
An experience report on writing usable DSLs in Coq
Clément Pit-Claudel

MIT CSAIL
Cambridge, Massachusetts, USA

cpitcla@csail.mit.edu

Thomas Bourgeat
MIT CSAIL

Cambridge, Massachusetts, USA
bthom@csail.mit.edu

Abstract
Features added to Coq over the last 5 years have made it
possible to create drastically more usable domain-specific
languages (DSLs). We report on our experience building and
using a hardware-description language embedded within
Coq, highlighting how recent Coq improvements make it
possible to solve longstanding pain points with Coq DSLs.

1 Introduction
The following snippets are valid Coq programs representing
two deeply embedded Kôika [2] terms:
Definition mul3 {sz: nat} : IntFun R Sigma := <{

fun mul3 (bs: bits_t sz) : bits_t sz =>
(bs << 1’b0) + bs }>.

Program Definition multiply : rule R Sigma := <{
let v := read1 (r0) in
let odd := v[0] in
if odd then write1 (r0 , mul3 (v) + 1)
else fail }>.

A common way to design and study programming lan-
guages in Coq [8] is to embed them by leveraging Coq’s
advanced notation system. In the past, this approach didn’t
scale well: limitations of Coq’s notations made the user ex-
perience too rough to allow writing useful programs instead
of small examples.
By leveraging Coq features introduced in the last few

years and a few recently discovered tricks, we found that
we could design a deeply embedded language offering an
almost-decent user experience. Specifically, we report on
the design of a Coq frontend for Kôika [2], a rule-based
hardware description language embedded in Coq. We have
written dozens of programs covering thousands of lines in
this DSL, including a simple pipelined RISCV core. We think
that we have reached a point where writing Kôika programs
is possible with little to no knowledge of Coq.
This abstract walks the reader through the main tech-

niques that we used to create Kôika’s two DSLs (Kôika pro-
grams can be written in a simple untyped language and type-
checked, or written directly in an intrinsically typed DSL [6]
that guarantees well-formedness and well-typedness using
dependent types; the syntax is the same).

2 Experimenting with Custom Entries
Custom Entries [7], a Coq feature introduced in Coq 8.9, allow
users to use multiple independent grammars within one

Coq file. In Kôika files, when Coq encounters {{...}} (for
untyped Kôika programs) or <{...}> (for dependently-typed
ones), it forgets about everything about Coq’s grammar and
starts parsing Kôika’s grammar.
Custom entries are very powerful: with them, it is possi-

ble to parse a broad range of grammars that were difficult
or impossible to parse neatly with Coq’s original Notation
system. For example, custom entries make it trivial to define
complex recursive notations, without using Coq’s limited
built-in support: one can define a notation for associative
maps like {# a -> 1; b -> 2 #} by defining a custom entry
delimited by {# ... #}, and a notation “_ -> _; _” exclusive
to that custom entry.
In fact, custom entries are so powerful that the practical

limitations that we encountered when using them popped
up not in notations but in editing tools. Indeed, introduc-
ing new syntax can cause issues with indentation, syntax
highlighting, and even sentence parsing.

Instead, we found it best to match Coq’s existing syntax as
much as possible when designing Kôika (this is the opposite
of the usual advice for standard notations: normally, one
tries to make up notations that do not conflict with Coq’s
built-in ones). For example, the following construct adds a
parsing rule in the koika custom entry to handle what looks
like a standard Coq "let" construct, but is in fact parsed as a
Kôika AST when encountered within Kôika delimiters.

Notation "’let’ a ’:=’ b ’in’ c" :=
(UBind a b c) (in custom koika ...).

The same can be done for conditionals, matches, anony-
mous functions, and record construction: this results in a
pleasant editing experience.

Custom entry delimiters act as a form of quoting. A pattern
that we found practically useful was to provide an antiquot-
ing mechanism: a way to exit the Kôika parser to reenter the
Coq one (‘...‘ in Kôika). This enables us to macro-generate
subterms of Kôika ASTs using Gallina.

3 Deep-embedded binders
A key part of designing a DSL is to choose a binder represen-
tation strategy [1, 3–5]. Shallow and mixed embeddings typ-
ically use native Coq binders, while deep embeddings com-
monly use strings for variables. Unfortunately, this choice
leads to unpleasant syntax, along the lines of the following
example:

{{ let "x" := 1 in let "y" := "x" + 1 in "x" + "y" }}.

Clément Pit-Claudel and Thomas Bourgeat

By combining notations, custom entries, tactics in terms,
and Ltac2’s reflection capabilities, we can do better. First,
we create a notation ident_to_string a which, given an
unbound identifier, returns the corresponding string. Then,
we use a custom entry so that the default interpretation of a
plain symbol in the koika scope resolves to that notation:
Check (ident_to_string CoqPL). => "CoqPL"
Notation "a" := (UVar (ident_to_string a)) ...

The result is a decluttered and readable syntax, which
resolves to a deeply embedded AST with variable names "x"
and "y".
{{ let x := 1 in let y := x + 1 in x + y }}.

The key challenge is the implementation of the function
ident_to_string. We plan to release it as a standalone library
before the CoqPL meeting, so users don’t need to know
the following — admittedly unpalatable — details. First, we
need a way to convert a bound identifier to a Gallina string:
ident_to_constr : ident -> constr. Ltac2 already supplies
Ident.to_string: ident -> string, so it’s simply a matter
of converting an Ltac2 string to a Gallina string using Ltac2’s
limited APIs. We have found that using a lookup table to
translate Ltac2 chars to Gallina asciis was the most efficient.
Next, we need a way to capture an unbound identifier from
Ltac2, before Coq realizes that the identifier is unbound. This
is done using notations and tactics in terms, as shown below.
Inductive __Ltac2_IdentMarker := __Ltac2_Mark.

Ltac serialize_ident_in_context :=
ltac2 :(match! goal with
| [h: __Ltac2_IdentMarker |- _] =>

let s := ident_to_constr h in exact ($s)
end).

Notation ident_to_string a :=
(match __Ltac2_Mark return string with
| a => ltac:(serialize_ident_in_context)
end) (only parsing).

The match in ident_to_string uses the name passed to
the notation as a binder in a match. Because the match
has a single case, it reduces automatically, leaving no trace
in the parsed term (in contrast, using a let binding or a
lambda abstraction would pollute the resulting term). Then,
serialize_ident_in_context captures this binding and con-
verts it to a string using Ltac2.

4 Improved error messages
Programs written in Kôika’s untyped AST have to be type-
checked, using a function that originally returned either a
typed AST, or an error message. Unfortunately, error mes-
sages without locations are near-useless in large terms: our
users spend their time looking at error messages like 4’b0
has type bits 4 but should have type bits 5.
We solved this problem by annotating AST nodes with

positions. A frontend build on a standard parser could instan-
tiate these locations with a file name and lines and column

numbers, but within Coq we do not have access to that loca-
tion information.

Instead, our notations generate an unannotatedAST,which
we then annotate by augmenting each node with a repre-
sentation of the path leading to it. When the typechecker
detects an error, it reports that path; we use it to traverse
the original (unannotated) AST and wrap the corresponding
node into another type of annotation, indicating the location
of the error. Concretely:

Check (tc {{ let x := y in y + 1 }}).

Error: Tactic failure:
In term: {{ "y" }}
Type error: (UnboundVariable "y")
Context: {{ let "x" := >>> "y" <<< in "y" + 1 }}

5 Type classes for DeBruijn index
inference

Kôika has two sets of ASTs, (typed and untyped), but we
use the same notations for both (in different custom entries).
One difficulty arises for variable references in typed term.
Consider the following snippet:

let x := 4’b0 in y := x + 1

The corresponding AST is this one, where ?m: member "x"

["x"] is a dependently typed DeBruijn index witnessing that
"x" belongs to the list of variables in scope (here, just ["x"]):

Bind "x" (Const 0) (Plus (Var "x" ?m) (Const 1))

We use a type class trick to infer ?m. First, we define a type
class whose only field is a proof that a variable “k” belongs
to a given context “sig”:

Class VarRef k sig := vr_m : member k sig.
Hint Mode VarRef + + : typeclass_instances.
Hint Extern 1 (VarRef ?k ?sig) =>

exact (must (assoc k sig)) : typeclass_instances.

Then, we set the notation for variables to produce (Var

"x" (_: VarRef "x" _)). Coq’s unification fills in the hole
for sig, then type class inference kicks in to resolve VarRef

"x" ["x"]. An appropriate instance is inferred by the tactic
called through Hint Extern.

(Note that tactics in terms would not work here, because
the tactic would be called before inferring the local context
sig, and we would not be able to infer the dependent index
m without that information).

Conclusion
Coq has come a long way since the dark days of Coq 8.4. Such
a long way, in fact, that writing moderately-large programs
in deep embedded DSLs within Coq can be made reasonably
pleasant. Our talk will walk the audience through these tricks
and explain the implementation interactively.

An experience report on writing usable DSLs in Coq

References
[1] Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn, J. Nathan Fos-

ter, Benjamin C. Pierce, Peter Sewell, Dimitrios Vytiniotis, Geoffrey
Washburn, Stephanie Weirich, and Steve Zdancewic. 2005. Mechanized
Metatheory for the Masses: The PoplMark Challenge. In Theorem Prov-
ing in Higher Order Logics, Joe Hurd and Tom Melham (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 50–65.

[2] Thomas Bourgeat, Clément Pit-Claudel, Adam Chlipala, and Arvind.
2020. The Essence of Bluespec: A Core Language for Rule-Based Hard-
ware Design. In Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation (London, UK) (PLDI
2020). Association for Computing Machinery, New York, NY, USA,
243–257. https://doi.org/10.1145/3385412.3385965

[3] Arthur Charguéraud. 2012. The Locally Nameless Representation. J.
Autom. Reason. 49, 3 (2012), 363–408. https://doi.org/10.1007/s10817-
011-9225-2

[4] Adam Chlipala. 2008. Parametric higher-order abstract syntax for mech-
anized semantics. In Proceeding of the 13th ACM SIGPLAN international
conference on Functional programming, ICFP 2008, Victoria, BC, Canada,
September 20-28, 2008, James Hook and Peter Thiemann (Eds.). ACM,
143–156. https://doi.org/10.1145/1411204.1411226

[5] N. G de Bruijn. 1972. Lambda calculus notation with nameless dummies,
a tool for automatic formula manipulation, with application to the
Church-Rosser theorem. Indagationes Mathematicae (Proceedings) 75, 5
(1972), 381–392. https://doi.org/10.1016/1385-7258(72)90034-0

[6] Casper Bach Poulsen, Arjen Rouvoet, Andrew Tolmach, Robbert Kreb-
bers, and Eelco Visser. 2018. Intrinsically-typed definitional interpreters
for imperative languages. Proceedings of the ACM on Programming Lan-
guages 2, POPL (2018), 16:1–16:34. https://doi.org/10.1145/3158104

[7] The Coq Development Team. 2019. The Coq Proof Assistant, version
8.9.0. https://doi.org/10.5281/zenodo.2554024

[8] The Coq Development Team. 2020. The Coq Proof Assistant, version
8.11.0. https://doi.org/10.5281/zenodo.3744225

https://doi.org/10.1145/3385412.3385965
https://doi.org/10.1007/s10817-011-9225-2
https://doi.org/10.1007/s10817-011-9225-2
https://doi.org/10.1145/1411204.1411226
https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/10.1145/3158104
https://doi.org/10.5281/zenodo.2554024
https://doi.org/10.5281/zenodo.3744225

	Abstract
	1 Introduction
	2 Experimenting with Custom Entries
	3 Deep-embedded binders
	4 Improved error messages
	5 Type classes for DeBruijn index inference
	References

