments, emotive responses, arm mo-

tor control, gaze stabilization, and many other skills.
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Figure 6: Stages of development of joint attention

skills.

Figure 7: Cog imitating head nods.

These perceptual, motor, and social skills can all be

staged within a developmental framework which de-

composes our problems into manageable pieces and

promises the bene�ts of incremental learning.

We have already begun studying motor systems

that follow developmental paths similar to those

in humans. Marjanovi�c, Scassellati & Williamson

(1996) applied a developmental technique to the

problem of reaching for a visual object, a precur-

sor to manipulative tasks. Following the develop-

mental path that Diamond (1990) demonstrated in

infants between �ve and twelve months of age, Mar-

janovi�c et al. (1996) implemented a pointing behav-

ior for the humanoid robot Cog. The robot �rst

detects moving objects (a simple saliency metric),

foveates the object, and then reaches for the ob-

ject with its six degree-of-freedom arm. The robot

learns this behavior incrementally over a period of a

few hours, using gradient descent methods to train

forward and inverse mappings between a visual pa-

rameter space and an arm position parameter space

without human supervision. The learning is done in

stages, �rst isolating the foveation behavior and then

adding additional degrees of freedom as performance

improves. This developmental progression simpli�ed

the complex reaching behavior by leveraging knowl-

edge that was acquired in earlier stages (speci�cally,

the foveation behavior) to provide error signals that

allow learning a forward and inverse kinematic map-

ping as illustrated in �gure 5. We will extend this

work to allow multi-arm manipulation, more com-

plex forms of reaching (such as reaching around an

object), and more robust grasping techniques.

We have also already begun to address the prob-

lems of learning social skills in a developmental set-

ting. Scassellati (1996) has discussed how a hu-

manoid robot might acquire basic social competen-

cies through this sort of developmental methodology

(�gure 6). To enable our robot to recognize and main-

tain eye contact, we have implemented a perceptual

system capable of �nding faces and eyes (Scassel-

lati 1998). The system �rst locates potential face

locations in the peripheral image using a template-

based matching algorithm developed by Sinha (1996).

Once a potential face location is identi�ed, the robot

saccades to that target using a learned visual-motor

mapping. The location of the face in peripheral image

coordinates is mapped into foveal image coordinates

using a second learned mapping. The location of the

face within the foveal image is used to extract the

sub-image containing the eye.

In building the basic social skills of joint atten-

tion, we have also identi�ed an unexpected bene�t of

the developmental methodology: the availability of

closely related skills. For example, simply by adding

a tracking mechanism to the output of the face detec-

tor and then classifying these outputs, we have been

able to have the system mimic yes/no head nods of

the instructor (that is, when the instructor nods yes,

the robot responds by nodding yes; see �gure ??).
The robot classi�es the output of the face detector

and responds with a �xed-action pattern for moving

the head and eyes in a yes or no nodding motion.

While this is a very simple form of imitation, it is

highly selective. Merely producing horizontal or ver-

tical movement is not su�cient for the head to mimic

the action{the movement must come from a face-like

object. Because our developmental methodology re-

quires us to construct many sub-skills that are useful

in a variety of environmental situations, we believe

that these primitive behaviors and skills can be uti-

lized in a variety of circumstances.



3.III Embodiment

The distinctive robots that are to be used in this

research each have human-like aspects of their bod-

ies. First, each robot is equipped with a human-like

robotic head and neck with sensing elements that

are analogous to human eyes and ears. Second, each

robot has a face with mechanisms that allow for ac-

tive control of expressive facial features. Third, Cog's

body is similar to a human's entire upper-body in-

cluding human-like arms. Having a human-like shape

and dynamics confers advantages which are described

in the following section.

Embodiment helps you know what to imitate.
In standard instruction for a physical task, the stu-

dent needs to use essentially the same solution as the

instructor. This constrains the space of possible so-

lutions to ones similar to the instructor's solution.

Having a similar physical body thus makes decid-

ing what to imitate an easier task (1). For exam-

ple, when opening the gas cap, the instructor gives

an initial con�guration for the arm. If the robot has

the same shape as the human, it can copy this con-

�guration as a starting point for its solution. Con-

versely, a di�erent morphology would imply the need

to solve the complete inverse kinematics in order to

arrive at a starting position. In general this transfor-

mation has many solutions, and it is di�cult to add

other constraints which may be important (e.g., re-

ducing loading or avoiding obstacles). Using a robot

of human-like shape constrains the possible solutions,

and reduces the overall computational complexity of

the task(1, 3).
If the robot and human have a similar shape the

robot will be able to better model what the instructor

is doing. This knowledge will help the robot infer how

the task looks from the instructor's perspective and

what information it needs to perform the task itself.

Embodiment helps mapping between bodies.
For the robot to be able to imitate the instructor, a

mapping between the instructor's body and its own

body must be established (2). This task is greatly

simpli�ed if the robot and the instructor have a sim-

ilar body shape. With a di�erent morphology, not

only is the mapping from human to robot more di�-

cult, but the actual way the task is achieved is di�er-

ent. For example, consider the di�erence between a

one and two armed robot performing a complex task.

Having two arms completely changes how the action

can be performed, since one arm can hold the object,

while the other manipulates it, rather than having to

clamp object.

Figure 8: We have used neural oscillator circuits to

exploit the natural dynamics of Cog's arm. The two

consecutive traces on the right show the entrain-

ment through the mechanical world of two arms

being controlled by independent oscillators as they

play with a slinky. When proprioception is switched

o�, entrainment decays but rapidly returns below

when it proprioception is turned back on.

Embodiment allows intuitive interactions.
Giving the robot a similar body shape also makes

interaction with humans more intuitive (6). The in-
structor can easily interpret the robots physical con-

�guration, understand what is wrong or right, and

assist accordingly. The instructor can also test op-

tions using his or her own body before instructing

the robot.

Embodiment enables simple, robust low-level
behaviors. Humans exploit the natural dynamics

of their bodies and the tools that they manipulate.

They respond the natural dynamics when manipu-

lating objects (Turvey & Carello 1995), throwing ob-

jects (Bingham, Schmidt & Rosenblum 1989), and

when walking (Alexander 1990, McGeer 1990). For

the robot to e�ectively imitate these actions, it needs

to have a similar shape and dynamics to a human

body. For example, when throwing objects, humans

exploit the spring-like properties of their arms, as well

as the inter-segmental dynamical forces between the

arm links. Attempting to use the same solution on a

sti� robot with a di�erent morphology would not pro-

duce e�cient throwing. Our robots have special actu-

ators which ensure that their dynamics are spring-like

(Pratt & Williamson 1995).

Work in our lab has suggested that controlling

robots by exploiting the natural dynamics of the arm-

environment system can allow very simple controllers

to perform complex tasks in a stable and robust man-

ner (Williamson 1998). We have been using non-

linear oscillators (�gure 8) to excite the dynamics of

robot arms and using feedback from the system dy-

namics to modify the oscillator outputs. Using these

simple controllers (each equivalent to two biological



Motivation
System

Behavior System

Attention System

W
o

rl
d

 &
 In

st
ru

ct
o

r
Behavior
Engine

Perception System

Drives

Emotions

Motor System
Expressive
Motor Acts

Motor
Skills

Frame Grabber

Attention Process

Eye Motor Control

in
hi

bi
t

re
se

t

Motivations, Drives
and Emotions

Face Detector

w

Color Detector

w

Motion Detector

w w

Figure 9: This is our high level system architec-

ture for integrating perception, attention, behavior,

motivation and motor systems. We propose 
eshing

out the details in a much more realistic way in order

to enable a human to task the robot.

neurons), the arm has performed a variety of complex

coordinated tasks such as crank turning and pump-

ing a bicycle pump, as well as directly responding to

system dynamics by tuning to the resonant frequency

of driven pendulums. The arms have also been used

for tasks such as throwing and hammering. The �nal

solutions in all these cases are stable and robust to

external perturbations because they exploit the nat-

ural dynamics of the system, rather than imposing a

complete control structure. Having a physical robot

and exploiting its natural dynamics gives simple and

robust low-level behaviors which can generalize to a

variety of tasks (3, 5).
We have also found that using this approach re-

sults in solutions which are easy to learn. The main

parameter to be learned is the starting posture of the

arm, which in the above examples was taken from

plausible human solutions, and which can be inferred

from an instructor's demonstration.

In addition, since many tools and environments are

designed for human rather than robot use (gas cap),

a robot will be better able to use those tools if it has

both a human morphology, and a similar dynamical

structure.

3.IV Integration

The integration of multiple sensory modalities, phys-

ical degrees of freedom, and behavioral systems in

a single robot allows the robot to imitate and in-

teract with humans in a more sophisticated manner

(�gure 9). Integration is necessary at several levels,

from the mapping of primitive sensors with primitive

motor actions to the combination of goal directed be-

Figure 10: The attentional system of Kismet in-

tegrates multiple, bottom-up sensory feature detec-

tors with top-down task-dependent motivational in-


uences from Kismet's higher level control system.

haviors and attention. The following subsections de-

scribe in detail how integration is an asset to our

robotic systems.

Integration provides intuitive interactions.
When two humans are communicating, the conver-

sation is a complex mixture of signals in di�erent

sensory modalities: gesture, speech, eye contact, fa-

cial expression, and physical contact. Intuitive and

natural communication between humans and robots

is aided if the robot can both sense and understand

these human signals, as well as produce these signals.

A robot processing and integrating this multi-modal

information will be capable of intuitive interaction

(6).

One example of this is auditory localization. When

audible instructions are given to the robot, it should

orient and look at the source of the sound. The fact

that sound and visual motion are often correlated

(lips and speech, clapping, etc.) is used by our robots

to robustly learn the mapping between sound signals

and localization directions.

Integration helps a robot know what to imi-
tate. Finding the salient feature in a scene is easier

as more sensory modalities are available. For exam-

ple, in [a], when the instructor demonstrates the gas

�lling task, the robot must understand the saliency

of the gas cap. As the instructor handles the cap

di�erent sensory modalities combine to indicate its

saliency. There is motion near the cap, sound from

the door opening, and there are gestures towards the

cap. By exploiting the inputs from all of its modali-

ties, the robot can ascertain the salient aspects of the

demonstration (1).



An example from our work is the current atten-

tional system of Kismet shown in �gure 10. Kismet

only attends to objects that are signi�cant relative to

its current emotionally-driven goals. Kismet exploits

various sensory modalities; it discerns color, motion,

and can detect faces. These inputs 
ow through its

attentional system to ultimately in
uence its motor

system (1).

Integration aids behavior generalization and
action chaining. An integrated system allows be-

haviors and skills that have been learned in one set of

modalities to be transfered to others more easily (5).
Also, a demonstrated sequence is usually communi-

cated in multiple modalities which the robot must

map to its own system requiring di�erent modalities

and sequence for its imitation (2, 4).
For example, the mobile robot Yuppy (Spud's pre-

decessor) generalizes its visually-driven behaviors to

include triggers of di�erent sensory cues. Yuppy is

programmed to avoid stimuli with certain colors and

shapes and then learns to associate the accompanying

sounds alone with its avoidance behavior.

Integration makes engineering sense. Integra-

tion provides engineering robustness and e�ciency.

Robustness addresses failure recovery and and rec-

ognizing success because systems of di�erent modal-

ities serve as complements, backup and veri�cation

(3). E�ciency results from exploiting signals col-

lected from sensors or sent to motors that are well-

suited to the job rather than those that are not natu-

rally helpful. For example, in the earthquake scenario

[b] both the visual and auditory inputs are necessary

to overcome the background noise.

In our work on Cog, we have implemented both

a vestibular-ocular re
ex (VOR) and optokinetic re-

sponse (OKR) for image stabilization. Our imple-

mentation integrates inertial and visual information

to produce a stable image on which other processing

can be performed. Removing the e�ect of base mo-

tion using visual processing alone would be exceed-

ingly di�cult and computationally expensive.

4 Conclusions

There are many challenging aspects inherent in build-

ing a humanoid robot which can interact naturally

with humans. These range far beyond the existing

well understood, but extremely challenging, problems

of building an integrated humanoid which can loco-

mote, navigate, and interact with objects. By de-

composing the human interaction problems into is-

sues and approaches, it is possible to identify appro-

priate modules that can be constructed towards the

ultimate goal.
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