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Abstract—The paper presents a first effort at exploring a novel
area in the domain of asynchronous controllers: specification
mining. Rather than synthesizing circuits from specifications,
we aim at doing reverse engineering, i.e., discovering safe
specifications from the circuits that preserve a set of pre-defined
behavioral properties (e.g., hazard freeness). The specifications
are discovered without any previous knowledge of the behavior of
the circuit environment. This area may open new opportunities
for re-synthesis and verification of asynchronous controllers.
The effectiveness of the proposed approach is demonstrated by
mining concurrent specifications (Signal Transition Graphs) from
multiple implementations of 4-phase handshake controllers and
some controllers with choice.

I. INTRODUCTION

The design automation efforts in the area of asynchronous
circuits have been mostly focused on two problems: synthesis
and formal verification. The synthesis problem consists of
obtaining a circuit from a specification, e.g., a gate netlist from
a Signal Transition Graph (STG). The verification problem
consists of checking the conformance of a circuit with regard
to a specification.

In this paper we study a new problem for asynchronous
circuits: Specification Mining. The problem consists of discov-
ering formal specifications from implementations [1]. Specifi-
cation mining is becoming popular in the software engineering
community as a machine-learning approach to infer properties
from the observable behavior of the systems [15]. One example
is the work presented in [12] in which safe and permissive
interfaces (sequences of library calls) are synthesized for
software systems in such a way that the interfaces do not
violate the internal invariants of the system. Another example
is [16] where specifications represented as Message Sequence
Graphs are synthesized from the traces observed from the
execution of a concurrent system. In [17], a method is pre-
sented which automatically infers high-level descriptions from
circuits, representing them as a combination of instances of
abstract functional blocks from a predetermined library.

This paper tackles the problem of discovering safe interfaces
for asynchronous controllers without any previous knowledge
of their original specifications. The problem can be illustrated
using the example in Fig. 1(a). The circuit implements a
handshake controller in which only the initial state is known
(all handshake signals at 0, RST=1). The reset signal (RST)
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Fig. 1. Specification mining of a handshake controller.

is assumed to be silent during the normal operation of the
circuit and the cross-coupled NOR gates are assumed to have
an atomic behavior (negligible internal delay). We pose the
following challenge:

Can we discover a specification of the interface
that guarantees a speed-independent behavior of the
circuit?

The answer to this question is not unique. Several interfaces
could exercise the circuit without producing any hazard. In
particular, an empty interface (no events) would guarantee
such behavior. Our interest is to find maximally concurrent
interfaces that honor the desired properties of the circuit.

Fig. 1(b) shows one possible safe interface. This interface
has been discovered automatically by the approach proposed
in this paper and coincides with the L440R2044 4-phase
controller (according to the nomenclature in [4]).

Specification mining can define not only properties that
must be preserved in the circuit, but also properties of the
interface. For example, it is possible to enforce that the
interface is choice-free, i.e., no conflicts in the environment.

Specification mining opens a new research direction in the
area of asynchronous controllers that could potentially have
applications in different domains, e.g.,

• Reverse engineering, to discover the behavior of some
intricate controllers for which no specification is known.

• Re-synthesis of asynchronous controllers, since the dis-
covered interfaces can be used as specifications for syn-
thesis tools that can produce higher-quality solutions and
substitute the existing ones [13].

• Compositional verification, by substituting some compo-
nents of a large circuit by the mined specifications. In
this way, an assume/guarantee scheme could be applied
to verify the circuit by using the mined interfaces while
hiding the internal signals of the components [6], [19].
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Fig. 2. Simple circuit for specification mining.

The main goal of the paper is to demonstrate that specifica-
tion mining is feasible for a variety of controllers. The appli-
cation of this paradigm to specific problems in asynchronous
design and verification is out of the scope of this work.

II. OVERVIEW

This section gives an informal overview of the approach
proposed for specification mining, using the example shown in
Fig 2. The goal is to obtain a specification for the environment
of the circuit shown in the Fig. 2(a) in such a way that certain
behavioral properties are guaranteed.

In this particular case, we would like the circuit to be speed-
independent (SI) and have a delay-insensitive (DI) interface.
Speed-independence is guaranteed when the circuit is output
persistent (only input signals can disable each other). A circuit
has a DI interface if its behavior does not depend on the arrival
order of the inputs.

The labeled transition system (LTS) shown in Fig. 2(b)
shows all possible behaviors of the circuit under a free envi-
ronment, i.e., all input signals can switch at any time instant.
Every state corresponds to a binary vector that represents the
value of the signals at that state. We will identify each state
by its binary vector 〈abxy〉.

The labels x+ and x− represent rising and falling transitions
of signal x. The double arcs a∗

←→ represent alternating a+

and a− transitions between a pair of states and are used to
model the switching of input signals in a free environment. The
transitions of x and y are depicted in the horizontal direction,
whereas the transitions of a and b are depicted in the vertical
and diagonal directions, respectively. For the sake of clarity,

not all the labels are shown in the picture, although they can
be easily deduced from the depicted information.

We will assume that the initial (reset) state is also known.
In the example, the initial state is 〈0000〉 (unfilled circle).

A free environment leads to many circuit malfunctions (haz-

ards). For example, transition 〈0010〉 x−

−→ 〈0000〉 produces a
violation of output persistence that may be manifested as a
glitch in signal y, since y+ is enabled in 〈0010〉 and disabled
in 〈0000〉.

The goal of specification mining is to discover one or
several specifications for the environment that:

• have good properties, e.g., guarantee a hazard-free be-
havior of the circuit, and

• are general enough to cover a large set of behaviors.

As an example, the cyclic behavior (b+y+b−y−)∗ is hazard
free. However, we might be unsatisfied by the fact that signals
a and x are not exercised.

Fig. 2(c) depicts an LTS with output persistence, i.e., no
output transition can be disabled by another transition. The
largest LTS fulfilling this property can be uniquely obtained
from the one in Fig. 2(b) by deleting the transitions that
produce violations of output persistence.

Still, Fig. 2(c) does not model a DI interface1. For example,
the transitions a− and b+ are enabled in state 〈1011〉. The
arrival of a− (leading to 〈0011〉) disables b+, whereas the
arrival of b+ (leading to 〈1111〉) does not disable a−.

Unfortunately, there is no unique solution when trying to
find a subset of the LTS that fulfills the DI interfacing condi-
tions. Given the fact that the circuit cannot be modified, the
only chances are reduced to constraining the environment by
deleting some input transitions. In the previous example, a DI
interface can be obtained in different ways, e.g., by removing
either transition a− or b+ from state 〈1011〉. Other deletions
are also required in other parts of the LTS to guarantee a
complete DI interface.

Fig. 2(d) depicts an LTS that models an SI circuit with a DI
interface. An STG modeling the same behavior is shown in
Fig. 2(e). Obtaining this specification is the most challenging
problem tackled in this paper. We will show how the problem
can be modeled with a Boolean formula and solved using SAT
or Integer Linear Programming.

The main goal of this paper is to propose a methodology
to obtain specifications from a circuit that fulfill a set of
properties defined a priori.

III. BACKGROUND

A. Labeled Transition Systems and Circuits

A Labeled Transition System is a structure (S,L, T, s0)
where S is a finite set of states, L is a finite alphabet of
labels, T is a subset of S × L × S and s0 ∈ S is the initial
state. We will also denote by si

a→ sj the transition (si, a, sj).
A circuit C is a structure C = (X,G, s0) where :

1DI interfacing will be formally defined in Section III-E.



• X = I ∪ O ∪ Z is the set of signals, with I , O and
Z being pairwise disjoint sets that represent the input,
output and internal signals of the circuit, respectively.

• G : (O ∪ Z) → f(X) is a set of gates that assigns a
Boolean function to each non-input signal of the circuit.
We denote by fxi

(X) the Boolean function assigned to
signal xi.

• s0 is a binary vector representing the value of the signals
at the initial state.

Given a circuit C = (X,G, s0), we define
LTS(C) = (S,X, T, s0) as the LTS associated to C and
generated by a free environment. Formally:
• S = {0, 1}n, where n = |X|.
• T = Tenv ∪ Tg , where Tenv and Tg are the transitions

produced by the environment and the circuit, respectively
(defined later).

Note that the alphabet of labels of LTS(C) is the set of
signals of the circuit and the initial state coincides with the
initial state of the circuit. When convenient, we will distinguish
by x+ and x− the rising and falling transitions of signal x.
S is the set binary vectors representing all possible states of

the signals. Given a state s = (x1, . . . , xn), we denote by s(xi)
the value of xi in s. Given a state s = (x1, . . . , xi, . . . , xn), we
denote by s¬xi = (x1, . . . ,¬xi, . . . , xn) the state in which the
values of the signals are identical to the ones of s except for xi,
that has the complementary value. Note that if s1

x→ s2 ∈ T ,
then s2 = s¬x1 and s1 = s¬x2 .

The set of transitions Tenv in a free-environment circuit are
defined as follows:

Tenv = {(s, x, s¬x) | s ∈ S ∧ x ∈ I},

representing the fact that any input signal can switch at any
state. The set of transitions Tg produced by the circuit is
defined as follows:

Tg = {(s, x, s¬x) | s ∈ S ∧ x ∈ (O ∪ Z) ∧ s(x) 6= fx(s)},

representing all transitions of non-input signals produced by
the logic gates when the value at the output of the gate is
different from the function computed by the gate.

It is important to realize that the LTS associated to a circuit
is always deterministic since every transition exiting a state
can only lead to a unique state.

B. Circuits with constrained environment

The main purpose of this paper is to find a specification of
the environment of the circuit that fulfills certain properties. In
other words, finding a subset of transitions of Tenv that prevent
the circuit from reaching states in which the desired properties
are violated.

Given a circuit C, its free-environment
LTS(C) = (S,X, T, s0) and a subset of transitions E ⊆ Tenv

representing a constrained environment, we denote by
LTS(C,E) the LTS obtained from LTS(C) after deleting the
transitions in Tenv \ E. Formally, LTS(C,E) = (S′, X, T ′, s0)
is the maximal LTS such that:

• S′ ⊆ S is the subset of reachable states from s0.
• T ′ is the maximal set of reachable transitions from s0

such that T ′ ⊆ (E ∪ Tg).
LTS(C,E) can be computed from LTS(C) by deleting the

transitions in Tenv \ E and iteratively deleting unreachable
states and transitions until a greatest fixed point is reached.

C. Properties of an LTS

Let LTS(C,E) = (S,X, T, s0) be the LTS associated to a
circuit C with environment E. We say that x is enabled in
state s if s

x→ s¬x ∈ T . We say that x disables y in state s
if s

x→ s¬x ∈ T , y is enabled in s and not enabled in s¬x.
Finally, we say that x triggers y in state s if s¬x x→ s ∈ T , y
is not enabled in s¬x and enabled in s.

Definition. In an LTS a signal x is persistent if no signal
y 6= x disables it. If a signal x disables another signal y in
any state s, then there is a conflict between x and y.

Example. Let us consider the LTS in Fig. 2(b), where the
initial state is s0 = 〈0000〉 (unfilled circle). Let us consider

the state s1 = 〈1000〉 and the transition s0
a+

→ s1. We can say
that a+ triggers x+ in s1, since x+ is not enabled in s0 but

it is in s1. Let us now consider the transition s1
a−

→ s0. We
can see that a− disables x+ in s1 since x+ is enabled in s1
but not in s0. Notice how Fig. 2(c) and (d) show LTSs where
both x and y are persistent signals while a, b are in conflict.

D. Speed-independence

In this paper, we deal with circuits with unbounded gate
delays, i.e., any gate of the circuit can switch at any time as
long as it is enabled. A circuit whose behavior does not depend
on the delay of its gates is called speed-independent.

Proposition [9]. Given a circuit C and an environment E, C
under E is speed-independent iif in LTS(C,E) all pairs of
signals x, y are in conflict only if both x, y are input signals.

This property implies every non-input signal is persistent.

E. Delay insensitive interfacing

Another desired property is that the behavior of the circuit
is insensitive to the arrival order of the input transitions. This
property is called delay-insensitive (DI) interfacing and is
formally defined as follows.

Proposition [20]. The LTS associated to a circuit satisfies the
DI interfacing conditions if no input transition triggers another
input transition.

Rather than dealing with pure delay insensitivity, DI inter-
facing assumes that wire delays can be kept under control
within the circuit and only tolerance to delay variability at the
interface is required.

F. Multi-environment interfaces

In some scenarios for re-synthesis and compositional verifi-
cation, a system may have been split into different components
(circuits). From the point of view of the circuit of interest,
the surrounding components can be considered as a set of
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TABLE I
ALLOWED RELATIONS IN A CIRCUIT WITH MULTIPLE ENVIRONMENTS

x y x triggers y x disables y
Input Input Violates DI Only if x, y ∈ Ei

Output Output Allowed Violates SI
Input Output Allowed Violates SI

Output Input Only if x, y ∈ Ei Violates SI

independent environments, E1 . . . En, that interact with the
circuit, as shown in the example of Fig. 3.

When mining specifications for a circuit, we might want to
consider multi-environmental scenarios where independence
between different environments is to be preserved. Informally,
this means that, given two environments Ei and Ej , signals
from Ei cannot directly trigger or disable inputs from Ej .
Such a causality relation would imply a connection between
Ei, Ej outside of the circuit of interest, making Ei and Ej

dependent from each other. However, an input from Ei may
excite an output in a different environment Ej , via the circuit.

Definition. Let us consider the LTS (S,X, T, s0) associated
to a circuit. Let the set of signals of the circuit be

X = X1 ∪ . . . ∪Xn ∪ Z

where Z is the set of internal signals and {X1, . . . , Xn} is a
partition of the set of input/output signals (I∪O), with each Xi

corresponding to a different environment. The LTS preserves
the multi-environment interface for partition {X1, . . . , Xn} if:

∀a ∈ Xi, b ∈ Xj ∩ I, i 6= j : a cannot trigger or disable b.

In the example of Fig. 3, the preservation of the multi-
environment interface would not allow {x, a} to trigger or
disable {b, c}, {y, b} to trigger/disable {a, c} and {z, c} to
trigger/disable {a, b}.

Note that, by this definition, a circuit where each environ-
ment has one input only, i.e. ∀Ei, |Ei ∩ I| ≤ 1, any LTS
preserving the multi-environment interface would be input-
persistent, as no signal would be allowed to disable an input.

Table I summarizes the previous properties, showing the
allowed causality relations between two different signals x, y
depending on the type (input or output) of each signal. For
example, x cannot trigger y if both x and y are inputs, since
that would violate the delay-insensitive interfacing property.
However, x may disable y, but only if both x, y are in the
same environment Ei.

IV. SPECIFICATION MINING

This section describes the main contribution of this work:
the process used to mine a specification from a circuit C,

C

Circuit LTS(C)

environment)

(under free Miner ...SAT model

Snippet

Snippet

1

n

Fig. 4. Overview of the specification mining flow.

while guaranteeing a set of properties for both the circuit
and the interface. The process works by starting from a free
environment E, and then constraining this environment until
both the environment and the circuit under such environment
satisfy all properties.

Note, however, that for certain properties there may be
more than one specification satisfying all the properties. The
environments in each specification may only exercise a small
subset of the full circuit behavior. In these situations, our
flow will discover each of these specifications, which we
call snippets. The original specification of the circuit will
be contained in one of these snippets. Our mining flow
will give priority to the most general snippet, containing the
environment exercising most behavior from the circuit. An
example of this will be discussed in Section VI.

A summary of the proposed mining flow can be seen in
Fig. 4. The first step constructs LTS(C) containing all the
behaviors of the circuit under a free environment, starting
from the circuit netlist. For the circuit in Fig. 2, this would
correspond to the LTS in (b).

The desired properties for the mined specifications are then
specified into a set of constraints on top of this LTS. In this
section, we will specify these constraints as satisfiability (SAT)
formulae. Every truth assignment of the formula represents a
valid environment under which circuit C satisfies all the de-
sired properties, and from which a snippet may be synthesized.

The most interesting snippets can be then synthesized into
different types of specifications, such as Signal Transition
Graphs (STGs). For most circuits, only the snippet containing
the most general behavior will be of interest. However, the
secondary snippets may provide an insight into alternative
behaviors of the system.

The following sections describe this flow in more detail,
including examples that show how the most common circuit
properties are modeled.

A. Satisfiability model for behavioral properties

Many of the most interesting circuit properties imply con-
straints on the causality/concurrency/choice relations between
events of the LTS. Table I shows the causality constraints to
guarantee speed independence, delay insensitive interface and
multi-environment properties.

In this section, we show how different circuit and environ-
ment properties can be mapped into constraints between dif-
ferent signals, and how these constraints can be implemented
on a SAT model.

Let LTS(C) = (S,X, T, s0) be the LTS associated to
a circuit C constructed using the method defined in the
previous section. The SAT model extracts a subset of LTS(C),
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LTS(C,E), satisfying the required properties. In our formu-
lation, for every transition ti ∈ T , we define a variable with
the same name indicating whether ti is selected, i.e. whether
ti ∈ LTS(C,E). Definitions of the most typical constraints are
as follows:

1) x cannot trigger y: For every pair of states s1, s2 ∈ S,
with a transition t2 = s1

x→ s2, x triggers y if y is enabled in
s2 but not in s1. i.e., when t3 = s2

y→ exists but t1 = s1
y→

does not. This pattern is illustrated in Fig. 5(b).
To guarantee this property, if both t2 and t3 are selected,

then t1 must exist and be selected:

t2 ∧ t3 =⇒ t1.

In case t1 does not exist in LTS(C), then the previous
constraint must be rewritten accordingly, forbidding selection
of both t2 and t3:

¬(t2 ∧ t3).

These constraints may be used for example to enforce the
delay-insensitive interfacing property when applied to pairs of
inputs signals, as shown in Table I.

2) x cannot disable y (persistence of y): For every pair of
states s1, s2 ∈ S, with a transition t2 = s1

x→ s2, x disables
y if y is enabled in s1 but not in s2. This is similar to the
trigger definition above, except that the roles of t1 and t3 are
reversed: x disables y when t1 = s1

y→ exists but t3 = s2
y→

does not, as seen in Fig. 5(c).
Thus, to satisfy the property, selecting t1 and t2 implies t3

must exist and be selected:

t1 ∧ t2 =⇒ t3.

Similar to the previous constraint, this constraint can be
simplified if any of t1, t2, t3 is not present in LTS(C).

3) Preservation of non-input signals: The SAT model
searches for a subset LTS(C,E) representing the behavior of
the circuit under a constrained environment E. For this reason,
the model should only remove transitions of input signals,
and potentially all transitions from unreachable states under
environment E.

However, it must always select all non-input transitions
from a reachable state. Thus, for every state s, the following
constraint must be added, which forces the selection of non-
input transitions if any incoming transition is selected:

∀s ∈ S :
∨

ti=s1
x→s∈T

ti =⇒
∧

tj=s
y→s2∈T

y 6∈I

tj .

4) Strong connectedness: This property ensures that the
initial state is reachable from every other reachable state. There
are several known methods to require conectedness with SAT
or ILP models [7]. To identify the initial state, we assume that
the values of the output signals are known at reset time, and
that it is stable, i.e. no output transitions are enabled.

5) Additional constraints: Many controllers impose addi-
tional properties on the environment that can be modeled
as constraints between different inputs. For example, in Sec-
tion VII we show a circuit with a mutual exclusion requirement
between two different input signals, i.e. the two signals cannot
be enabled simultaneously.

These properties can be enforced by removing states from
LTS(C). For example, guaranteeing mutual exclusion between
two input signals x, y is equivalent to removing every state s
where s(x) ∨ s(y). In the proposed formulation, this can be
achieved by prohibiting the selection of any ti incident to s.

B. Algorithm for specification mining

Algorithm 1 Extracting LTS snippets
1: Input: Circuit C and a set of desirable properties P
2: Output: LTS1, . . . ,LTSn under which C satisfies P
3: L← LTS(C) . construct full LTS from C
4: R← T (LTS(C)) . transitions not yet in any snippet
5: i← 1
6: while |R| > 0 do
7: LTSi ← SOLVE(LTS(C), P , maximize |ti ∈ R|)
8: . extract subset of LTS(C) satisfying P
9: if LTSi = ∅ break

10: R← R \ T (LTSi) . subtract from remaining transitions
11: i← i+ 1
12: return LTS1, . . . ,LTSn

Algorithm 1 describes the procedure to mine specifications
using the SAT model described in the previous section. At
the start of the procedure, the complete LTS(C) is built. The
algorithm iterates, generating a new snippet on each cycle,
until all transitions from LTS(C) appear on at least one snippet
or it is impossible to create new ones without violating P .
To account for the former, R contains all transitions not yet
included in any LTS1, . . . ,LTSi.

Procedure SOLVE uses the SAT model to find the subset
of LTS(C) satisfying P that contains the largest subset of
transitions from R. Thus, every iteration discovers a snippet
containing the largest behavior from C not yet covered in any
previous snippet. Different strategies may be used to solve the
SAT model with the cost function, such as MaxSAT or ILP.

V. PROPERTIES OF THE SPECIFICATION MODEL

In the previous section we have shown a method to mine
snippets in which both the circuit and the environment satisfy
a set of properties. These snippets are provided in the form
of LTSs. However, it is often desirable to use more succinct
representations, such as Signal Transition Graphs (STGs). An
STG may be obtained from an LTS using Petri net synthesis
tools such as petrify [8].



This section shows that, by adding some constraints during
the mining process, properties of the specification model can
be enforced. For example, structural Petri net properties, such
as marked graphs or free-choiceness, can be modeled in this
way. These extra properties may contribute to enhance the
visualization and analysis of the specification models.

This section is focused on structural properties of Petri nets,
generating two different types of STGs: marked graphs and
free choice.

A. Marked Graphs

A marked graph is a Petri net in which all places have
exactly one predecessor and one successor transition [18].

Forward and backwards persistence are necessary conditions
for a strongly-connected LTS to model the space state of
a marked graph [3]. Thus, to obtain a marked graph, it
is necessary to extend the constraints of the mining flow
to prevent conflicts between all pairs of signals. Backwards
persistence can be guaranteed using a similar set of constraints.

B. Free-choiceness

A Petri net is free choice is for any two transitions x and y
that share a predecessor place p, then x and y have only one
predecessor [18]. While there is a choice in p between x and
y, we say the choice is free because on any marking where x
can be fired, y can be fired too, and vice versa.

In a LTS, this is equivalent to guaranteeing that if x, y are
in conflict, then x must be enabled in all the states where
y is enabled, and y must be enabled in all states where x
is. We model this by introducing a new Boolean variable,
choicex,y , which indicates whether the snippet contains a
conflict between x and y, and a new set of constraints which
relate these variables to the relationship between x and y.

The first set of constraints removes all conflicts between
x, y (identical to the constraint described in section IV-A2),
unless choicex,y is asserted:

(t1 ∧ t2 =⇒ t3) ∨ choicex,y.

In addition, for every state s where either x or y is enabled,
a constraint is added forcing both to be enabled or disabled if
choicex,y is asserted. With t1 = s

x→ s1 and t2 = s
y→ s2:

choicex,y =⇒ t1 = t2.

As in previous constraints, the formula is simplified appropri-
ately if there is no t1 or t2 in s. For example, if there is a state
s where t1 exists but t2 does not, the constraint becomes:

choicex,y =⇒ ¬t1.

VI. CASE STUDY: MINING SPECIFICATIONS FOR 4-PHASE
LATCH CONTROLLERS

The 4-phase latch controller is at the core of the data paths
of many asynchronous designs. A 4-phase latch controller is
composed of 4 handshake signals controlling 2 channels: left
(lr, la) and right (rr, ra), as shown in the example of Fig. 1.

In [4], the design space of 4-phase controllers is studied.
While these designs all have the same external interface, they
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Fig. 6. Example of circuit and mined specification for L440oR2264.

vary on the level of concurrency allowed by the protocol. Each
variation cuts away certain states of the controller.

Every variation is given a name depending on the number
of states that are removed. L000oR0000 is the version with
all states, and thus, the most concurrent of all variations. The
circuit in Fig. 1 represents L440oR2044, which removes 18
states, and results in a more constrained protocol. L440oR2264
removes an additional 4 states, resulting in a slightly simpler
circuit also shown in Fig. 6

In this case study, we will focus on the 137 controllers
presented in [4] which are speed independent and deadlock-
free. In the experiment we will synthesize a circuit for each
one of these controllers, and then rediscover the specifications
from each one using the proposed mining flow.

A. Environment setup

The input to our mining flow is a netlist. To generate circuits
for each of the 137 controllers, we used petrify [8] to synthe-
size gate netlists from the specifications. After generating the
LTS with free environment from the circuit, we transformed
the SAT models into ILP, and used Gurobi [11] to mine the
most general specification for each controller.

We configured our mining flow to ensure the following
circuit and environment properties:

• Speed independence and delay-insensitive interfacing.
• Strong connectedness.
• Multi-environment interface to ensure the independence

between the left and right channels. This will be further
discussed in Section VI-C.

No other information was given to the miner.

B. Results

The 137 specifications were mined from the circuits in 177
seconds (Intel Core i5-2520M). Each run of the ILP model
took less than 1 second on average, with the rest of time spent
in generating the model and preparing the environment.

The size of the ILP model is O(|T |2) where T is the set
of transitions in the LTS of the circuit. However, our imple-
mentation performs a preprocessing in which many redundant
constraints are removed before generating the ILP model. The
most concurrent circuit, with 256 states, also resulted in the
largest model, with 267 variables and 996 constraints.

For each one of the 137 circuits, the first snippet obtained
from the mining flow was always bisimilar to the original
specification of the controller.



TABLE II
CIRCUIT IMPLEMENTATIONS ALLOWING ADDITIONAL BEHAVIOR AFTER

REMOVING CONSTRAINTS

Snippets Circuits
Identical behavior 1 25

Additional behavior
1 59
2 48
3 5
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(c) Second marked graph.

Fig. 7. Mined specification for L440oR2044.

C. Relaxing constraints to discover additional behavior

We also experimented our mining flow by discovering
additional behaviors when relaxing some of the environmental
constraints imposed in previous section. In particular, we
allowed the left and right environments to be dependent from
each other. In practice this means that the output of one chan-
nel can trigger the input of the other channel (i.e., la can trigger
ra and rr can trigger lr). However, we still preserved the speed-
independence and delay-insensitive interfacing properties.

With this reduced set of constraints, our tool discovered
more general specifications for 113 out the 137 controllers.
All the specifications still include the original specifications. In
addition, out of the 113 specifications with additional behavior,
53 required a minimum of two snippets. That is, no single
snippet was able to model the entire behavior of these 53
snippets without violating DI or SI. Table II shows the total
numbers of circuits that exhibited additional behavior and/or
required more than one snippet.

An example of a protocol where additional behavior is
discovered is L440oR2044, whose original specification and
circuit are shown in Fig. 1. An STG showing the additional
behavior is represented in Fig. 7(a). To aid legibility, our min-
ing flow was configured to enforce the marked graph property
described in section V-A, which divides this specification into
the two snippets shown in Fig. 7(b) and (c).

Notice that the snippet in Fig. 7(b), however, assumes
an environment where the left and right channels are not
independent. For example, output rr+ triggers input lr+,
which is on a different channel. Thus, the multi-environment
constraints used in the last section would allow only the
behavior described by snippet (c). This snippet is bisimilar
to the original specification of L440oR2044.

TABLE III
SUMMARY OF FREE-CHOICE RESULTS

Benchmark Num. of
snippets

Original spec.
included

ILP runtime
[sec.]

SM-latch [14] 1 Snippet #1 0.10
RLM [5] 4 Snippet #4 0.14
1-bit variable [2] 1 Snippet #1 0.31
alloc-outbound [9] 3 Snippet #1 0.73
vmebus [9] 4 Snippet #1 0.12
A/D converter ctrl. [9] 1 Snippet #1 0.43
tsend-csm [10] – – > 1 h.

C

C
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busctl

reqbus

(a)
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nakbus−ackbus−

busctl− busctl− ackctl−ackctl−

reqbus+

ackctl+ busctl+busctl+

req−

ack+

ack−

req+

(b)

Fig. 8. Circuit and mined specification for alloc-outbound.

VII. MINING CONTROLLERS WITH CHOICE

This section shows the results of applying the mining flow
to a selection of asynchronous controllers from well-known
benchmarks. In these examples, we introduce environments
with input conflicts, i.e. inputs may disable other inputs.

As in the previous case study, the properties of SI and
DI interfacing are enforced. When possible, we also enforce
multi-environment interfacing as well as any required mutual
exclusion between pairs of input signals.

Table III reports the total number of snippets discovered by
our mining flow, as well as whether the original specification
of the circuit was included in one of the discovered snippets.
The rest of this section delves into the details of some of the
test cases with interesting properties.

A. alloc-outbound

alloc-outbound is part of a set of well-known academic
benchmarks [9], representing part of an HP bus controller. The
circuit used as input for the mining flow is shown in Fig. 8.
The interface is composed of three different environments:
1) reqbus, ackbus, nakbus, 2) busctl, ackctl, 3) ack, req.
Notice only environment 1 has more than one input, with only
signals ackbus and nakbus allowed to be in conflict.

Without this constraint, the number of possible SI and DI
snippets grows to 12. The ILP runtime also rises up to 1 hour,
showing the effectiveness of the multi-environment constraint
in restricting the size of the state space. With this constraint,
there are only 3 valid snippets, with the original specification
being the first discovered snippet, shown in Fig. 8(b).

B. 1-bit variable

In this example we use a simple implementation of a 1-bit
variable with a single read and write port [2]. The original
circuit is shown in Fig. 9(a). The write port includes the input
signals wr 0, wr 1 as well as the write acknowledgment signal
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Fig. 9. Circuit and mined specification for a 1-bit variable.

ack wr. The read port includes req rd as well as the response
signals rd 0, rd 1.

Of significance is that the original circuit, in Fig. 9(a), may
go into metastability if both wr 0 and wr 1 are asserted. Our
mining flow, thus, discovers environments in which wr 0 and
wr 1 are mutually exclusive.

Hazards may also be produced when simultaneous read and
write requests are asserted. In this particular implementation,
hazards only occur when the read value is different from
the one being written (e.g., read a 1 while writing a 0).
Hazards are not produced when both values are the same.
The mined specification (not shown in the paper) accepts
concurrent read/write requests of the same value.

Yet, because of higher-level environmental conditions, it
may be desirable to enforce the mined behavior to have
mutually exclusive inputs, i.e.,:

wr 0 + wr 1 + req rd ≤ 1

When configured to honor this property, the mining flow
generates the specification shown in Fig. 9(b).

Figure 9(c) shows an alternative implementation of the
circuit obtained by synthesizing the mined specification. In-
terestingly, this implementation has no metastability problems
when both wr 0 and wr 1 are asserted, although glitches may
be observed when such situation occurs. This feature, however,
is irrelevant for a well-behaved environment that would never
allow both inputs to be asserted simultaneously.

C. Negative results
Not all the experimental results are as attractive as the ones

presented in previous sections. One of the major challenges
of specification mining is to deal with state explosion. The
runtime of the ILP models grows exponentially with the
number of states present in LTS(C).

As seen with alloc-outbound, constraining the environment
is an effective approach to handle state spaces that are initially
too large to explore. However, some designs are not amenable
to this type of constraints. For example, in tsend-csm, separate
environments cannot be assumed. Our approach explores the
full state space, resulting in large ILP models.

To obtain a reasonable runtime in these situations, further
environment constraints are necessary. This is an area for
further research. For larger circuits, divide-and-conquer ap-
proaches, as in compositional verification scenarios [6], [19],
may be necessary.

VIII. CONCLUSIONS

The intricate structure of asynchronous controllers makes
their design error-prone. Discovering safe specifications con-
tributes to understanding the implicit protocols behind them
and their properties.

This paper has presented a novel approach for behavior
discovery that can offer useful mechanisms for re-synthesis
and verification. As new challenges for the future we envision
two directions: applying specification mining to compositional
verification and mining specifications with bounded delays.
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