
Researchers in artificial intelligence (AI)
and artificial life (Alife) are interested
in understanding the properties of liv-

ing organisms so that they can build artificial
systems that exhibit these properties for 
useful purposes. AI researchers are interest-
ed mostly in perception, cognition and 
generation of action (Box 1), whereas Alife
focuses on evolution, reproduction, 
morphogenesis and metabolism (Box 2).
Neither of these disciplines is a conventional
science; rather, they are a mixture of science
and engineering. Despite, or perhaps
because of, this hybrid structure, both disci-
plines have been very successful and our
world is full of their products.

Every time we use a computer we use 
algorithms and techniques developed by AI
researchers. These range from the natural 
language processing and indexing techniques
in web search engines to the bayesian match-
ing techniques used in help and document
autoformatting systems in our word proces-
sors. When we play a video game our oppo-
nent is usually an AI system. At many airports,
an AI program schedules our arrival gate, and
when we apply for credit an AI neural network
often vets our application. When we watch a
film with digitally generated crowds, be they
aliens or ants, we are watching groups of
agents acting under Alife models of group
behaviour. When we fly in the latest aero-
plane, the design of the turbines may have
been optimized by artificial evolution.

But despite all this, both fields have been
labelled as failures for not having lived up to
grandiose promises. At the heart of this 
disappointment lies the fact that neither AI
nor Alife has produced artefacts that could
be confused with a living organism for more
than an instant. AI just does not seem as 
present or aware as even a simple animal and
Alife cannot match the complexities of the
simplest forms of life.

Moore power…
Part of the problem was the lack of computer
power in the early years of AI and Alife.
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Moore’s law states that computational
resources for a fixed price roughly double
every 18 months. From about 1975 into the
early 1990s all the gains of Moore’s law went
into the changeover from the centralized
mainframe to the individual computer on
your desk, accommodating a vastly
increased number of users. The amount of
computing power available to the individual
scientist did not change that much, although
the price came down by a factor of a 
thousand. But since the early 1990s, all of
Moore’s law has gone into increasing the per-
formance of the workstation itself. 
And both AI and Alife have benefited from
this shift. 

Increased computer power has enabled
search-based AI to push ahead with 
programs that achieve their ends through
brute force — the Deep Blue program that
beat the world chess champion is a good
example. The essential ideas were in place in
Greenblatt’s 1965 program MacHack1, but
this could process only a few thousand 
possible chess moves per second. By 1997,
when Deep Blue beat Kasparov, it was 
processing 200 million moves per second.
More power has also enabled implementa-
tion of real-time perceptual systems, often
based on neural models, that can simulate in
serial computers the massive parallelism
found in the brains of animals. Marr and 
Hildreth2 required 10 minutes of computer
time to find the edges in a single image in the
late 1970s; we now have computer vision 
systems that track multiple moving objects
in a scene at 30 frames per second. Others can
visually track the boundaries of roads and
cars a few times per second. Using such a 
system, the ‘No hands across America’3

project, at Carnegie Mellon University, made
an automated truck drive from the east to the
west coast of the United States with no
human control for 98% of the journey.

Much more complex systems4 can now be
modelled as Alife, down to the level of molec-
ules and enzyme-like components interact-
ing to produce aspects of life, although the

complexity of the models is still far below that
of any living system. New experiments in evo-
lution simulate spatially isolated populations
to investigate speciation. Over the past few
years, new directions have emerged in AI5, in
attempts to implement artificial creatures in
simulated or physical environments. 

Often called the behaviour-based
approach, this new mode of thought involves
the connection of perception to action with
little in the way of intervening representa-
tional systems. Rather than relying on
search, this approach relies on the correct
short, fast connections being present
between sensory and motor modules.
Behaviour-based approaches began with
insect models, but more recently they have
been extended to humanoid robots6 —
robots with human form that can interact
with people in a social manner, eliciting nat-
ural and involuntary social responses from
naive subjects.

Behaviour-based systems are now making
their mark in consumer products such as the
new generation of intelligent dolls, but per-
haps their greatest success was the Sojourner
Mars rover7. For the final phase of its mission
in 1997 this behaviour-based robot was
allowed to operate autonomously, and suc-
cessfully navigated the surface of Mars.

The behaviour-based approach to AI has
merged somewhat with the Alife endeavour,
and a community of researchers has formed
that is separate from the traditional AI com-
munity. The former is interested in under-
standing how living systems work and in
building computational and physical models
of them. The latter is interested in building
systems with maximal performance, and is
usually wary of biological inspiration as 
taking away from mathematically optimized
engineering solutions.

Problems, problems, problems
Although they are much more lifelike than
the pure engineering artefacts of traditional
AI, in some sense the systems built under the
behaviour-based and Alife approaches do

The disciplines of artificial intelligence and artificial life build computational
systems inspired by various aspects of life. Despite the fact that living
systems are composed only of non-living atoms there seems to be limits in
the current levels of understanding within these disciplines in what is
necessary to bridge the gap between non-living and living matter.
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not seem as alive as we might hope. We build
models to understand the biological systems
better, but the models never work as well as
biology. We have become very good at 
modelling fluids, materials, planetary
dynamics, nuclear explosions and all 
manner of physical systems. Put some 
parameters into a program, let it crank, and
out come accurate predictions of the 
physical character of the modelled system.
But we are not good at modelling living 
systems, at small or large scales. Something 
is wrong.

Solutions and new developments?
What is going wrong? There are a number of
possibilities: (1) we might just be getting a
few parameters wrong; (2) we might be
building models that are below some 
complexity threshold; (3) perhaps it is still a
lack of computing power; and (4) we 
might be missing something fundamental
and currently unimagined in our models of
biology.

Incorrect parameters
Getting just a few parameters wrong would
mean that we have essentially modelled
everything correctly, but are just unlucky or
ignorant in some minor way. With a bit more
work on our part, things will start working
better. It could be that our current neural-
network models will work quantitatively
better if we have five layers of artificial 
neurons, rather than today’s standard of
three. Or that artificial evolution works
much better with populations of 100,000 or
more, rather than the typical thousand or
less. But this seems unlikely. One would
expect that someone would have stumbled
by now across a combination of parameters
that worked qualitatively better than any-
thing else around. That success would have
led to theoretical analysis and we would 
have already seen rapid progress.

Models lack complexity 
Building models that are below some 
complexity threshold also would mean that
there is nothing in principle that we do not
understand about intelligent or living sys-
tems. We have all the ideas and components
lying around, we just have not yet put
enough of them together in one place, or one
model. When, and if, we do, then everything
will start working a lot better. As for the first
possibility, while this may be true, it 
does seem unlikely that is true across so
many different aspects of biology.

A lack of computing power 
We have recently seen an example of this.
After being defeated by Deep Blue, Garry
Kasparov said that he was surprised by its
“ability to play as though it had a plan and
how it understood the essence of the posi-
tion”. Deep Blue was no different in essence
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from the earlier versions he had been playing
in the late 1980s. Deep Blue still had no
strategic planning phase, as other chess pro-
grams designed to model human playing
had. It still had only a tactical search, albeit a
very deep, fast tactical search. This appeared
to Kasparov to be about game plans, not
because there was anything new, but because
more computer power made the approach

feel qualitatively different. The same might
happen to our models of intelligence and life,
if we could only get enough computer power.

If any of the above is the case then we
should expect great progress in AI and Alife
as soon as someone stumbles across the
things that need to be fixed. The details will
not particularly surprise anyone, although
the new developments will have great 
practical impact. They will lead to new
insights in all the sciences that study living
organisms, as they will give us new sorts of
computer models with which we can test
rafts of new hypotheses about how living 
systems operate.

Models lack unimagined features
But what if we are missing something 
fundamental and currently unimagined in
our models? We would then need to find new
ways of thinking about living systems to
make any progress, and this will be much
more disruptive to all biology. As an analogy,
suppose we were building physical simula-
tions of elastic objects falling and colliding. If
we did not quite understand physics, we
might leave out mass as a specifiable
attribute of the objects. Their falling behav-
iour would at first seem correct, but as soon
as we started to look at collisions we would
notice that the physical world was not being
modelled correctly. 

So what might be the nature of this
unimagined feature of life? One possibility is
that some aspect of living systems is invisible
to us right now. The current scientific view of
living things is that they are machines whose
components are biomolecules. It is not 
completely impossible that we might discov-
er some new properties of biomolecules or
some new ingredient. One might imagine
something on a par with the discovery of 
X-rays a century ago, which eventually led to
our still-evolving understanding of quan-
tum mechanics. Relativity was the other such
discovery of the twentieth century, and had a
similarly disruptive impact on the basic
understanding of physics. Some similar 
discovery might rock our understanding of
the basis of living systems. 

New stuff
Let us call this the ‘new stuff ’ hypothesis —
the hypothesis that there may be some extra
sort of ‘stuff ’ in living systems outside our
current scientific understanding. Roger 
Penrose8, for one, has already hypothesized a
weak form of ‘new stuff ’ as an explanation
for consciousness. He suggests that quantum
effects in the microtubules of nerve cells
might be the locus of consciousness at the
level of the individual cell, which combines
in bigger wave functions at the organism
level. Penrose has not worked out a real theo-
ry of how this might work. Rather, he has
suggested that this may be a critical element
that will need to be incorporated in a final

Artificial intelligence (AI) received its name at a
workshop10 held by John McCarthy at Dartmouth
College in New Hampshire in 1956. Marvin
Minsky, Allen Newell and Herb Simon, together
with John McCarthy, set the research agenda for
machine intelligence for the next 30 years. All
were inspired by earlier work by Alan Turing,
Claude Shannon and Norbert Weiner on tree
search for playing chess. From this workshop,
tree search — for game playing, for proving
theorems, for reasoning, for perceptual
processes such as vision and speech and for
learning — became the dominant mode of
thought, and continues to be so today for large
parts of the academic enterprise called AI.
Search algorithms are mostly intrinsically serial,
which contrasts with the ways in which large
parts of animal nervous systems work, where
there are both feedforward and feedback signals,
but over very low-diameter networks. The speed
of the individual neurons is so slow compared
with the speed of overall action of the creature
that very different intrinsic computations must be
at play. There have been numerous flirtations
with neurally inspired networks, but most of
these are used as component-learning black
boxes within a more traditional framework of
serial computation. 

Game playing is perhaps the most visible
success associated with search. Games from tic-
tac-toe through to chess have been conquered by
brute-force search. More elaborate models of how
humans play games have been tried, but in each
case performance has soon been overtaken by the
unstoppable march of Moore’s law. The game of
Go, however, has so many possible moves that it
has remained impervious to brute-force search.
Whereas it seems unlikely that humans play chess
by brute-force search, and investigation of
methods of play other than search are attractive,
Go enforces these investigations with a
vengeance. Even when we have computers with
the same level of processing power as the human
brain, they will not be able to play a good game of
Go using brute-force search alone.

Search, however, has also been successful in
other areas. It is used in proving theorems, in
mathematical manipulation systems such as
Mathematica and Matlab, and in systems of
speech understanding and natural language
understanding.

Box 1
Artificial intelligence
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understanding. This is a weak form of new
stuff because it does not rely on anything
outside the realm of current physics. For
some it may have a certain appeal in that it
unifies a great discovery in physics with a
great question in biology — the nature of
consciousness. David Chalmers9 has
hypothesized a stronger form of new stuff as
an alternative explanation for conscious-
ness. He suggests that a fundamentally new
type, of the order of importance of spin 
or charm in particle physics, say, may be 
necessary to explain consciousness. It would
be a new sort of physical property of things in
the Universe, subject to physical laws that we
just do not yet understand. Other philoso-
phers, both natural and religious, might
hypothesize some more ineffable entity such
as a soul or elan vital — the ‘vital force’.

Another way that the unimaginable 
discovery might come about is through ‘new
mathematics’. This would not require any
new physics to be present in living systems.
We may simply not be seeing some funda-
mental mathematical description of what is
going on in living systems and so be leaving
it out of our AI and Alife models. What
might this ‘new mathematics’ be? Candi-
dates have included catastrophe theory,
chaos theory, dynamical systems and
wavelets. When each of these new math-
ematical techniques hit the market,
researchers noticed ways in which they
could be used to describe what is going on in
living systems, and then tried to incorporate
the same thing into their computational
models. It is not clear whether the math-
ematical techniques in question are best
used as descriptive tools or as generative
components within the computational
models. The latter approach seems at times
misguided. However, none of these wonder
techniques has really made the hoped-for
improvements in our models. Looking at
the physical nature of living systems, there
seem to be certain mathematical properties
that are not handled at all by any of these
new techniques, or by any current model.
One property is that the matter that 
makes up living systems obeys the laws of
physics in ways that are expensive to simu-
late computationally. For instance, the
membranes of cells have a shape determined
by the continuous minimization of forces
between molecules within the membrane
and on either side of it. Another property is
that matter does not simply appear and 
disappear in the physical world, but great
care must be taken in a computational 
simulation to enforce this.

An analogy to the sort of thing that might
be missing is computation — not as the
undiscovered feature itself but as an analogy
for the type of thing we might be looking for.
For most of the twentieth century we have
poked electrodes into living nervous systems
and looked for correlations between the 
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signals measured and events that occur 
elsewhere in the creature. These data are used
to test hypotheses about how the living sys-
tem ‘computes’ in the broadest sense of the
word. Imagine a society isolated for the past 
hundred years and in which computers have
not been invented. If the scientists in this
society came across a working computer,
would they be able to understand what it was

doing if they had no notion of computation?
Would it make any sense without the notion
of Turing computability, or an understand-
ing of a Von Neumann architecture? Or
would our isolated scientists need to reinvent
the notion of computation before they could
explain what the machine was doing? I
strongly suspect that they would. Nothing
that Turing or Von Neumann did in their
mathematics at this level was particularly
disruptive. A good late-nineteenth-century
mathematician could understand it all with a
few days instruction — there would be no
surprises for them in the way that quantum
mechanics and relativity would surprise a
physicist from the same era. 

So now we return to the unimaginable.
For perceptual systems, say, there might be
some organizing principle, some mathemat-
ical notion that we need in order to
understand how they really work. If so, dis-
covering this principle will enable us to build
computer-vision systems that are good at
separating objects from the background,
understanding facial expression, discrimi-
nating the living from the non-living and
general object recognition. None of our 
current vision systems can do much at all in
any of these areas. What form might this
mathematical notion take? It need not be dis-
ruptive of our current view of living things,
but could be as non-threatening as the notion
of computation, just different to anything
anyone has currently thought of. Perhaps
other mathematical principles or notions,
necessary to build good explanations of the
details of evolution, cognition, consciousness
or learning, will be discovered or invented
and let those subfields of AI and Alife flower.
Or perhaps there will be just one mathemat-
ical notion, one ‘new mathematics’ idea, that
will unify all these fields, revolutionize many
aspects of research involving living systems,
and enable rapid progress in AI and Alife.
That would be surprising, delightful and
exciting. And of course whether or not this
will happen is totally unforeseeable. 
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Chris Langton instigated the notion of artificial life
(Alife) at a workshop11 in Los Alamos, New Mexico,
in 1987. The enterprise was to make living
systems without the direct aid of biological
structures. The work was inspired largely by John
Von Neumann, and his early work on self-
reproducing machines in cellular automata. Von
Neumann’s model of computation was a Turing
machine, the same intrinsically serial mechanism
adopted by AI. Researchers in Alife were much
inspired by biological systems and quickly
produced simulations and analytical models of
aspects of biological reproduction and group
behaviours of organisms. 

Tom Ray12 developed a system called Tierra,
where multiple computer programs competed for
the resource of the processing unit in a simulated
computer. The seed program could reproduce
itself, and took 80 nibbles (half-bytes) of code
space. It followed the classical Von Neumann
model, and had the central feature of molecular
biology, in that the code needed to be both
transcribed, or interpreted, and copied into the
progeny so that it too had its own ‘DNA’. The
simulated computer, however, was subject to
copying mistakes, and to ‘cosmic rays’ which
randomly flipped bits in the memory space. Its
memory filled up with copies of the original seed
program, although some of them had errors and
were removed. But others started to optimize and
get smaller — there was environmental pressure
selecting for small programs — and parasites less
than half the size of the original programs soon
evolved. Although not able to copy themselves,
they could trick a larger program into copying them
rather than itself. Diverse populations, such as one
sees in nature, soon arose in the system.

Most recently, Lipson and Pollack13 have
evolved ‘creatures’ that can move. Their
morphology is restricted to fixed-length bars with
ball-and-socket joints. The designs evolved in a
physical simulation program, and the fitness of
individuals was determined by measuring their
ability to move on a surface. Mutating the most
successful members of the previous generation
produced each new generation. The tour de force
was to have the creatures automatically produced
directly from the evolved genome by a
computerized rapid prototyping system. Motors
were snapped on by hand and the creatures,
connected to a computer running the same neural
network used in the simulations, then started
crawling across physical surfaces.

Box 2Artificial life
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