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Abstract

In this paper we propose a method for the
automatic decipherment of lost languages.
Given a non-parallel corpus in a known re-
lated language, our model produces both
alphabetic mappings and translations of
words into their corresponding cognates.
We employ a non-parametric Bayesian
framework to simultaneously capture both
low-level character mappings and high-
level morphemic correspondences. This
formulation enables us to encode some of
the linguistic intuitions that have guided
human decipherers. When applied to
the ancient Semitic language Ugaritic, the
model correctly maps 29 of 30 letters to
their Hebrew counterparts, and deduces
the correct Hebrew cognate for 60% of
the Ugaritic words which have cognates in
Hebrew.

1 Introduction

Dozens of lost languages have been deciphered
by humans in the last two centuries. In each
case, the decipherment has been considered a ma-
jor intellectual breakthrough, often the culmina-
tion of decades of scholarly efforts. Computers
have played no role in the decipherment any of
these languages. In fact, skeptics argue that com-
puters do not possess the “logic and intuition” re-
quired to unravel the mysteries of ancient scripts.1

In this paper, we demonstrate that at least some of
this logic and intuition can be successfully mod-
eled, allowing computational tools to be used in
the decipherment process.

1“Successful archaeological decipherment has turned out
to require a synthesis of logic and intuition . . . that comput-
ers do not (and presumably cannot) possess.” A. Robinson,
“Lost Languages: The Enigma of the World’s Undeciphered
Scripts” (2002)

Our definition of the computational decipher-
ment task closely follows the setup typically faced
by human decipherers (Robinson, 2002). Our in-
put consists of texts in a lost language and a corpus
of non-parallel data in a known related language.
The decipherment itself involves two related sub-
tasks: (i) finding the mapping between alphabets
of the known and lost languages, and (ii) translat-
ing words in the lost language into corresponding
cognates of the known language.

While there is no single formula that human de-
cipherers have employed, manual efforts have fo-
cused on several guiding principles. A common
starting point is to compare letter and word fre-
quencies between the lost and known languages.
In the presence of cognates the correct mapping
between the languages will reveal similarities in
frequency, both at the character and lexical level.
In addition, morphological analysis plays a cru-
cial role here, as highly frequent morpheme cor-
respondences can be particularly revealing. In
fact, these three strands of analysis (character fre-
quency, morphology, and lexical frequency) are
intertwined throughout the human decipherment
process. Partial knowledge of each drives discov-
ery in the others.

We capture these intuitions in a generative
Bayesian model. This model assumes that each
word in the lost language is composed of mor-
phemes which were generated with latent coun-
terparts in the known language. We model bilin-
gual morpheme pairs as arising through a series
of Dirichlet processes. This allows us to assign
probabilities based both on character-level corre-
spondences (using a character-edit base distribu-
tion) as well as higher-level morpheme correspon-
dences. In addition, our model carries out an im-
plicit morphological analysis of the lost language,
utilizing the known morphological structure of the
related language. This model structure allows us
to capture the interplay between the character-



and morpheme-level correspondences that humans
have used in the manual decipherment process.

In addition, we introduce a novel technique
for imposing structural sparsity constraints on
character-level mappings. We assume that an ac-
curate alphabetic mapping between related lan-
guages will be sparse in the following way: each
letter will map to a very limited subset of letters
in the other language. We capture this intuition
by adapting the so-called “spike and slab” prior to
the Dirichlet-multinomial setting. For each pair
of characters in the two languages, we posit an
indicator variable which controls the prior likeli-
hood of character substitutions. We define a joint
prior over these indicator variables which encour-
ages sparse settings.

We applied our model to a corpus of Ugaritic,
an ancient Semitic language discovered in 1928.
Ugaritic was manually deciphered in 1932, us-
ing knowledge of Hebrew, a related language.
We compare our method against the only existing
decipherment baseline, an HMM-based character
substitution cipher (Knight and Yamada, 1999;
Knight et al., 2006). The baseline correctly maps
the majority of letters — 22 out of 30 — to their
correct Hebrew counterparts, but only correctly
translates 29% of all cognates. In comparison, our
method yields correct mappings for 29 of 30 let-
ters, and correctly translates 60.4% of all cognates.

2 Related Work

Our work on decipherment has connections to
three lines of work in statistical NLP. First, our
work relates to research on cognate identifica-
tion (Lowe and Mazaudon, 1994; Guy, 1994;
Kondrak, 2001; Bouchard et al., 2007; Kondrak,
2009). These methods typically rely on informa-
tion that is unknown in a typical deciphering sce-
nario (while being readily available for living lan-
guages). For instance, some methods employ a
hand-coded similarity function (Kondrak, 2001),
while others assume knowledge of the phonetic
mapping or require parallel cognate pairs to learn
a similarity function (Bouchard et al., 2007).

A second related line of work is lexicon in-
duction from non-parallel corpora. While this
research has similar goals, it typically builds on
information or resources unavailable for ancient
texts, such as comparable corpora, a seed lexi-
con, and cognate information (Fung and McKe-
own, 1997; Rapp, 1999; Koehn and Knight, 2002;

Haghighi et al., 2008). Moreover, distributional
methods that rely on co-occurrence analysis oper-
ate over large corpora, which are typically unavail-
able for a lost language.

Finally, Knight and Yamada (1999) and Knight
et al. (2006) describe a computational HMM-
based method for deciphering an unknown script
that represents a known spoken language. This
method “makes the text speak” by gleaning
character-to-sound mappings from non-parallel
character and sound sequences. It does not relate
words in different languages, thus it cannot encode
deciphering constraints similar to the ones consid-
ered in this paper. More importantly, this method
had not been applied to archaeological data. While
lost languages are gaining increasing interest in
the NLP community (Knight and Sproat, 2009),
there have been no successful attempts of their au-
tomatic decipherment.

3 Background on Ugaritic

Manual Decipherment of Ugaritic Ugaritic
tablets were first found in Syria in 1929 (Smith,
1955; Watson and Wyatt, 1999). At the time, the
cuneiform writing on the tablets was of an un-
known type. Charles Virolleaud, who lead the ini-
tial decipherment effort, recognized that the script
was likely alphabetic, since the inscribed words
consisted of only thirty distinct symbols. The lo-
cation of the tablets discovery further suggested
that Ugaritic was likely to have been a Semitic
language from the Western branch, with proper-
ties similar to Hebrew and Aramaic. This real-
ization was crucial for deciphering the Ugaritic
script. In fact, German cryptographer and Semitic
scholar Hans Bauer decoded the first two Ugaritic
letters—mem and lambda—by mapping them to
Hebrew letters with similar occurrence patterns
in prefixes and suffixes. Bootstrapping from this
finding, Bauer found words in the tablets that were
likely to serve as cognates to Hebrew words—
e.g., the Ugaritic word for king matches its He-
brew equivalent. Through this process a few
more letters were decoded, but the Ugaritic texts
were still unreadable. What made the final deci-
pherment possible was a sheer stroke of luck—
Bauer guessed that a word inscribed on an ax dis-
covered in the Ras Shamra excavations was the
Ugaritic word for ax. Bauer’s guess was cor-
rect, though he selected the wrong phonetic se-
quence. Edouard Dhorme, another cryptographer



and Semitic scholar, later corrected the reading,
expanding a set of translated words. Discoveries
of additional tablets allowed Bauer, Dhorme and
Virolleaud to revise their hypothesis, successfully
completing the decipherment.

Linguistic Features of Ugaritic Ugaritic
shares many features with other ancient Semitic
languages, following the same word order, gender,
number, and case structure (Hetzron, 1997). It is a
morphologically rich language, with triliteral roots
and many prefixes and suffixes.

At the same time, it exhibits a number of fea-
tures that distinguish it from Hebrew. Ugaritic has
a bigger phonemic inventory than Hebrew, yield-
ing a bigger alphabet – 30 letters vs. 22 in He-
brew. Another distinguishing feature of Ugaritic
is that vowels are only written with glottal stops
while in Hebrew many long vowels are written us-
ing homorganic consonants. Ugaritic also does not
have articles, while Hebrew nouns and adjectives
take definite articles which are realized as prefixes.
These differences result in significant divergence
between Hebrew and Ugaritic cognates, thereby
complicating the decipherment process.

4 Problem Formulation

We are given a corpus in a lost language and a non-
parallel corpus in a related language from the same
language family. Our primary goal is to translate
words in the unknown language by mapping them
to cognates in the known language. As part of this
process, we induce a lower-level mapping between
the letters of the two alphabets, capturing the reg-
ular phonetic correspondences found in cognates.

We make several assumptions about the writ-
ing system of the lost language. First, we assume
that the writing system is alphabetic in nature. In
general, this assumption can be easily validated by
counting the number of symbols found in the writ-
ten record. Next, we assume that the corpus has
been transcribed into electronic format, where the
graphemes present in the physical text have been
unambiguously identified. Finally, we assume that
words are explicitly separated in the text, either by
white space or a special symbol.

We also make a mild assumption about the mor-
phology of the lost language. We posit that each
word consists of a stem, prefix, and suffix, where
the latter two may be omitted. This assumption
captures a wide range of human languages and a
variety of morphological systems. While the cor-

rect morphological analysis of words in the lost
language must be learned, we assume that the in-
ventory and frequencies of prefixes and suffixes in
the known language are given.

In summary, the observed input to the model
consists of two elements: (i) a list of unanalyzed
word types derived from a corpus in the lost lan-
guage, and (ii) a morphologically analyzed lexicon
in a known related language derived from a sepa-
rate corpus, in our case non-parallel.

5 Model

5.1 Intuitions
Our goal is to incorporate the logic and intuition
used by human decipherers in an unsupervised sta-
tistical model. To make these intuitions concrete,
consider the following toy example, consisting of
a lost language much like English, but written us-
ing numerals:

• 15234 (asked)

• 1525 (asks)

• 4352 (desk)

Analyzing the undeciphered corpus, we might first
notice a pair of endings, -34, and -5, which both
occur after the initial sequence 152- (and may like-
wise occur at the end of a variety of words in
the corpus). If we know this lost language to be
closely related to English, we can surmise that
these two endings correspond to the English ver-
bal suffixes -ed and -s. Using this knowledge,
we can hypothesize the following character corre-
spondences: (3 = e), (4 = d), (5 = s). We now know
that (4252 = des2) and we can use our knowl-
edge of the English lexicon to hypothesize that this
word is desk, thereby learning the correspondence
(2 = k). Finally, we can use similar reasoning to
reveal that the initial character sequence 152- cor-
responds to the English verb ask.

As this example illustrates, human deci-
pherment efforts proceed by discovering both
character-level and morpheme-level correspon-
dences. This interplay implicitly relies on a
morphological analysis of words in the lost lan-
guage, while utilizing knowledge of the known
language’s lexicon and morphology.

One final intuition our model should capture is
the sparsity of the alphabetic correspondence be-
tween related languages. We know from compar-
ative linguistics that the correct mapping will pre-



serve regular phonetic relationships between the
two languages (as exemplified by cognates). As a
result, each character in one language will map to
a small number of characters in the other language
(typically one, but sometimes two or three). By
incorporating this structural sparsity intuition, we
can allow the model to focus on on a smaller set of
linguistically valid hypotheses.

Below we give an overview of our model, which
is designed to capture these linguistic intuitions.

5.2 Model Structure
Our model posits that every observed word in the
lost language is composed of a sequence of mor-
phemes (prefix, stem, suffix). Furthermore we
posit that each morpheme was probabilistically
generated jointly with a latent counterpart in the
known language.

Our goal is to find those counterparts that lead to
high frequency correspondences both at the char-
acter and morpheme level. The technical chal-
lenge is that each level of correspondence (char-
acter and morpheme) can completely describe the
observed data. A probabilistic mechanism based
simply on one leaves no room for the other to play
a role. We resolve this tension by employing a
non-parametric Bayesian model: the distributions
over bilingual morpheme pairs assign probabil-
ity based on recurrent patterns at the morpheme
level. These distributions are themselves drawn
from a prior probabilistic process which favors
distributions with consistent character-level corre-
spondences.

We now give a formal description of the model
(see Figure 1 for a graphical overview). There are
four basic layers in the generative process:

1. Structural sparsity: draw a set of indicator
variables λ⃗ corresponding to character-edit
operations.

2. Character-edit distribution: draw a base
distribution G0 parameterized by weights on
character-edit operations.

3. Morpheme-pair distributions: draw a set
of distributions on bilingual morpheme pairs
Gstm, Gpre|stm, Gsuf |stm.

4. Word generation: draw pairs of cognates
in the lost and known language, as well as
words in the lost language with no cognate
counterpart.

G0

word

Gstm

ustm
hstm

upre
hpre

usuf
hsuf

stm stm

Gsuf |stmGpre|stm

!v!λ

Figure 1: Plate diagram of the decipherment
model. The structural sparsity indicator variables
λ⃗ determine the values of the base distribution hy-
perparameters v⃗. The base distribution G0 de-
fines probabilities over string-pairs based solely on
character-level edits. The morpheme-pair distri-
butions Gstm, Gpre|stm, Gsuf |stm directly assign
probabilities to highly frequent morpheme pairs.

We now go through each step in more detail.

Structural Sparsity The first step of the genera-
tive process provides a control on the sparsity of
edit-operation probabilities, encoding the linguis-
tic intuition that the correct character-level map-
pings should be sparse. The set of edit opera-
tions includes character substitutions, insertions,
and deletions, as well as a special end sym-
bol: {(u, h), (ϵ, h), (u, ϵ), END} (where u and h
range over characters in the lost and known lan-
guages, respectively). For each edit operation e we
posit a corresponding indicator variable λe. The
set of character substitutions with indicators set to
one, {(u, h) : λ(u,h) = 1}) conveys the set of
phonetically valid correspondences. We define a
joint prior over these variables to encourage sparse
character mappings. This prior can be viewed as a
distribution over binary matrices and is defined to
encourage rows and columns to sum to low integer
values (typically 1). More precisely, for each char-
acter u in the lost language, we count the number
of mappings c(u) =

∑
h λ(u,h). We then define

a set of features which count how many of these
characters map to i other characters beyond some
budget bi: fi = max (0, |{u : c(u) = i}| − bi).
Likewise, we define corresponding features f ′

i and
budgets b′i for the characters h in the known lan-



guage. The prior over λ⃗ is then defined as

P (λ⃗) =
exp

(
f⃗ · w⃗ + f⃗ ′ · w⃗

)
Z

(1)

where the feature weight vector w⃗ is set to encour-
age sparse mappings, and Z is a corresponding
normalizing constant, which we never need com-
pute. We set w⃗ so that each character must map to
at least one other character, and so that mappings
to more than one other character are discouraged 2

Character-edit Distribution The next step in
the generative process is drawing a base distri-
bution G0 over character edit sequences (each of
which yields a bilingual pair of morphemes). This
distribution is parameterized by a set of weights ϕ⃗
on edit operations, where the weights over substi-
tutions, insertions, and deletions each individually
sum to one. In addition, G0 provides a fixed dis-
tribution q over the number of insertions and dele-
tions occurring in any single edit sequence. Prob-
abilities over edit sequences (and consequently on
bilingual morpheme pairs) are then defined ac-
cording to G0 as:

P (e⃗) =
∏

i

ϕei · q (#ins(e⃗), #del(e⃗))

We observe that the average Ugaritic word is over
two letters longer than the average Hebrew word.
Thus, occurrences of Hebrew character insertions
are a priori likely, and Ugaritic character deletions
are very unlikely. In our experiments, we set q
to disallow Ugaritic deletions, and to allow one
Hebrew insertion per morpheme (with probability
0.4).

The prior on the base distribution G0 is a
Dirichlet distribution with hyperparameters v⃗, i.e.,
ϕ⃗ ∼ Dirichlet(v⃗). Each value ve thus corre-
sponds to a character edit operation e. Crucially,
the value of each ve depends deterministically on
its corresponding indicator variable:

ve =

{
1 if λe = 0,

K if λe = 1.

where K is some constant value > 1.3 The overall
effect is that when λe = 0, the marginal prior den-
sity of the corresponding edit weight ϕe spikes at

2We set w0 = −∞, w1 = 0, w2 = −50, w>2 = −∞,
with budgets b′2 = 7, b′3 = 1 (otherwise zero), reflecting the
knowledge that there are eight more Ugaritic than Hebrew
letters.

3Set to 50 in our experiments.

0. When λe = 1, the corresponding marginal prior
density remains relatively flat and unconstrained.
See (Ishwaran and Rao, 2005) for a similar appli-
cation of “spike-and-slab” priors in the regression
scenario.

Morpheme-pair Distributions Next we draw a
series of distributions which directly assign prob-
ability to morpheme pairs. The previously drawn
base distribution G0 along with a fixed concentra-
tion parameter α define a Dirichlet process (An-
toniak, 1974): DP (G0, α), which provides prob-
abilities over morpheme-pair distributions. The
resulting distributions are likely to be skewed in
favor of a few frequently occurring morpheme-
pairs, while remaining sensitive to the character-
level probabilities of the base distribution.

Our model distinguishes between three types of
morphemes: prefixes, stems, and suffixes. As a
result, we model each morpheme type as arising
from distinct Dirichlet processes, that share a sin-
gle base distribution:

Gstm ∼ DP (G0, αstm)
Gpre|stm ∼ DP (G0, αpre)

Gsuf |stm ∼ DP (G0, αsuf )

We model prefix and suffix distributions as con-
ditionally dependent on the part-of-speech of the
stem morpheme-pair. This choice capture the lin-
guistic fact that different parts-of-speech bear dis-
tinct affix frequencies. Thus, while we draw a sin-
gle distribution Gstm, we maintain separate distri-
butions Gpre|stm and Gsuf |stm for each possible
stem part-of-speech.

Word Generation Once the morpheme-pair
distributions have been drawn, actual word pairs
may now be generated. First the model draws a
boolean variable ci to determine whether word i in
the lost language has a cognate in the known lan-
guage, according to some prior P (ci). If ci = 1,
then a cognate word pair (u, h) is produced:

(ustm, hstm) ∼ Gstm

(upre, hpre) ∼ Gpre|stm

(usuf , hsuf ) ∼ Gsuf |stm

u = upreustmusuf

h = hprehstmhsuf

Otherwise, a lone word u is generated, according
a uniform character-level language model.



In summary, this model structure captures both
character and lexical level correspondences, while
utilizing morphological knowledge of the known
language. An additional feature of this multi-
layered model structure is that each distribution
over morpheme pairs is derived from the single
character-level base distribution G0. As a re-
sult, any character-level mappings learned from
one type of morphological correspondence will be
propagated to all other morpheme distributions.
Finally, the character-level mappings discovered
by the model are encouraged to obey linguistically
motivated structural sparsity constraints.

6 Inference

For each word ui in our undeciphered lan-
guage we predict a morphological segmentation
(upreustmusuf )i and corresponding cognate in the
known language (hprehstmhsuf )i. Ideally we
would like to predict the analysis with highest
marginal probability under our model given the
observed undeciphered corpus and related lan-
guage lexicon. In order to do so, we need to
integrate out all the other latent variables in our
model. As these integrals are intractable to com-
pute exactly, we resort to the standard Monte Carlo
approximation. We collect samples of the vari-
ables over which we wish to marginalize but for
which we cannot compute closed-form integrals.
We then approximate the marginal probabilities
for undeciphered word ui by summing over all the
samples, and predicting the analysis with highest
probability.

In our sampling algorithm, we avoid sam-
pling the base distribution G0 and the derived
morpheme-pair distributions (Gstm etc.), instead
using analytical closed forms. We explicitly sam-
ple the sparsity indicator variables λ⃗, the cognate
indicator variables ci, and latent word analyses
(segmentations and Hebrew counterparts). To do
so tractably, we use Gibbs sampling to draw each
latent variable conditioned on our current sample
of the others. Although the samples are no longer
independent, they form a Markov chain whose sta-
tionary distribution is the true joint distribution de-
fined by the model (Geman and Geman, 1984).

6.1 Sampling Word Analyses

For each undeciphered word, we need to sample
a morphological segmentation (upre, ustm, usuf )i

along with latent morphemes in the known lan-

guage (hpre, hstm, hsuf )i. More precisely, we
need to sample three character-edit sequences
e⃗pre, e⃗stm, e⃗suf which together yield the observed
word ui.

We break this into two sampling steps. First
we sample the morphological segmentation of ui,
along with the part-of-speech pos of the latent
stem cognate. To do so, we enumerate each pos-
sible segmentation and part-of-speech and calcu-
late its joint conditional probability (for notational
clarity, we leave implicit the conditioning on the
other samples in the corpus):

P (upre, ustm, usuf , pos) =∑
e⃗stm

P (e⃗stm)
∑
e⃗pre

P (e⃗pre|pos)
∑
e⃗suf

P (e⃗suf |pos)

(2)

where the summations over character-edit se-
quences are restricted to those which yield the seg-
mentation (upre, ustm, usuf ) and a latent cognate
with part-of-speech pos.

For a particular stem edit-sequence e⃗stm, we
compute its conditional probability in closed form
according to a Chinese Restaurant Process (An-
toniak, 1974). To do so, we use counts from
the other sampled word analyses: countstm(e⃗stm)
gives the number of times that the entire edit-
sequence e⃗stm has been observed:

P (e⃗stm) ∝
countstm(e⃗stm) + α

∏
i p(ei)

n + α

where n is the number of other word analyses sam-
pled, and α is a fixed concentration parameter. The
product

∏
i p(ei) gives the probability of e⃗stm ac-

cording to the base distribution G0. Since the
parameters of G0 are left unsampled, we use the
marginalized form:

p(e) =
ve + count(e)∑

e′ ve′ + k
(3)

where count(e) is the number of times that
character-edit e appears in distinct edit-sequences
(across prefixes, stems, and suffixes), and k is the
sum of these counts across all character-edits. Re-
call that ve is a hyperparameter for the Dirichlet
prior on G0 and depends on the value of the corre-
sponding indicator variable λe.

Once the segmentation (upre, ustm, usuf ) and
part-of-speech pos have been sampled, we pro-
ceed to sample the actual edit-sequences (and thus



latent morphemes counterparts). Now, instead of
summing over the values in Equation 2, we instead
sample from them.

6.2 Sampling Sparsity Indicators
Recall that each sparsity indicator λe determines
the value of the corresponding hyperparameter ve

of the Dirichlet prior for the character-edit base
distribution G0. In addition, we have an unnormal-
ized joint prior P (λ⃗) = g(λ⃗)

Z which encourages a
sparse setting of these variables. To sample a par-
ticular λe, we consider the set λ⃗ in which λe = 0
and λ⃗′ in which λe = 1. We then compute:

P (λ⃗) ∝ g(λ⃗) · v
[count(e)]
e∑

e′ v
[k]
e′

where k is the sum of counts for all edit opera-
tions, and the notation a[b] indicates the ascending
factorial. Likewise, we can compute a probability
for λ⃗′ with corresponding values v′e.

6.3 Sampling Cognate Indicators
Finally, for each word ui, we sample a correspond-
ing indicator variable ci. To do so, we calcu-
late Equation 2 for all possible segmentations and
parts-of-speech and sum the resulting values to ob-
tain the conditional likelihood P (ui|ci = 1). We
also calculate P (ui|ci = 0) using a uniform uni-
gram character-level language model (and thus de-
pends only on the number of characters in ui). We
then sample from among the two values:

P (ui|ci = 1) · P (ci = 1)
P (ui|ci = 0) · P (ci = 0)

6.4 High-level Resampling
Besides the individual sampling steps detailed
above, we also consider several larger sampling
moves in order to speed convergence. For exam-
ple, for each type of edit-sequence e⃗ which has
been sampled (and may now occur many times
throughout the data), we consider a single joint
move to another edit-sequence e⃗′ (both of which
yield the same lost language morpheme u). The
details are much the same as above, and as before
the set of possible edit-sequences is limited by the
string u and the known language lexicon.

We also resample groups of the sparsity indica-
tor variables λ⃗ in tandem, to allow a more rapid ex-
ploration of the probability space. For each char-
acter u, we block sample the entire set {λ(u,h)}h,
and likewise for each character h.

6.5 Implementation Details
Many of the steps detailed above involve the con-
sideration of all possible edit-sequences consis-
tent with (i) a particular undeciphered word ui and
(ii) the entire lexicon of words in the known lan-
guage (or some subset of words with a particu-
lar part-of-speech). In particular, we need to both
sample from and sum over this space of possibil-
ities repeatedly. Doing so by simple enumeration
would needlessly repeat many sub-computations.
Instead we use finite-state acceptors to compactly
represent both the entire Hebrew lexicon as well
as potential Hebrew word forms for each Ugaritic
word. By intersecting two such FSAs and mini-
mizing the result we can efficiently represent all
potential Hebrew words for a particular Ugaritic
word. We weight the edges in the FSA according
to the base distribution probabilities (in Equation 3
above). Although these intersected acceptors have
to be constantly reweighted to reflect changing
probabilities, their topologies need only be com-
puted once. One weighted correctly, marginals
and samples can be computed using dynamic pro-
gramming.

Even with a large number of sampling rounds, it
is difficult to fully explore the latent variable space
for complex unsupervised models. Thus a clever
initialization is usually required to start the sam-
pler in a high probability region. We initialize our
model with the results of the HMM-based baseline
(see section 8), and rule out character substitutions
with probability < 0.05 according to the baseline.

7 Experiments

7.1 Corpus and Annotations
We apply our model to the ancient Ugaritic lan-
guage (see Section 3 for background). Our un-
deciphered corpus consists of an electronic tran-
scription of the Ugaritic tablets (Cunchillos et al.,
2002). This corpus contains 7,386 unique word
types. As our known language corpus, we use the
Hebrew Bible, which is both geographically and
temporally close to Ugaritic. To extract a Hebrew
morphological lexicon we assume the existence
of manual morphological and part-of-speech an-
notations (Groves and Lowery, 2006). We divide
Hebrew stems into four main part-of-speech cat-
egories each with a distinct affix profile: Noun,
Verb, Pronoun, and Particle. For each part-of-
speech category, we determine the set of allowable
affixes using the annotated Bible corpus.



Words Morphemes
type token type token

Baseline 28.82% 46.00% N/A N/A
Our Model 60.42% 66.71% 75.07% 81.25%
No Sparsity 46.08% 54.01% 69.48% 76.10%

Table 1: Accuracy of cognate translations, mea-
sured with respect to complete word-forms and
morphemes, for the HMM-based substitution ci-
pher baseline, our complete model, and our model
without the structural sparsity priors. Note that the
baseline does not provide per-morpheme results,
as it does not predict morpheme boundaries.

To evaluate the output of our model, we anno-
tated the words in the Ugaritic lexicon with the
corresponding Hebrew cognates found in the stan-
dard reference dictionary (del Olo Lete and San-
martı́n, 2004). In addition, manual morphological
segmentation was carried out with the guidance of
a standard Ugaritic grammar (Schniedewind and
Hunt, 2007). Although Ugaritic is an inflectional
rather than agglutinative language, in its written
form (which lacks vowels) words can easily be
segmented (e.g. wyplt.n becomes wy-plt.-n).

Overall, we identified Hebrew cognates for
2,155 word forms, covering almost 1/3 of the
Ugaritic vocabulary.4

8 Evaluation Tasks and Results

We evaluate our model on four separate decipher-
ment tasks: (i) Learning alphabetic mappings,
(ii) translating cognates, (iii) identifying cognates,
and (iv) morphological segmentation.

As a baseline for the first three of these tasks
(learning alphabetic mappings and translating and
identifying cognates), we adapt the HMM-based
method of Knight et al. (2006) for learning let-
ter substitution ciphers. In its original setting, this
model was used to map written texts to spoken lan-
guage, under the assumption that each character
was emitted from a hidden phonemic state. In our
adaptation, we assume instead that each Ugaritic
character was generated by a hidden Hebrew let-
ter. Hebrew character trigram transition probabili-
ties are estimated using the Hebrew Bible, and He-
brew to Ugaritic character emission probabilities
are learned using EM. Finally, the highest prob-

4We are confident that a large majority of Ugaritic words
with known Hebrew cognates were thus identified. The
remaining Ugaritic words include many personal and geo-
graphic names, words with cognates in other Semitic lan-
guages, and words whose etymology is uncertain.

ability sequence of latent Hebrew letters is pre-
dicted for each Ugaritic word-form, using Viterbi
decoding.

Alphabetic Mapping The first essential step to-
wards successful decipherment is recovering the
mapping between the symbols of the lost language
and the alphabet of a known language. As a gold
standard for this comparison, we use the well-
established relationship between the Ugaritic and
Hebrew alphabets (Hetzron, 1997). This mapping
is not one-to-one but is generally quite sparse. Of
the 30 Ugaritic symbols, 28 map predominantly
to a single Hebrew letter, and the remaining two
map to two different letters. As the Hebrew alpha-
bet contains only 22 letters, six map to two dis-
tinct Ugaritic letters and two map to three distinct
Ugaritic letters.

We recover our model’s predicted alphabetic
mappings by simply examining the sampled val-
ues of the binary indicator variables λu,h for each
Ugaritic-Hebrew letter pair (u, h). Due to our
structural sparsity prior P (λ⃗), the predicted map-
pings are sparse: each Ugaritic letter maps to only
a single Hebrew letter, and most Hebrew letters
map to only a single Ugaritic letter. To recover
alphabetic mappings from the HMM substitution
cipher baseline, we predict the Hebrew letter h
which maximizes the model’s probability P (h|u),
for each Ugaritic letter u.

To evaluate these mappings, we simply count
the number of Ugaritic letters that are correctly
mapped to one of their Hebrew reflexes. By this
measure, the baseline recovers correct mappings
for 22 out of 30 Ugaritic characters (73.3%). Our
model recovers correct mappings for all but one
(very low frequency) Ugaritic characters, yielding
96.67% accuracy.

Cognate Decipherment We compare the deci-
pherment accuracy for Ugaritic words that have
corresponding Hebrew cognates. We evaluate
our model’s predictions on each distinct Ugaritic
word-form at both the type and token level. As
Table 1 shows, our method correctly translates
over 60% of all distinct Ugaritic word-forms with
Hebrew cognates and over 71% of the individ-
ual morphemes that compose them, outperform-
ing the baseline by significant margins. Accu-
racy improves when the frequency of the word-
forms is taken into account (token-level evalua-
tion), indicating that the model is able to deci-
pher frequent words more accurately than infre-
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Figure 2: ROC curve for cognate identification.

quent words. We also measure the average Leven-
shtein distance between predicted and actual cog-
nate word-forms. On average, our model’s pre-
dictions lie 0.52 edit operations from the true cog-
nate, whereas the baseline’s predictions average a
distance of 1.26 edit operations.

Finally, we evaluated the performance of our
model when the structural sparsity constraints are
not used. As Table 1 shows, performance degrades
significantly in the absence of these priors, indi-
cating the importance of modeling the sparsity of
character mappings.

Cognate identification We evaluate our
model’s ability to identify cognates using the
sampled indicator variables ci. As before, we
compare our performance against the HMM
substitution cipher baseline. To produce baseline
cognate identification predictions, we calculate
the probability of each latent Hebrew letter se-
quence predicted by the HMM, and compare it to
a uniform character-level Ugaritic language model
(as done by our model, to avoid automatically
assigning higher cognate probability to shorter
Ugaritic words). For both our model and the
baseline, we can vary the threshold for cognate
identification by raising or lowering the cognate
prior P (ci). As the prior is set higher, we detect
more true cognates, but the false positive rate
increases as well.

Figure 2 shows the ROC curve obtained by
varying this prior both for our model and the base-
line. At all operating points, our model outper-
forms the baseline, and both models always pre-
dict better than chance. In practice for our model,
we use a high cognate prior, thus only ruling out

precision recall f-measure
Morfessor 88.87% 67.48% 76.71%
Our Model 86.62% 90.53% 88.53%

Table 2: Morphological segmentation accuracy for
a standard unsupervised baseline and our model.

those Ugaritic word-forms which are very unlikely
to have Hebrew cognates.

Morphological segmentation Finally, we eval-
uate the accuracy of our model’s morphological
segmentation for Ugaritic words. As a baseline
for this comparison, we use Morfessor Categories-
MAP (Creutz and Lagus, 2007). As Table 2
shows, our model provides a significant boost in
performance, especially for recall. This result is
consistent with previous work showing that mor-
phological annotations can be projected to new
languages lacking annotation (Yarowsky et al.,
2000; Snyder and Barzilay, 2008), but generalizes
those results to the case where parallel data is un-
available.

9 Conclusion and Future Work

In this paper we proposed a method for the au-
tomatic decipherment of lost languages. The key
strength of our model lies in its ability to incorpo-
rate a range of linguistic intuitions in a statistical
framework.

We hope to address several issues in future
work. Our model fails to take into account
the known frequency of Hebrew words and mor-
phemes. In fact, the most common error is incor-
rectly translating the masculine plural suffix (-m)
as the third person plural possessive suffix (-m)
rather than the correct and much more common
plural suffix (-ym). Also, even with the correct al-
phabetic mapping, many words can only be deci-
phered by examining their literary context. Our
model currently operates purely on the vocabulary
level and thus fails to take this contextual infor-
mation into account. Finally, we intend to explore
our model’s predictive power when the family of
the lost language is unknown.5

5The authors acknowledge the support of the NSF (CA-
REER grant IIS-0448168, grant IIS-0835445, and grant IIS-
0835652) and the Microsoft Research New Faculty Fellow-
ship. Thanks to Michael Collins, Tommi Jaakkola, and
the MIT NLP group for their suggestions and comments.
Any opinions, findings, conclusions, or recommendations ex-
pressed in this paper are those of the authors, and do not nec-
essarily reflect the views of the funding organizations.
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