
Artificial Life and Real Robots

Rodney A. Brooks
MIT Artificial Intelligence Laboratory

545 Technology Square
Cambridge, MA 02139, USA

brooks@ai.mit.edu

"Toward a Practice of Autonomous Systems: Proceedings of the First European Conference on Artificial Life," Francisco J. Varela and Paul
Bourgine, eds., MIT Press, Cambridge, MA, 1992, pp. 3—10.

Abstract

The first part of this paper explores the general
issues in using Artificial Life techniques to program
actual mobile robots. In particular it explores the
difficulties inherent in transferring programs evolved
in a simulated environment to run on an actual robot.
It examines the dual evolution of organism
morphology and nervous systems in biology. It
proposes techniques to capture some of the search
space pruning that dual evolution offers in the
domain of robot programming. It explores the
relationship between robot morphology and program
structure, and techniques for capturing regularities
across this mapping.

The second part of the paper is much more
specific. It proposes techniques which could allow
realistic explorations concerning the evolution of
programs to control physically embodied mobile
robots. In particular we introduce a new abstraction
for behavior-based robot programming which is
specially tailored to be used with genetic
programming techniques. To compete with hand
coding techniques it will be necessary to
automatically evolve programs that are one to two
orders of magnitude more complex than those
previously reported in any domain. Considerable
extensions to previously reported approaches to
genetic programming are necessary in order to achieve
this goal.

1 Introduction

In recent years a new approach to Artificial
Intelligence has developed which is based on building
behavior-based programs to control situated and
embodied robots in unstructured dynamically
changing environments [Brooks 91c]. Rather than
modularize perception, world modeling, planning, and
execution, the new approach builds intelligent control
systems where many individual modules directly
generate some part of the behavior of the robot. In
the purest form of this model each module
incorporates its own perceptual, modeling, and
planning requirements. An arbitration or mediation

scheme, built within the framework of the modules,
controls which behavior-producing module has
control of which part or the robot at any given time.
The programs are layered in their construction, but
are non-hierarchical in their control flow, with lower
levels taking care of more primitive activities and
higher levels taking care of more sophisticated ones
(see [Brooks 86] and [Brooks 90b] for an introduction
and review, and [Brooks 91c] for a survey of the
field).

This work draws its inspirations from
neurobiology ethology, psychophysics, and
sociology. The approach grew out of dissatisfactions
with traditional robotics and Artificial Intelligence,
which seemed unable to deliver real-time performance
in a dynamic world. The key idea of the new approach
is to advance both robotics and AI by considering the
problems of building an autonomous agent that
physically is an autonomous mobile robot, and that
carries out some useful tasks in an environment
which has not been specially structured or engineered
for it.

While robots built on these principles have been
demonstrated learning calibration information [Viola
90], behavior coordination [Maes and Brooks 90], and
representations of the world [Mataric 90], progress in
learning new behaviors has proven more difficult.
Today, we are constrained to programming each new
behavior by hand.

Work in Artificial Life has developed techniques
for evolving programs for controlling situated, but
unembodied (i.e., simulated), robots (e.g., [Langton
87], [Langton et al 90]). At some level one of the
goals of Artificial Life is to move out of the digital
medium into that of embodied systems. Is there a
match between AL and AI? This paper explores the
prospects for using Artificial Life techniques to
evolve programs to control physically embodied
mobile robots, so that we no longer have to do it all
by hand.

There have been no reports to date of programs
evolved for embodied robots. There has been work on

learning new behaviors using reinforcement learning,
e.g., [Kaelbling 90] and [Mahadevan and Connell 90]
used Q-1earning ([Watkins 89]). The major drawback
is the large number of runtime trials, many more
than needed by real animals, and the need for carefully
"shaping" the learning by splitting up the tasks into
little pieces that the robot learns sequentially. It
seems that real animals have innate built-in structures
that facilitate learning particular constrained classes of
behaviors. The vast numbers of trials necessary are
spread over the generations, and runtime learning has
a more constrained space in which it must search.

Recently [Langton 91] suggested using genetic
programming for behavior-based embodied robots to
overcome these limitations.

2 Genetic Programming

One way to solve the programming problem might
be to use Artificial Life techniques to evolve
behavior-based programs.

Previously many workers have used genetic
algorithms to program software agents, typically
running in cellular worlds. [Collins and Jefferson 90]
is a good example. It demonstrates the evolution of
both neural networks and finite state machines
through a genetic algorithm running on a bit string
representation.

More conventional computer programs have also
been processed with genetic algorithms, such as the
pioneering work of [Friedberg 58], [Friedberg et al
59], and more recently that of [Ray 90]. Robot
programs, and in particular behavior-based robot
programs, are much more complex than any
programs that have been reported in the literature to
have been so evolved. A reasonable comparison
might be in terms of the memory taken to represent
the programs. By this measure behavior-based robot
programs axe three orders of magnitude larger than
those mutated competitively by genetic techniques.

Recently, however, [Koza 90] has shown a number
of stimulating results by applying genetic algorithms
directly to lisp-like programs rather than to more
traditional bit strings [Holland 75]. He has been very
successful in a number of domains with this
technique, rekindling earlier interest in the idea of
mutating lisp program structures directly [Lenat 77].
[Koza 91] shows an example of synthesizing the base
behaviors of [Mataric 90]'s behavior-based robot
programs. He makes a number of simplifying
assumptions, and reduces the search space
significantly by carefully selecting the primitives by
hand after examining Mataric's source code. His

programs only run in simulation rather than on a
physically embodied robot, but the results are
nevertheless significant enough to warrant further
exploration of this technique.

Before these techniques can be adopted and modified
for programming physically embodied mobile robots
there are a number of problems which must be
addressed:

• Most likely the evolution of robot programs must
be carried out on simulated robots—unfortunately
there is a vast difference (which is not appreciated
by people who have not used real robots) between
simulated robots and physical robots and their
dynamics of interaction with the environment.

• The structure of the search space of possible
programs is very dependent on the representation
used for programs and the primitives available to be
incorporated. Careful design is necessary.

• Natural evolution co-evolved the structure of the
physical entities and their neural controllers in a
way which arguably cut down the size of its search
space. Can some equivalent tricks be played when
evolving programs for robots?

3 Simulations of Physical Robots

The number of trials needed to test individuals
precludes using physical robots for testing the bulk
of the control programs produced for them by genetic
means. The obvious choice is to use simulated robots
and then run the successful programs on the physical
robots.

Previously we have been very careful to avoid
using simulations ([Brooks 90b, 91b, 91c]) for two
fundamental reasons.

• Without regular validation on real robots there is a
great danger that much effort will go into solving
problems that simply do not come up in the real
world with a physical robot (or robots).

• There is a real danger (in fact, a near certainty) that
programs which work well on simulated robots
will completely fail on real robots because of the
differences in real world sensing and actuation—it
is very hard to simulate the actual dynamics of the
real world.

3.1 Artifactual Problems

There has been a tendency to use cellular
representations of space for simulating robots in
Artificial Life. (e.g., [Langton et al 90]) and

Artificial Intelligence (e.g., [Pollack and Ringuette
90] and [Wang and Beni 90]).

These representations are good for conducting
computational experiments, and help uncover many
fundamental issues. Unfortunately they do not shed
light on all the problems which will be encountered
when using physically embodied robots. For the
physical robot perspective, cellular worlds have three
problems. First, there is no notion of the uncertainty
that the real world presents-see the subsection below
for more discussion of this point. Second, there is a
tendency to not only postulate sensors which return
perfect information (e.g., the cell ahead contains
food—no real perception system can do such a thing),
but there is a real danger of confusing the global
world view and the robot's view of the world. Third,
the dynamics actually tend to be more brittle than in
the real world where noise and stochastic processes
smooth things out quite a bit.

The dynamics mentioned in the last point often
leads to problems which do not occur in the real
world. A good example is being concerned with how
two robots resolve a conflict when their paths must
cross a single cell simultaneously. This and other
equally artifactual problems are the main concern of a
number of papers in this area.

But the same intellectual problem of worrying
about simulated problems which do not actually
appear in the real world is more general than just for
cellular simulations. A number of papers have
appeared that are concerned with path planning for
mobile robots in nongrid worlds, i.e., in two
dimensional Euclidean space. Some of these papers
expend much effort on solving the problem of the
paths of two robots crossing each other and introduce
elaborate protocols to avoid deadlock. But real robots
would never reach the state of perfect deadlock which
are postulated in these papers. They would never run
down their respective corridors perfectly and arrive at
identical times. Simple reactive strategies would
suffice to break any possible deadlock, just as random
variations in ethernet controllers break deadlocks on
rebroadcast.

Thus, while simulated worlds are in many ways
simpler than the real world, they are paradoxically
sometimes harder to operate within.

3.2 Real Worlds

For a physically embodied robot in the real world
there are a number of key points to understand.

• Sensors deliver very uncertain values even in a sta-
ble world.

• The data delivered by sensors are not direct
descriptions of the world as objects and their
relationships.

• Commands to actuators have very uncertain effects.

A particular sensor, under ideal experimental
conditions, may have a particular resolution. Suppose
the sensor is a sonar. Then to measure its resolution
an experiment will be set up where a return signal
from the test article is sensed, and the resolution will
be compared against measurements of actual distance.
The experiment might be done for a number of
different surface types. But when that sensor is
installed on a mobile robot, situated in a cluttered,
dynamically changing world, the return signals that
reach the sensor may come from many possible
sources. The object nearest the sensor may not be
made of one of the tested materials. It may be at such
an angle that the sonar pulse acts as though it were a
mirror, and so the sonar sees a secondary reflection.
The secondary lobes of the sonar might detect
something in a cluttered situation where there was no
such interference in the clean experimental situation.
All sensors have comparable sets of problems
associated with them. They simply do not return
clean accurate readings. At best they deliver a fuzzy
approximation to what they are apparently
measuring, and often they return something
completely different.

Even given these difficulties, sensor readings are
not the same as a description of the world. Sensors
measure certain quantities or indirect aspects of the
world. They do separate objects from the background.
They do not identify objects. They do not give pose
information about objects. They do not separate out
static objects, moving objects, and effects due to self
motion. They do not operate in a stable coordinate
system independent of the uncertain motion of the
robot. They do not integrate other sensory modalities
into a single consistent picture of the world. A robot
operating in the real world needs a complex
perceptual system. As much as 50% of the human
brain seems to be devoted to perception. Off the shelf
perceptual systems are not available, however. All of
the problems listed above are active areas of research
by perception researchers. And, as argued elsewhere
[Brooks 91a, 91b], it may be impossible to treat
perception as a black box with a clean interface to the
rest of intelligence.

Just as sensors do not deliver simple descriptions
of the world, high level action commands need many
layers of refinement before they become appropriately
orchestrated motor currents. In any case, the desired
action and the achieved action may differ widely

depending on the intricate details of the situation at
hand. On flat smooth floors, odometry errors soon
accumulate to the point that a a robot needs to
recalibrate its position to some external reference.
Besides a large unsystematic component, odometry
may also have systematic aspects, e.g., depending on
the relative nap of the carpet, on which the robot is
operating—this has lead some researchers to try to
sense the nap! The situation is much more difficult to
model, of course, when the robot is in contact with
an obstacle.

Sensing, and action are intimately tied together in a
physical robot. They both rely on, and at the same
time generate, the dynamics of the interaction of the
robot with the world. Simple state space models of
the world do not suffice in the internal control
program of a physically embodied mobile robot.

4 Morphological Development

We now turn to the nature of the search space in
which the genetic programming techniques must
work.

In nature, evolution experiments with both the
morphology of the individual and its neural circuitry
cotemporaneously and through the same genetic
mechanism. There are two important consequences of
this, both of which reduce the space which evolution
must search.

• The control program is evolved incrementally.
Evolution is restricted initially to a small search
space. The size of the space grows over many
generations, but by then there is a good partial
solution already found which forms the basis for
searching the newer parts of the space.

• Symmetric or repeated structures naturally have
symmetric or repeated neural circuits installedthey
do not need to be individually evolved (e.g., a
single encoding specifies the wiring of both a right
and a left leg, and likewise each added segment
containing a leg pair in a mutant Drosophila comes
with neural circuitry).

Our approach to behavior-based programming of
robots has always been to build layers incrementally
[Brooks 86]. For genetic programming we suggest
that the robot (both simulated and physical) should
initially be operated with only some of its sensors,
and perhaps only some of its actuators. Programs can
be evolved for this simplified robot, much as our
hand written programs ([Brooks 90b]) start out with
layers which only use some of the capabilities of the
robot. Once fundamental behaviors are present,

additional sensors and actuators can be made available
so that higher level behaviors can be evolved. The
particular fitness function used to control the
evolutionary search can be varied over time to
emphasize the use of new capabilities and the need to
develop higher level behaviors. There might also be
some advantage to biasing the genetic operators
towards operating more on the newer behaviors than
on the early. (Although it certainly makes sense for
the crossover operator to take pieces of old behavior
eg., an orienting behavior, based on a sensor activated
early in the evolutionary search would be a good
prototype for an orienting behavior using a new
sensor.)

In our hand written programs we capture symmetry
and repeated structure by the use of macros. For
example, on the six-legged robot Genghis ([Brooks
89]) there is a macro version of the leg control
behaviors which gets instantiated six times, once for
each leg. This suggests two ideas to again reduce the
genetic search space.

• The language that is subject to genetic
programming should include a macro capability. As
the search learns how to use these effectively it will
greatly accelerate the production of good programs.

• There must be some way to reference the
symmetries and regularities of the morphological
structure of the robot, in order to invoke the macros
correctly. This morphological descriptor will be a
constant for each particular class of robot. The
constant could be evolved, but it would be much
quicker to have that as an available constant
somewhere in the original pool of ancestral
programs.

5 Evolving Behavior-Based Pro-
grams

[Koza 91] reports on a genetic programming
implementation in simulation of the navigation
behaviors of [Mataric 90]'s robot Toto. The
programming language he uses is a carefully chosen
subset of Lisp. While adequate for the task Koza
reports, based on our experience with physical robots,
it is perhaps not sufficient for the more general case.

[Langton 91] has suggested the idea of genetically
programming a physical robot using the Behavior
Language (BL) defined in [Brooks 90a].
Unfortunately, there are many drawbacks to using BL
directly.

[Lenat and Brown 84] analyze the the apparent
success of the discovery system AM [Lenat 77]. They

point out the crucial way in which the syntax of the
Lisp programs being mutated mirrored the semantics
of the world of simple mathematics concepts being
explored. We can likewise expect performance of a
crossover based genetic programming system to
critically depend on the syntax of the language used
and the way in which crossover mutates a program's
semantics.

In this section we try to identify the choices made
by Koza which led to his success, and compare them
to what is available in BL. We propose a higher level
language, called GEN, which can be compiled into
BL as the target language for genetically
programming physical robots.

5.1 Primitives for Genetic
Programming of Robots

[Koza 90] uses a representation for Lisp programs
which is crucial to the easy application of crossover.
He treats an S-expression as a tree rooted with the
first elements, and with one branch for each of the
subsequent elements. E.g., the expression (* 1 2 3) is
thought of as a tree with four nodes, a depth of two
and a branching factor of three at the root node. Koza
calls each thing which can occur at a non-terminal
node a function, but that terminology differs from
modern Lisp terminology. In fact his operators are
often special forms or macros.

For instance, he might use IF-SENSOR as an
operator which accesses some hidden state (or
perceptual information) and depending on its value
either evaluate the first argument or the second
argument-thus it is not a function in the usual sense
of being applied to all its evaluated arguments. Such
embedded conditionals seem to be the only
conditional forms used by Koza. This is for a very
good reason. Pure Lisp can be thought of as a
type-free language. But, in fact some values, such as
the test argument to a conditional, are treated as
booleans. Although everything is trivially coercible
to a boolean, including a conditional requiring a
boolean test would greatly increase the search space
and drastically lower the density of semantically
useful program trees.

In [Koza 91] careful analysis of [Mataric 90]'s
original code was done in order to pick just the right
set of conditionals with access to hidden state which
is to be tested.

Without the hindsight from a successful
implementation, GEN must allow more general
testing than Koza allows. But the heuristic of

embedding predicates in conditional special forms
(implemented as macros) is a good one.

Koza hides critical constants in these special forms
also. [Ray 90] points out the difficulty in having too
many constants around in the genetic pool, and
instead evolves simple constructive program
segments to build them. Primitives to make this easy
would be a good idea in GEN also.

5.2 Variables and Lexicality

Real BL programs use many named state variables.
Sometimes these are simply used as semaphores,
sometimes they are used as counters, sometimes they
are used for calibration offsets, and sometimes they
are used to store sensor readings, or processed sensor
readings, for later comparison.

As with Lisp and BL, lexical contours should be
able to be introduced at any point in a program (both
languages use LET to do this). Variable names as
such can not be used conveniently if crossover is to
occur, as the produced programs will not be lexically
meaningful very often. Instead some sort of indexing
scheme is needed. A global index for a behavior is
not a good idea, because then it will be hard to use
crossover to duplicate little pieces of code with local
variables. Instead we propose using a single form
(variable-ref), and specific operators to move up and
down the lexical contour tree, and to rotate around the
set of variables introduced at a particular contour
(often there will be just a single variable).

5.3 Depth and Breadth

In Koza's re-implementation of Toto's navigation
behaviors the best solution found has 157 nodes of
which 65 are terminals, and the tree has depth 12.
Figure 1 shows the statistics for Mataric's original
BL program for the same task. Overall it has 942
nodes, and 500 terminals, and coincidentally a
maximum depth of 12.

The difference can be accounted for by three
components:

1. There are a number of housekeeping operations,
reporting, and debugging features included in the
original BL program. These can be left out of
GEN programs also.

2. The techniques used by Koza to compress the trees
are not present in the BL programs. GEN will be
able to get some of this benefit, but not all, as it
needs to be more general than the minimal set of
primitives used by Koza.

3. The code produced by Koza has only been tested in
simulation, and relies a little on the simplicity of
the the simulated emvironment. GEN programs for
embodied robots may need to be slightly more
complex than this,

It seems reasonable to assume that a general
purpose GEN language program for this task might
come out a factor of two to three bigger than Koza's
program. Evolving a program of that size certainly
seems within reach-it is not a drastic step up from
Koza's results.

Figure 1: A statistical summary of a BL program to drive the
robot TOTO in its wall following. It includes various debugging
behaviors and display code. The columns are P, number of
processes, N, total number of nodes, T, total number of terminals,
D, maximum depth, B, maximum branching factor, AD, average
depth of all nodes, AB, average breadth at non-terminal nodes,
and the name chosen by the programmer as the behavior name.

For comparison, figure 2 shows the statistics for a
walking program for the six-legged robot Attila.
Again there are a number of debugging aids and tools
included in this program, along with some low level
substrate processes (which need not be evolved).

5.4 Mappings

Earlier it was pointed out that there needs to be
some way to relate the evolved program to the
morphological regularities in the structure of the
robot. There is an additional related problem which if
not handled well will generate a search space with
only a low density of useful program fragments.

Typically on real robots a ring of 8, say, bump
sensors, or infrared proximity sensors, will be
accessible as a single byte of 8 one bit values. The
mapping between arrangement of those bits and the
morphology of the sensors is usually quite arbitrary,
and indeed there may be no natural semantically valid
arrangement of the bits.

Careful attention must be paid to this issue to
provide appropriate mapping primitives so that the
evolving programs can pull out the right boolean
bits. One simple heuristic for the robot designer is to
make all such mappings consistent where possible on
a particular robot design, thus maximizing the
benefits for crossover of program fragments in
adopting new sensors.

6 Reconnecting to Reality

Eventually the programs developed by genetic
programming are to be run on physically embodied
robots. There are a number of concerns in connecting
the programs back to this reality.

6.1 Calibration

It is our experience that supposedly identical
physical robot components are not identical. We have
experienced this with very different sensing and
actuator responses from supposedly identical legs on
a six legged robot. We have also experienced this
with 20 small wheeled robots (R-1's).

On reflecting on our past practices, we realized that
when programming just a single robot system we had
experimented by hand and built appropriate constants
into our programs to handle the responses of our
sensors and actuators. When we had the same code
running on multiple copies of a robot, or robot
component, we found this approach inadequate. We
have found it necessary therefore to build in adaptive
elements into the run-time structures of our programs
which change thresholds and timeout intervals. This
is not yet a formalized process, but we need to find a
set of primitives that allow such adaptive elements to
be constructed easily.

The implication of this for genetic programming
of physical robots is clear. There must be a set of
primitives available to the system so that adaptive
elements can be constructed. Further, the simulation
must have enough variance in it that these adaptive
elements are essential to successfully run the
programs on the simulated robots, so that the
adaptive elements will be there when it comes time
to validate on physical robots.

6.2 Adapting the Simulation

When the programs which have been evolved on
the simulated robots are tried on embodied robots
there will be two types of information available.

1. How well the programs work on embodied robots.

2. How different the performance of the programs is
on the simulated robots and the embodied robots.

The first type of information can be used to inform
the genetic programming system, as would any
simulated test of the generated programs.

The second type of information should be used to
tune up the simulation to better match reality. One
would expect that this would be done by hand.
However there is a more tantalizing possibility.
Perhaps this information could be used to co-evolve
the simulater using genetic programming
techniques-especially if the simulator were written in
the same sort of BL as the robots were programmed
(our current simulator is partially written in BL). The
idea would be to run the evolved robot programs on
the embodied robots, then with those programs fixed,
evolve the simulator until it better matched what
happened in reality. There are deep issues in finding
measures to compare the performance of the
simulator to reality, since the robots won't be going
through exactly the same sequence of operations
Eventually, perhaps, this may be a viable approach.

7 Progress

At the time of writing no complete experiments
have been carried out using the ideas in this paper.

We have built a simulator for multiple R-2 robots1

It is not grid-based, but instead the coordinates of a
robot can be arbitrary floating point numbers within
the workspace. R-2 robots have a two wheeled
differential drive with passive castors for stability.
The simulator handles arbitrary independent velocities
on the two wheels. There is a simple physics
associated with motion of a robot when it has
collided with an obstacle (which are all modeled as
immovable cylinders). The sensors currently modeled
are a ring of eight bump sensors, a ring of eight
infrared proximity sensors, and three forward looking
beacon sensors. We expect to add more sensor
models. No explicit uncertainty is built into the
sensor or actuator models. However, the BL program
which runs the robots refers to the real time clock of
the computer on which the simulation is run. Noise
is therefore introduced into the system by the load on
the computer, and by the interjection of the Lisp
garbage collector.

The complete simulation is about 500 lines of
combined Common Lisp and BL code. We have no
hypothesis at this point about how well programs
developed on the simulator will transfer to the real

1 Manufactured by IS Robotics.

robot. This will be a critical data point in evaluating
the utility of the approach.

The Behavior Language compiler has been modified
so that other programs can call it, rather than having
to go through the previous interface optimized for
people using it to program physical robots. It already
had a backend which produced a byte-code program for
which a Common Lisp program provides an
interpreter. Thus, BL programs can be automatically
-compiled and run on a simulation machine. In
addition, a higher language known as GEN has been
partially built which compiles into BL programs.
GEN is based on the ideas explored in the previous
sections.

8 Conclusion

The key ideas presented in this paper are:

• Use genetic programming techniques to build
behavior-based programs which can run real robots
(this idea is due to [Langton 91]).

• Evolution and runtime adaptation are two separate
issues.

• All robots will need runtime adaptation elements.

• Evolution of control structure needs to run in
parallel with evolution of morphology—in robots
this can be simulated by progressively enabling
more sensors and actuators as layers of behaviors
evolve for those already operational.

• Regularity (e.g., symmetry or repeated structures)
in morphological structure should be mirrored in
regularity in the control structure, and thus needs to
be representable in the control language.

• Special care must be taken in design of the control
language to minimize the depth and breadth of
useful program trees.

• To make crossover useful in a control language with
variables, a new method for representing variable
references was introduced.

• There are real methodological dangers in using
simulations as a testing medium in which to
evolve programs which are intended eventually to
run on physical robots-great care must be taken to
develop a sufficient validation regime.

There are many possible approaches to using
Artificial Life techniques for programming physical
robots We have chosen one particular approach here,

but many of the points of concern will be common
with other approaches.

Acknowledgements

Maja Mataric, Ian Horswill and Anita Flynn
provided helpful comments on drafts of this paper.

Support for this research was provided in part by
the University Research Initiative under Office of
Naval Research contract N00014-86-K-0685, in part
by the Advanced Research Projects Agency under
Office of Naval Research contract
N00014-85-K-0124, in part by the Hughes Artificial
Intelligence Center, and in part by Mazda
Corporation.

References

[Brooks 86] “A Robust Layered Control System for a
Mobile Robot”, Rodney A. Brooks, IEEE Journal of
Robotics and Automation RA-2, April, 14-23.

[Brooks 89] “Robot that Walks: Emergent Behavior
from a Carefully Evolved Network”, Rodney A. Brooks,
Neural Computation, 1:2, Summer, 253-262.

[Brooks 90a] “The Behavior Language; User's Guide”,
Rodney A. Brooks, MIT A.I. Lab Memo 1227, April.

[Brooks 90b] “Elephants Don't Play Chess”, Rodney A.
Brooks, in [Maes 90], 1990, 3-15.

[Brooks 91a] “Intelligence without Representation”,
Rodney A. Brooks, Artificial Intelligence 47, Jan.,
139-159.

[Brooks 91b] “Intelligence without Reason”, Rodney A.
Brooks, IJCAI-91, Sydney, Australia, Aug., 569-595,

[Brooks 91c] “New Approaches to Robotics”, Rodney A.
Brooks, Science 253, Sep., 1227-1232.

[Collins and Jefferson 90] “AntFarm: Towards Simulated
Evolution”, Robert J. Collins and David R. Jefferson, in
[Langton et al 90], 579-601.

[Friedberg 58] “A Learning Machine, Part I”, R. M.
Friedberg, IBM Journal of Research and Development 2,
2-13.

[Friedberg et al 59] “A Learning Machine, Part II”, R. M.
Friedberg, B. Dunham, and J. H. North, IBM Journal o f
Research and Development 3, 282-287.

[Holland 75] “Adaptation in Natural and Artificial
Systems”, John H. Holland, University of Michigan
Press, Ann Arbor, MI.

[Kaelbling 90] “Learning in Embedded Systems”, Leslie
Pack Kaelbling, Ph.D. Thesis, Stanford.

[Koza 90] “Evolution and Co-Evolution of Computer
Programs to Control Independently-Acting Agents”,
John R. Koza, Proc. First Int. Conf. on Simulation o f
Adaptive Behavior, Paris, MIT Press, Cambridge, MA,
1990, 366-375.

[Koza 91] “Evolving Emergent Wall Following Robotic
Behavior Using the Genetic Programming Paradigm”,
John R. Koza, ECAL, Paris, Dec.

[Langton 87] “Proceedings of Artificial Life”,
Christopher G. Langton (ed), Addison-Wesley, appeared
1989.

[Langton 91] Personal communication, Christopher G.
Langton, September.

[Langton et al 90] “Proceedings of Artificial Life, II”,
Christopher G. Langton, Charles Taylor, J. Doyne
Farmer, and Steen Rasmussen (eds), Addison-Wesley,
appeared 1991.

[Lenat 77] “The Ubiquity of Discovery”, Douglas B.
Lenat, IJCAI-77, Cambridge, MA, Aug., 1093-1105.

[Lenat and Brown 84] “Why AM and EURISKO Appear to
Work”, Douglas B. Lenat and John Seely Brown,
Artificial Intelligence 23,269-294.

[Maes 90] “Designing Autonomous Agents: Theory and
Practice from Biology to Engineering and Back”, Pattie
Maes (ed), MIT Press, Cambridge, MA, 1990.

[Maes and Brooks 90] “Learning to Coordinate
Behaviors”, Pattie Maes and Rodney A. Brooks,
AAAI-90, Boston, MA, 1990, 796-802.

[Mahadevan and Connell 90] “Automatic Programming
of Behavior-based Robots using Reinforcement
Learning”, Sridhar Mahadevan and Jonathan Connell,
IBM T.J. Watson Research Report, Dec.

[Mataric 90] “A Distributed Model for Mobile Robot
Environment-Learning and Navigation”, Maja J .
Mataric, MIT A.I. Lab Technical Report 1228, May.

[Pollack and Ringuette 90] “Introducing the Tileworld:
Experimentally Evaluating Agent Architectures”, Martha
E. Pollack and Marc Ringuette, AAAI-90, Boston, MA,
August, 183-189.

[Ray 90] “An Approach to the Synthesis of Life”,
Thomas S. Ray, in [Langton et al 90], 371-408.

[Viola 90] “Adaptive Gaze Control”, Paul A. Viola, MIT
SM Thesis, 1990.

[Wang and Beni 90] “Distributed Computing Problems
in Cellular Robotic Systems”, Jing Wang and Gerardo

Beni, IEEE/RSJ International Workshop on Intelligent
Robots and Systems, Ikabara, Japan, 819-826.

[Watkins 89] “Learning from Delayed Rewards”,
Christopher Watkins, Ph.D. Thesis, King's College,
Cambridge.

Figure 2: A statistical summary of a walking program for the
robot Attila. The columns have the same labels as those in figure
1. Notice that some behaviors are duplicated six times-once for
each leg of the robot.

