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Abstract

We seek to build a large collection of images with groundhtdabels to be used for object
detection and recognition research. Such data is usefglfzervised learning and quantitative
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evaluation. To achieve this, we developed a web-basedhabhbtlows easy image annotation
and instant sharing of such annotations. Using this anoat&bol, we have collected a large
dataset that spans many object categories, often corgaimititiple instances over a wide vari-
ety of images. We quantify the contents of the dataset anghamragainst existing state of the
art datasets used for object recognition and detectioro, e show how to extend the dataset
to automatically enhance object labels with WordNet, drec@bject parts, recover a depth or-
dering of objects in a scene, and increase the number oflaisglg minimal user supervision
and images from the web.

1 Introduction

Thousands of objects occupy the visual world in which we.liBeederman [4] estimates that
humans can recognize about 30000 entry-level object cagsgoRecent work in computer
vision has shown impressive results for the detection acolgrtion of a few different object
categories [42, 16, 22]. However, the size and contentsistieg datasets, among other factors,
limit current methods from scaling to thousands of objetégaries. Research in object detec-
tion and recognition would bene t from large image and videdlections with ground truth
labels spanning many different object categories in dettscenes. For each object present in
an image, the labels should provide information about theabb identity, shape, location, and
possibly other attributes such as pose.

By analogy with the speech and language communities, kistas shown that performance
increases dramatically when more labeled training dataaidenavailable. One can argue that
this is a limitation of current learning techniques, resgjtin the recent interest in Bayesian
approaches to learning [10, 35] and multi-task learning.[Bi@vertheless, even if we can learn
each class from just a small number of examples, there dirmatiy classes to learn.

Large image datasets with ground truth labels are usefidupervised learning of object cat-
egories. Many algorithms have been developed for imageefstavhere all training examples
have the object of interest well-aligned with the other eghas [39, 16, 42]. Algorithms that

exploit context for object recognition [37, 17] would bendrom datasets with many labeled
object classes embedded in complex scenes. Such dataseld sbntain a wide variety of

environments with annotated objects that co-occur in theesanages.

When comparing different algorithms for object detectiod aecognition, labeled data is nec-



essary to quantitatively measure their performance (theei®f comparing object detection
algorithms is beyond the scope of this paper; see [2, 20]di@vant issues). Even algorithms
requiring no supervision [31, 28, 10, 35, 34, 27] need theqiative framework.

Building a large dataset of annotated images with many t¢dbjeca costly and lengthy en-

terprise. Traditionally, datasets are built by a singleeaesh group and are tailored to solve
a speci c problem. Therefore, many currently availableagats only contain a small num-
ber of classes, such as faces, pedestrians, and cars. &letad@ptions are the Caltech 101
dataset [11], with 101 object classes (this was recentlgredd to 256 object classes [15]), the
PASCAL collection [8], and the CBCL-streetscenes datafise

We wish to collect a large dataset of annotated images. Tm\aehhis, we consider web-
based data collection methods. Web-based annotation poasde a way of building large
annotated datasets by relying on the collaborative effioatlarge population of users [43, 30,
29, 33]. Recently, such efforts have had much success. Tlka ®nd Initiative [33] aims
to collect large datasets from web users so that intelligkgadrithms can be developed. More
speci cally, common sense facts are recorded (e.g. rediigyapy color), with over 700K facts
recorded to date. This project is seeking to extend theassdtwith speech and handwriting
data. Flickr [30] is a commercial effort to provide an onlineage storage and organization
service. Users often provide textual tags to provide a oapif depicted objects in an image.
Another way lots of data has been collected is through amemgame that is played by many
users. The ESP game [43] pairs two random online users who thie same target image.
The goal is for them to try to “read each other's mind” and agoa an appropriate name
for the target image as quickly as possible. This effort hakected over 10 million image
captions since 2003, with the images randomly drawn fronwible. While the amount of data
collected is impressive, only caption data is acquired.tAangame, Peekaboom [44] has been
created to provide location information of objects. Whdedtion information is provided for a
large number of images, often only small discriminant raegiare labeled and not entire object
outlines.

In this paper we describe LabelMe, a database and an onlim&ation tool that allows the
sharing of images and annotations. The online tool providestionalities such as drawing
polygons, querying images, and browsing the databasee Instpart of the paper we describe
the annotation tool and dataset and provide an evaluatitmeaquality of the labeling. In the
second part of the paper we present a set of extensions ahdatipps of the dataset. In this
section we see that a large collection of labeled data allmie extract interesting information



that was not directly provided during the annotation precel the third part we compare
the LabelMe dataset against other existing datasets cotgmead for object detection and
recognition.

2 LabelMe

In this section we describe the details of the annotatiohand the results of the online collec-
tion effort.

2.1 Goals of the LabelMe project

There are a large number of publically available databakesoal objects [38, 2, 21, 25, 9,
11, 12, 15, 7, 23, 19, 6]. We do not have space to review theimeadl. However, we give a
brief summary of the main features that distinguishes theelMe dataset from other datasets.

Designed for object class recognition as opposed to instegmognition. To recognize
an object class, one needs multiple images of differenantss of the same class, as
well as different viewing conditions. Many databases, ha@weonly contain different
instances in a canonical pose.

Designed for learning about objects embedded in a scene.y daabases consist of
small cropped images of object instances. These are saitablraining patch-based
object detectors (such as sliding window classi ers), ot be used for training de-
tectors that exploit contextual cues.

High quality labeling. Many databases just provide cajavhich specify that the ob-
ject is present somewhere in the image. However, more ddtaiformation, such as
bounding boxes, polygons or segmentation masks, is treoushdhelpful.

Many diverse object classes. Many databases only contammad sumber of classes,
such as faces, pedestrians and cars (a notable exceptibe Gaitech 101 database,
which we compare against in Section 4).

Many diverse images. For many applications, it is usefulao/\the scene type (e.g.
nature, street, and of ce scenes), distances (e.g. lapdsaad close-up shots), degree of
clutter, etc.



Many non-copyrighted images. For the LabelMe database ofitiseé images were taken
by the authors of this paper using a variety of hand-heldaligameras. We also have
many video sequences taken with a head-mounted web camera.

Open and dynamic. The LabelMe database is designed to atiected labels to be
instantly shared via the web and to grow over time.

2.2 The LabelMe web-based annotation tool

The goal of the annotation tool is to provide a drawing irgeefthat works on many platforms,
is easy to use, and allows instant sharing of the collectél d@ achieve this, we designed a
Javascript drawing tool, as shown in Figure 1. When the usterg the page, an image is dis-
played. The image comes from a large image database covewnde range of environments
and several hundred object categories. The user may labslahject by clicking control
points along the object's boundary. The user nishes bykahg on the starting control point.
Upon completion, a popup dialog bubble will appear queryorghe object name. The user
freely types in the object name and presses enter to clogmititde. This label is recorded on
the LabelMe server and is displayed on the presented imdgelabel is immediately available
for download and is viewable by subsequent users who visisme image.

The user is free to label as many objects depicted in the iraagleey choose. When they are
satis ed with the number of objects labeled in an image, they proceed to label another
image from a desired set or press Blgow Next Imagbutton to see a randomly chosen im-
age. Often, when a user enters the page, labels will alreppogaa on the image. These are
previously entered labels by other users. If there is a kesitathe labeling (either the outline
or text label is not correct), the user may either edit thelldly renaming the object or delete
and redraw along the object's boundary. Users may get cfedihe objects that they label
by entering a username during their labeling session. Bhisdorded with the labels that they
provide. The resulting labels are stored in the XML le fortnahich makes the annotations
portable and easy to extend.

The annotation tool design choices emphasizes simplioilyesmse of use. However, there are
many concerns with this annotation collection scheme. @ortant concern is quality con-
trol. Currently quality control is provided by the usersniselves, as outlined above. Another
issue is the complexity of the polygons provided by the u§ezsdo users provide simple or
complex polygon boundaries?). Another issue is what tol ldb@ example, should one label



Sign in (why?
Please contact us if you find any bugs or —g_ {_‘L)
have any suggestions.

Showl s Sistharimngos With your help, there are

Label as many objects and regions as you can in this image 91348 Iabelled objects in the database
Tk = = more stats)
— . - &3] — 5
= Edit/delete object (| - Instructions (Get more help)
= ,. Use your mouse to click around the
i - Wrﬁow _buunda$ of s_olr:ﬁ objbects \: Bhis )
VA oz (o |l e image. You will then be asked to enter
[/ === the name of the object (examples: car,
¥ 4 - % window)
— ‘k_‘_ m =
S o s ==
a 1
’.‘ e = ‘
S —= il
It N

e

L | ; I 1 i . I _—
L Sl 1|1 Iy 3 doar
i B A : road
I 6 ; ,l jl :ft\::lldrnw
L =i f window
e B o sidewalk
B e e building region
e
window
window
Figure 1. A screenshot of the labeling tool in use. The user is shown an image along with
possibly one or more existing annotations, which are drawn o n the image. The user has the
option of annotating a new object by clicking along the bound ary of the desired object and
indicating its identity, or editing an existing annotation . The user may annotate as many

objects in the image as they wish.



the entire body, just the head, or just the face of a pede&tN&hat if it is a crowd of people?
Should all of the people be labeled? We leave these decigpts each user. In this way, we
hope the annotations will re ect what various people thin& aatural ways of segmenting an
image. Finally, there is the text label itself. For examplguld the object be labeled as a “per-
son”, “pedestrian”, or “man/woman”? An obvious solutiortegprovide a drop-down menu of
standard object category names. However, we prefer to tgilpeise their own descriptions
since these may capture some nuances that will be usefut ifutbre. In Section 3.1, we de-
scribe how to cope with the text label variability via WordNi&3]. All of the above issues are
revisited, addressed, and quanti ed in the remaining easti

A Matlab toolbox has been developed to manipulate the diegaskview its contents. Example
functionalities that are implemented in the toolbox alloatatet queries, communication with
the online tool (this communication can in fact allow one tdyadownload desired parts of the
dataset), image manipulations, and other dataset exten@ee Section 3).

The images and annotations are organized online into feldath the folder names providing
information about the image contents and location of theatlegh scenes/objects. The folders
are grouped into two main categories: static pictures agdeseces extracted from video. Note
that the frames from the video sequences are treated aseindept static pictures and that
ensuring temporally consistent labeling of video sequems®eyond the scope of this paper.
Most of the images have been taken by the authors using ayafidigital cameras. A small
proportion of the images are contributions from users ofdh@base or come from the web.
The annotations come from two different sources: the Lalketivlline annotation tool and
annotation tools developed by other research groups. eaitecthe sources of the images and
annotations in the folder name and in the XML annotation. [Eer all statistical analyses that
appear in the remaining sections, we will specify which stib$§the database subset was used.

2.3 Content and evolution of the LabelMe database

We summarize the content of the LabelMe database as of Dexe?ilh 2006. The database
consists of 111490 polygons, with 44059 polygons annotas&ay the online tool and 67431
polygons annotated of ine. There are 11845 static pictares$ 18524 sequence frames with at
least one object labeled.

As outlined above, a LabelMe description corresponds tediestring entered by the user to
de ne each object. Despite the lack of constraint on the dietsons, there is a large degree of



consensus. Online labelers entered 2888 different desergpfor the 44059 polygons (there
are a total of 4210 different descriptions when considettegentire dataset). Figure 2(a) shows
a sorted histogram of the number of instances of each obgsdrightion for all 111490 poly-
gong. Notice that there are many object descriptions with a lagaber of instances. While
there is much agreement among the entered descriptiomstabtegories are nonetheless frag-
mented due to plurals, synonyms, and description resol{gay. “car”, “car occluded”, and
“car side” all refer to the same category). In section 3.1 vilkaddress the issue of unifying

the terminology to properly index the dataset according#d object categories.

Figure 2(b) shows a histogram of the number of annotated es\ag a function of the per-

centage of pixels labeled per image. The graph shows thatl1ljistures have less than 10%
of the pixels labeled and around 2690 pictures have more30Q&6 of labeled pixels. There

are 4258 images with at least 50% of the pixels labeled. Eig(c) shows a histogram of the
number of images as a function of the number of objects inrttegge. There are, on average,
3.3 annotated objects per image over the entire datasete Hne 6876 images with at least
5 objects annotated. Figure 3 shows images depicting a raingeene categories, with the
labeled objects colored to match the extent of the recordégypn. For many images, a large
number of objects are labeled, often spanning the entirgeéma

The web-tool allows the dataset to continuously grow ovaetiFigure 4 depicts the evolution
of the dataset since the annotation tool went online. We shewmumber of new polygons and
text descriptions entered as a function of time. For thidyams we only consider the 44059
polygons entered using the web-based tool. The number ofpodéygons increased steadily
while the number of new descriptions grew at a slower rate maie the latter observation
more explicit, we also show the probability of a new desaipappearing as a function of
time (we analyze the raw text descriptions).

2.4 Quality of the polygonal boundaries

Figure 5 illustrates the range of variability in the qualitythe polygons provided by different
users for a few object categories. For the analysis in thii@e we only use the 44059
polygons provided online. For each object category, we thartpolygons according to the

LA partial list of the most common descriptions for all 1114@0ygons in the LabelMe dataset, with counts
in parenthesis: person walking (25330), car (6548), he&89} tree (4909), window (3823), building (2516),
sky (2403), chair (1499), road (1399), bookshelf (133&g$r(1260), sidewalk (1217), cabinet (1183), sign (964),
keyboard (949), table (899), mountain (823), car occlu@®d), door (741), tree trunk (718), desk (656).
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Figure 2. Summary of the database content. (a) Sorted histog ram of the number of in-
stances of each object description. Notice that there is a la rge degree of consensus with
respect to the entered descriptions. (b) Histogram of the nu mber of annotated images as a
function of the area labeled. The rst bin shows that 11571 im ages have less than 10 % of
the pixels labeled. The last bin shows that there are 2690 pic tures with more than 90 % of

the pixels labeled. (c) Histogram of the number of labeled ob jects per image.

Figure 3. Examples of annotated scenes. These images have mo  re than 80 % of their pixels

labeled and span multiple scene categories. Notice that man y different object classes are

labeled per image.
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a function of time. Right: the probability of a new descripti on being entered into the dataset
as a function of time. Note that the graph plots the evolution through March 23rd, 2007 but
the analysis in this paper corresponds to the state of the dat aset as of December 21, 2006,
as indicated by the star. Notice that the dataset has steadil y increased while the rate of new

descriptions entered has decreased.
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Figure 5. lllustration of the quality of the annotations in t he dataset. For each object we

show three polygons depicting annotations corresponding t o the 25th, 50th, and 75th per-

centile of the number of control points recorded for the obje ct category. Therefore, the
middle polygon corresponds to the average complexity of a se gmented object class. The
number of points recorded for a particular polygon appears n ear the top-left corner of each

polygon. Notice that, in many cases, the object's identity ¢ an be deduced from its silhou-

ette, often using a small number of control points.

number of control points. Figure 5 shows polygons corredpanto the 25th, 50th, and 75th
percentile with respect to the range of control points @datkor each category. Many objects
can already be recognized from their silhouette using alsmahber of control points. Note

that objects can vary with respect to the number of controitpdo indicate its boundary. For
instance, a computer monitor can be perfectly describeahast cases, with just four control
points. However, a detailed segmentation of a pedestrightmequire 20 control points.

Figure 6 shows some examples of cropped images containiaigeteld object and the corre-
sponding recorded polygon.

2.5 Distributions of object location and size

At rst, one would expect objects to be uniformly distribdtevith respect to size and image
location. For this to be true, the images should come fromoéiqgrapher who randomly points
their camera and ignores the scene. However, most of theesriaghe LabelMe dataset were
taken by a human standing on the ground and pointing theiecatowards interesting parts
of a scene. This causes the location and size of the objeaist the uniformly distributed in

10
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Figure 6. Image crops of labeled objects and their correspon ding silhouette, as given by
the recorded polygonal annotation. Notice that, in many cas es, the polygons closely follow

the object boundary. Also, many diverse object categories a re contained in the dataset.

the images. Figure 7 depicts, for a few object categoriegnaitl plot showing where in the
image each instance occurs and a histogram of object sedasiye to the image size. Given
how most pictures were taken, many of the cars can be fourteeifotver half region of the
images. Note that for applications where it is importantawehuniform prior distribitions of
object locations and sizes, we suggest cropping and ragaadich image randomly.

3 Extending the dataset

We have shown that the LabelMe dataset contains a large mushla@notated images, with
many objects labeled per image. The objects are often diyrefitlined using polygons instead
of bounding boxes. These properties allow us to extract fiteendataset additional informa-
tion that was not provided directly during the labeling mes. In this section we provide
some examples of interesting extensions of the datasetdhate achieved with minimal user
intervention. Code for these applications is availableaats @ the Matlab toolbox.

11
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3.1 Enhancing object labels with WordNet

Since the annotation tool does not restrict the text lalmelddscribing an object or region, there
can be a large variance of terms that describe the same @ajegory. For example, a user
may type any of the following to indicate the “car” objectegbry: “car”, “cars”, “red car”,
“car frontal”, “automobile”, “suv”, “taxi”, etc. This makeanalysis and retrieval of the labeled
object categories more dif cult since we have to know abguiosiyms and distinguish between
object identity and its attributes. A second related pnobie the level of description provided
by the users. Users tend to provide basic-level labels fggabd (e.g. “car”, “person”, “tree”,
“pizza”). While basic-level labels are useful, we wouldalie to extend the annotations to
incorporate superordinate categories, such as “animathitle”, and “furniture”.

We use WordNet [13], an electronic dictionary, to extendlthbelMe descriptions. WordNet
organizes semantic categories into a tree such that nogesuapg along a branch are ordered,
with superordinate and subordinate categories appeaeagthe root and leaf nodes, respec-
tively. The tree representation allows disambiguationifiécent senses of a word (polysemy)
and relates different words with similar meanings (synosyntor each word, WordNet re-
turns multiple possible senses, depending on the locafitreavord in the tree. For instance,
the word “mouse” returns four senses in WordNet, two of whach “computer mouse” and
“rodent™. This raises the problem of sense disambiguation. GiverbelMe description and
multiple senses, we need to decide what the correct sense is.

WordNet can be used to automatically select the appropsetse that should be assigned to
each description [18]. However, polysemy can prove chgllenfor automatic sense assign-
ment. Polysemy can be resolved by analyzing the contextheh other objects are present
in the same image). To date, we have not found instances pégoly in the LabelMe dataset
(i.e. each description maps to a single sense). Howeverpowadfthat automatic sense as-
signment produced too many errors. To avoid this, we allavoféne manual intervention to
decide which senses correspond to each description. Siece &re fewer descriptions than
polygons (c.f. Figure 4), the manual sense disambiguaaonbe done in a few hours for the
entire dataset.

2The WordNet parents of these terms arec@inputer mouseelectronic device; device; instrumentality, in-
strumentation; artifact, artifact; whole, unit; objechysical object; physical entity; entity and (ipdent rodent,
gnawer, gnawing animal; placental, placental mammal,ezigh, eutherian mammal; mammal, mammalian; ver-
tebrate, craniate; chordate; animal, animate being, pbaste, creature, fauna; organism, being; living thing,
animate thing; object, physical object; physical entitytity.

13



person (27719 polygons) car (10137 polygons)

Label Polygon count Label Polygon count
person walking 25330 car 6548
person 942 car occluded 804
person standing 267 car rear 584
person occluded 207 car side 514
person sitting 120 car crop 442
pedestrian 121 car frontal 169
man 117 taxi 8
woman 75 suv 4
child 11 cab 3
girl 9 automobile 2

Table 1. Examples of LabelMe descriptions returned when que rying for the objects “person”

and “car” after extending the labels with WordNet (not all of the descriptions are shown).
For each description, the counts represents the number of re turned objects that have the
corresponding description. Note that some of the descripti ons do not contain the query

words.

We extended the LabelMe annotations by manually creatisgcietions between the different
text descriptions and WordNet tree nodes. For each pos$#sieription, we queried WordNet
to retrieve a set of senses, as described above. We then @imus®y the returned senses the
one that best matched the description. Despite users egtest without any quality control,
3916 out of the 4210 (93%) unique LabelMe descriptions foantfordNet mapping, which
corresponds to 104740 out of the 111490 polygon descrigtidhe cost of manually specifying
the associations is negligible compared to the cost of exgténe polygons and must be updated
periodically to include the newest descriptions. Note thiatay not be necessary to frequently
update these associations since the rate of new descspiiered into LabelMe decreases
over time (c.f. Figure 4).

We show the bene t of adding WordNet to LabelMe to unify thescgptions provided by the
different users. Table 1 shows examples of LabelMe desoniptthat were returned when
guerying for “person” and “car” in the WordNet-enhancedriework. Notice that many of
the original descriptions did not contain the queried wdfdjure 8 shows how the number of
polygons returned by one query (after extending the anioowtith WordNet) are distributed
across different LabelMe descriptions. It is interestimglbserve that all of the queries seem to

14
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Figure 8. How the polygons returned by one query (in the WordN et-enhanced framework)
are distributed across different descriptions. The distri butions seem to follow a similar law:

a linear decay in a log-log plot with the number of polygons fo r each different description
on the vertical axis and the descriptions (sorted by number o f polygons) on the horizontal

axis. Table 1 shows the actual descriptions for the queries “ person” and “car”.

follow a similar law (linear in a log-log plot).

Table 2 shows the number of returned labels for several bheries before and after applying
WordNet. In general, the number of returned labels inceaseer applying WordNet. For
many speci ¢ object categories this increase is small,dating the consistency with which
that label is used. For superordinate categories, the nuofoeturned matches increases
dramatically. The object labels shown in Table 2 are remtasige of the most frequently
occurring labels in the dataset.

One important bene t of including the WordNet hierarchyaritabelMe is that we can now

guery for objects at various levels of the WordNet tree. Feglishows examples of queries for
superordinate object categories. Very few of these exasnpére labeled with a description
that matches the superordinate category, but nonethetesanv nd them.

While WordNet handles most ambiguities in the datasetyemay still occur when querying
for object categories. The main source of error arises wlerndiescriptions get mapped to an
incorrect tree node. While this is not very common, it can &glg remedied by changing the
text label to be more descriptive. This can also be used tdyctases of polysemy, which our
system does not yet account for.

15



Category| Original description WordNet description
person 27019 27719
car 10087 10137
tree 5997 7355
chair 1572 2480
building 2723 3573
road 1687 2156
bookshelf 1588 1763
animal 44 887
plant 339 8892
food 11 277
tool 0 90
furniture 7 6957

Table 2. Number of returned labels when querying the origina | descriptions entered into the

labeling tool and the WordNet-enhanced descriptions. In ge neral, the number of returned
labels increases after applying WordNet. For entry-level o bject categories this increase is
relatively small, indicating the consistency with which th e corresponding description was
used. In contrast, the increase is quite large for superordi nate object categories. These de-

scriptions are representative of the most frequently occur ring descriptions in the dataset.

16



Animal

seagull squirrel bull horse elephant
Plant
flower cactus tree potted plant bushes palm tree
Food
dish with food orange mustard pizza apple
Tool
toolbox knife scissors corkscrew

Figure 9. Queries for superordinate object categories afte r incorporating WordNet. Very few
of these examples were labeled with a description that match es the superordinate category
(the original LabelMe descriptions are shown below each ima ge). Nonetheless, we are able

to retrieve these examples.
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3.2 Object-parts hierarchies

When two polygons have a high degree of overlap, this preveseence of either (i) an object-
part hierarchy or (ii) an occlusion. We investigate the fernm this section and the latter in
Section 3.3.

We propose the following heuristic to discover semantycaileaningful object-part relation-
ships. Letlo denote the set of images containing a query object (e.gacatr 1o denote
the set of images containing p&t(e.g. wheel). Intuitively, for a label to be considered as a
part, the label's polygons must consistently have a highregf overlap with the polygons
corresponding to the object of interest when they appeathheg in the same image. Let the
overlap score between an object and part polygons be tleeafithe intersection area to the
area of the part polygon. Ratios exceeding a threshold aj€x6lassi ed as having high over-
lap. Letlo,p Ip denote the images where object and part polygons have higitapv The
object-part score for a candidate labeNsp=(Np + a) whereNo.p andNp are the number of
images inlo;p andlp respectively and is a concentration parameter, set to 5. We can think of
a as providing pseudocounts and allowing us to be robust tdl saraple sizes.

The above heuristic provides a list of candidate part labal$ scores indicating how well
they co-occur with a given object label. In general, the ss@ive good candidate parts and
can easily be manually pruned for errors. Figure 10 showsples of objects and proposed
parts using the above heuristic. We can also take into atse@mmpoint information and nd
parts, as demonstrated for the car object category. Ndtatehe object-parts are semantically
meaningful.

Once we have discovered candidate parts for a set of objgetsan assign speci c part in-
stances to their corresponding object. We do this usingrte¥section overlap heuristic, as
above, and assign parts to objects where the intersectiimneveceeds the 0.5 threshold. For
some robustness to occlusion, we compute a depth orderitig g@olygons in the image (see
Section 3.3) and assign the part to the polygon with smallesth that exceeds the intersection
ratio threshold. Figure 11 gives some quantitative resuthe number of parts per object and
the probability with which a particular object-part is ldx
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Figure 11. Quantitative results showing (a) how many parts a n object has and (b) the like-
lihood that a particular part is labeled when an object is lab eled. Note that there are 29
objects with at least one discovered part (only 15 are shown h ere). We are able to discover
a number of objects having parts in the dataset. Also, a part w ill often be labeled when an

object is labeled.

3.3 Depth ordering

Frequently, an image will contain many partially overlagppolygons. This situation arises
when users complete an occluded boundary or when labeligg legions containing small
occluding objects. In these situations we need to know wpalggon is on top in order to

assign the image pixels to the correct object label. Oneisalis to request depth ordering
information while an object is being labeled. Instead, wshnio reliably infer the relative

depth ordering and avoid user input.

The problem of infering depth ordering for overlaping regas a simpler problem than seg-
mentation. In this case we only need to infer who owns theoregf intersection. We summa-
rize a set of simple rules to decide the relative orderinguof dverlapping polygons:

Some objects are always on the bottom layer since they caachtde any objects. For
instance, objects that do not own any boundaries (e.g. sig)oajects that are on the
lowest layer (e.g. sidewalk and road).

An object that is completely contained in another one is gqn ©therwise, the object
would be invisible and, therefore, not labeled. Exceptimnthis rule are transparent or

20



. 5 ;

Figure 12. Each image pair shows an example of two overlappin g polygons and the nal

depth-ordered segmentation masks. Here, white and black re gions indicate near and far
layers, respectively. A set of rules (see text) were used to a utomatically discover the depth
ordering of the overlapping polygon pairs. These rules prov ided correct assignments for
97% of 1000 polygon pairs tested. The bottom right example shows an instance where the

heuristic fails. The heuristic sometimes fails for wiry or t ransparent objects.

wiry objects.

If two polygons overlap, the polygon that has more controh{oin the region of inter-

section is more likely to be on top. To test this rule we haataeled 1000 overlapping
polygon pairs randomly drawn from the dataset. This rulelpoed only 25 errors, with
31 polygon pairs having the same number of points within &ggan of intersection.

We can also decide who owns the region of intersection bygusimage features. For

instance, we can compute color histograms for each polygdritee region of intersec-

tion. Then, we can use histogram intersection [36] to assigmegion of intersection to

the polygon with the closest color histogram. This strat@glyieved 76% correct assign-
ments over the 1000 hand-labeled overlapping polygon pélesuse this approach only
when the previous rule could not be applied (i.e. both pahgguave the same number of
control points in the region of intersection).

Combining these heuristics resulted in 29 total errors duhe 1000 overlapping polygon
pairs. Figure 12 shows some examples of overlapping polygonl the nal assignments.
The example at the bottom right corresponds to an error. $escan which objects are wiry
or transparent, the rule might fail. Figure 13 shows the Iaglers for scenes with multiple
overlapping objects.
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Figure 13. Decomposition of a scene into layers given the aut omatic depth ordering recov-

ery of polygon pairs. Since we only resolve the ambiguity bet ween overlapping polygon
pairs, the resulting ordering may not correspond to the real depth ordering of all the ob-

jects in the scene.

3.4 Semi-automatic labeling

Once there are enough annotations of a particular objess,atane could train an algorithm to
assist with the labeling. The algorithm would detect andvesgy additional instances in new
images. Now, the user task would be to validate the detefibph A successful instance of
this idea is the Seville project [1] where an incrementabdimg-based detector was trained.
They started by training a coarse detector that was goodgentmusimplify the collection of
additional examples. The user provides feedback to thesyBy indicating when a bounding
box was a correct detection or a false alarm. Then, the detecs trained again with the
enlarged dataset. This process was repeated until a sadisfaumber of images were labeled.

We can apply a similar procedure to LabelMe to train a coaeteatior to be used to label
images obtained from online image indexing tools. For mstaif we want more annotated
samples okailboats we can query both LabelMe (18 segmented examples of séslvose
returned) and online image search engines (e.g. GooglekrFand Altavista). The online
image search engines will return thousands of unlabeledesthat are very likely to contain a
sailboat as a prominent object. We can use LabelMe to tragtextbr and then run the detector
on the retrieved unlabeled images. The user task will beléztstne correct detections in order
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(a) Sailboats from the LabelMe dataset (b) Detection and segmentation

Figure 14. Using LabelMe to automatically detect and segmen t objects depicted in images

returned from a web search. (a) Sailboats in the LabelMe data  set. These examples are used

to train a classi er. (b) Detection and segmentation of a sai Iboat in an image downloaded
from the web using Google. First, we segment the image (upper left), which produces
around 10 segmented regions (upper right). Then we create a | ist of candidate bounding
boxes by combining all of the adjacent regions. Note that we d iscard bounding boxes
whose aspect ratios lie outside the range of the LabelMe salil boat crops. Then we apply
a classi er to each bounding box. We depict the bounding boxe s with the highest scores
(lower left), with the best scoring as a thick bounding box co lored in red. The candidate

segmentation is the outline of the regions inside the select ed bounding box (lower right).

After this process, a user may then select the correct detect ions to augment the dataset.

to expand the amount of labeled data.

Here, we propose a simple object detector. Although objabeded with bounding boxes have
proven to be very useful in computer vision, we would like tlugput of the automatic object
detection procedure to provide polygonal boundaries Wolig the object outline whenever
possible.

Find candidate regions: instead of running the standadéhgliwindow, we propose cre-
ating candidate bounding boxes for objects by rst segnmgnthe image to produce
10-20 regions. Bounding boxes are proposed by creatingetbdéunding boxes that cor-
respond to combinations of these regions. Only the combimaithat produce contiguous
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(a) Images returned from online search engines with the query ‘sailboat’
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Figure 15. Enhancing web-basd image retrieval using labele  d image data. Each pair of rows

depict sets of sorted images for a desired object category. T he rst row in the pair is the

ordering produced from an online image search using Google, Flickr and Altavista (the
results of the three search engines are combined respecting the ranking of each image).
The second row shows the images sorted according to the con d ence score of the object

detector trained with LabelMe. To better show how the perfor mance decreases with rank,

each row displays one out of every ten images. Notice that the trained classi er returns
better candidate images for the object class. This is quanti ed in the graphs on the right,
which show the precision (percentage correct) as a function of image rank.
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regions are considered. We also remove all candidate bogrixes with aspect ratios
outside the range de ned by the training set. This results $mall set of candidates for
each image (around 30 candidates).

Compute features: resize each candidate region to a naedadize (96 96 pixels).
Then, represent each candidate region with a set of feateugdag of words [28], edge
fragments [26], multiscale-oriented lIters [24]). For tegperiments presented here, we
used the Gist features [24] (code available online) to greeach region.

Perform classi cation: train a support vector machine sias [40] with a Gaussian
kernel using the available LabelMe data and apply the ci&assi each of the candidate
bounding boxes extracted from each image. The output ofltissicer will be a score for
the bounding boxes. We then choose the bounding box with themum score and the
segmentation corresponding to the segments that are it&@deelected bounding box.

For the experiments presented here, we queried four olgéagaries: sailboats, dogs, bottles,
and motorbikes. Using LabelMe, we collected 18 sailboated, 154 bottle, and 49 motorbike
images. We used these images to train four classi ers. Tlvergownloaded 4000 images for
each class from the web using Google, Flickr and Altavistat &l of the images contained
instances of the queried objects. It has been shown thaefeadures can be used to improve
the quality of the ranking returned by online queries [14 \8¢ used the detector trained with
LabelMe to sort the images returned by the online query tools

Figure 15 shows the results and compares the images sodediag to the ranking given by
the output of the online search engines and the ranking geoMoy the score of the classi er.
For each image we have two measures: (i) the rank in whicmthge was returned and (ii) the
score of the classi er corresponding to the maximum scoildhe candidate bounding boxes
in the image. In order to measure performance, we providedrgttruth for the rst 1000 im-
ages downloaded from the web (for sailboats and dogs). Téwgmon-recall graphs show that
the score provided by the classi er provides a better meastiprobability of presence of the
gueried object than the ranking in which the images aremetliby the online tools. However,
for the automatic labeling application, good quality labgldemands very good performance
on the object localization task. For instance, in currepeaidetection evaluations [9], an ob-
ject is considered correctly detected when the area of apdrttween the ground truth bound-
ing box and the detected bounding box is above 50% of the tbipe. However, this degree
of overlap will not be considered satisfactory for labeli@prrect labeling requires above 90%
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Figure 16. Examples of automatically generated segmentati ons and bounding boxes for

sailboats, motorbikes, bottles, and dogs.

overlap to be satisfactory.

After running the detectors on the 4000 images of each clalt=cted from the web, we were

able to select 162 sailboats, 64 dogs, 40 bottles, and 40rinké¢s that produced good annota-
tions. This is shown in Figure 16. The user had the choice lidata the segmentation or just
the bounding box. The selection process is very ef cienterBfiore, semi-automatic labeling
may offer an interesting way of ef ciently labeling images.

However, there are several drawbacks to this approach, Wesare interested in labeling full
scenes with many objects, making the selection processfasent. Second, in order for
detection to work with a reasonable level of accuracy withient methods, the object needs to
occupy a large portion of the image or be salient. Third, theosated objects will be biased
toward being easy to segment or detected. Note that degpiteaitomatic labeling not being
desirable for creating challenging benchmarks for evalgatbject recognition algorithms, it
can still be useful for training. There are also a number @liaations that will bene t from
having access to large amounts of labeled data, includiagenmdexing tools (e.g. Flickr) and
photorealistic computer graphics [32]. Therefore, crepiemi-automatic algorithms to assist
image labeling at the object level is an interesting aregpfieation on its own.

4 Comparison with existing datasets for object detection aah

recognition

We compare the LabelMe dataset against four annotatedetsitesrrently used for object
detection and recognition: Caltech-101 [12], MSRC [45],GIBStreetscenes [5], and PAS-
CAL2006 [9]. Table 3 summarizes these datasets. The Calfetrand CBCL-streetscenes
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Dataset # categorieg # images| # annotationg Annotation type
LabelMe 183 30369 111490 Polygons
Caltech-101 [12] 101 8765 8765 Polygons
MSRC [45] 23 591 1751 Region masks
CBCL-Streetscenes [5] 9 3547 27666 Polygons
Pascal2006 [9] 10 5304 5455 Bounding boxes

Table 3. Summary of datasets used for object detection and re cognition research. For the
LabelMe dataset, we provide the number of object classes wit h at least 30 annotated exam-

ples. All the other numbers provide the total counts.

provide location information for each object via polygohalindaries. PASCAL2006 provides
bounding boxes and MSRC provides segmentation masks.

For the following analysis with the LabelMe dataset, we anblude images that have at least
one object annotated and object classes with at least 3Qtaiadoexamples, resulting in a
total of 183 object categories. We have also excluded, fatialysis of the LabelMe dataset,
contributed annotations and sequences.

Figure 17(a) shows, for each dataset, the number of obj¢éegaaes and, on average, how
many objects appear in an image. Notice that currently tHeelMe dataset contains more
object categories than the existing datasets. Also, obshiat the CBCL-Streetscenes and
LabelMe datasets often have multiple annotations per immadeating that the images corre-
spond to scenes and contain multiple objects. This is inrashivith the other datasets, which
prominently feature a small number of objects per image.

Figure 17(b) is a scatter plot where each point correspom@s tobject category and shows
the number of instances of each category and the averageaiatve to the image. Notice

that the LabelMe dataset has a large number of points, whiels@attered across the entire
plot while the other datasets have points clustered in alsegibn. This indicates the range
of the LabelMe dataset: some object categories have a lang@er of examples (close to

10K examples) and occupy a small percentage of the image Gizetrast this with the other

datasets where there are not as many examples per categbtlieanbjects tend to occupy
a large portion of the image. Figure 17(c) shows the numb¢éalméled instances per object
category for the ve datasets, sorted in decreasing ordghbyhumber of labeled instances.
Notice that the line corresponding to the LabelMe dataséigher than the other datasets,
indicating the breadth and depth of the dataset.
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We also wish to quantify the quality of the polygonal anniotadé. Figure 17(d) shows the
number of polygonal annotations as a function of the numbeontrol points. The LabelMe
dataset has a wide range of control points and the numbermaftaiions with many control
points is large, indicating the quality of the dataset. TAA®AL2006 and MSRC datasets
are not included in this analysis since their annotatiomsisb of bounding boxes and region
masks, respectively.

5 Conclusion

We described a web-based image annotation tool that wastadatiel the identity of ob-
jects and where they occur in images. We collected a largédruof high quality annotations,
spanning many different object categories, for a largefsatages, many of which are high res-
olution. We presented quantitative results of the datasaienits showing the quality, breadth,
and depth of the dataset. We showed how to enhance and imiprepiality of the dataset
through the application of WordNet, heuristics to recouvgeot parts and depth ordering, and
training of an object detector using the collected labeladcease the dataset size from images
returned by online search engines. We nally compared agaither existing state of the art
datasets used for object detection and recognition.

Our goal is not to provide a new benchmark for computer visibhe goal of the LabelMe
project is to provide a dynamic dataset that will lead to negearch in the areas of object
recognition and computer graphics, such as object redognit context and photorealistic
rendering.
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Figure 17. Comparison of ve datasets used for object detect ion and recognition: Caltech-

101 [10], MSRC [45], CBCL-Streetscenes [5], PASCAL2006 [9] , and LabelMe. (a) Number
of object categories versus number of annotated objects per image. (b) Scatter plot of
number of object category instances versus average annotat ion size relative to the image
size, with each point corresponding to an object category. ( ¢) Number of labeled instances
per object category, sorted in decreasing order based on the number of labeled instances.
Notice that the LabelMe dataset contains a large nhumber of ob ject categories, often with
many instances per category, and has annotations that vary i n size and number per image.
This is in contrast to datasets prominently featuring one ob ject category per image, making
LabelMe a rich dataset and useful for tasks involving scene u nderstanding. (d) Depiction of
annotation quality, where the number of polygonal annotati ons are plotted as a function of
the number of control points (we do not show the PASCAL2006 an d MSRC datasets since

their annotations correspond to bounding boxes and region m asks, respectively).
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