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Abstract
RISC-V is a relatively new, open instruction set architecture
with a mature ecosystem and an official formal machine-
readable specification. It is therefore a promising playground
for formal-methods research.
However, we observe that different formal-methods re-

search projects are interested in different aspects of RISC-V
and want to simplify, abstract, approximate, or ignore the
other aspects. Often, they also require different encoding
styles, resulting in each project starting a new formalization
from-scratch. We set out to identify the commonalities be-
tween projects and to represent the RISC-V specification as
a program with holes that can be instantiated differently by
different projects.
Our formalization of the RISC-V specification is written

in Haskell and leverages existing tools rather than requiring
new domain-specific tools, contrary to other approaches. To
our knowledge, it is the first RISC-V specification able to
serve as the interface between a processor-correctness proof
and a compiler-correctness proof, while supporting several
other projects with diverging requirements as well.

1 Introduction
1.1 RISC-V as a formal-methods-research enabler
Until recently, formal-methods projects requiring specifi-
cations of processors were in an uncomfortable situation:
The ISAs used in real processors were very complex, did not
have openly accessible specifications, or were protected by
patents.

Therefore, each formal-methods project was either invent-
ing its own ISA (e.g. [11, 24]) or formalizing from-scratch,
at the desired abstraction level, a small subset of an existing
ISA (e.g. [22]).

RISC-V is a game changer: it is particularly compelling for
formal-methods research, because it is a simple clean-slate
design easy to reason about and yet is part of a mature open
ecosystem. RISC-V is a family of instruction sets broken into
different native bitwidths (32, 64, 128) and extensions (e.g.,
multiplication and division instructions, atomics, . . . ) that
may be mixed and matched. The the RISC-V software ecosys-
tem contains fully upstreamed Clang, GCC, and Linux; and
more and more commercial and open-source processor de-
signs are becoming available [1–3, 9, 10, 13, 34, 35]. All in all,
today one can run a mostly complete Linux distribution on a
RISC-V machine. It makes for a very compelling platform for

experimentation in basic research, progressively extensible
to full-fledged realistic systems.

1.2 From a golden standard to formal-methods
infrastructure

There is the potential for a mutually beneficial relationship
between the community of formal methods and the RISC-V
community.

On the one hand, the RISC-V Foundation already adopted a
golden standard in the form of an ISA specification in the Sail
language [6]. There is now an agreed-on, machine-processed
description of authorized behaviors for a significant portion
of the spec, beyond the usual natural-language description.
On the other hand, the formal-methods community can

leverage RISC-V as a great laboratory to prototype ideas,
where researchers will be able to get mature compilation
toolchains, realistic processors, and systems to turn minimal
experiments into more real-world projects.
However, different research projects use different lan-

guages and tools, and even projects using the same language
tend to embrace different specification styles depending on
their needs. Therefore, even when several formal-methods
projects use the same RISC-V ISA and maybe even the same
language and tools, it seems that they still all need different
formalizations. It would be better if the formalization of the
ISA specification were shared between projects, because a
specification is only useful and meaningful if many eyes
proofread and validated it against existing systems in many
ways. This large effort should be shared between projects. In
other words, we aim for reusable multipurpose formalization.
While the current golden standard, the Sail model, has

been translated automatically into the languages of proof as-
sistants, those translated models are produced via a very ver-
bose intermediate representation of Sail (several megabytes
of files) quite impractical for formal-methods projects involv-
ing manipulation of those models by-hand.
Considering the social context and incentive structure,

this outcome is not surprising. The idea of having one single
formalization for use in multiple projects is fundamentally
at-odds with the interests and requirements of each project
using the spec, and it goes beyond the language used. Typi-
cally, each research project is interested in a different aspect
of the specification and wants to approximate soundly, or
even simplify incorrectly, the other parts of the specifica-
tion. The requirement to simplify and opt out of features
unrelated to the subject of study is even more important
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for prototypes and early-stage research projects, where no
one is willing to deal with unrelated complexities. Yet, it
is exactly these early-stage projects with limited engineer-
ing resources that would benefit most from being able to
reuse an existing specification, rather than having to start
incrementally formalizing the RISC-V ISA one more time,
inevitably making design mistakes in the process.

1.3 Abstracting over use cases
The main obstacle in writing a multipurpose ISA spec is to
consolidate the conflicting expectations of the different users
of the spec.

Again, it is natural to begin by worrying about “Tower of
Babel” problems, where different users of machine specifica-
tions apply quite-different tools and programming languages.
While we acknowledge that the different programming lan-
guages used can be a first-order practical concern, this paper
considers that question of syntax as orthogonal to another
one, subject of this paper, and at least as interesting: To what
extent do the different uses of ISA specifications fundamentally
require different presentations?

The standard approach [6] considers the ISA specification
mostly as an abstract syntax tree (almost like a very struc-
tured JSON file), with custom translators and pretty-printers
crafted as-needed by different users. This syntactical tradi-
tion has been shown to be very productive to share tools
between different ISAs (RISC-V, ARM, x86, . . . ). However, it
misses an opportunity to study what is semantically invari-
ant in all the different usages of an ISA semantics.
We instead consider that an ISA specification can be de-

scribed as a program with holes. For us, different instantia-
tions of those holes with different subprograms will cover
the different use cases of the specification.
The idea is that a user of the specification can describe

her notion of machine state, what it means to set one of the
32 registers, what it means to load something from memory,
etc., and we will give her a program that completes what
it means to execute any RISC-V instruction on one of her
states, to translate a virtual address in that state, etc.

Contributions. This paper shows that it is possible to
write, in a general-purpose programming language, a multi-
purpose RISC-V formal specification: a specification used by
a variety of research projects in formal methods. We demon-
strate and explain how to achieve compatibility with the
following classic use cases of machine specs:

• Interactive theorem proving: using our specification in
the Coq proof assistant for various proofs of functional
correctness

• Verilog modeling: generating a combinational Verilog
circuit specifying the state update of the machine for
every instruction for model-checking verification

• SMT-based explorations: formemory-model exploration,
an interactive generation of partial executions, itera-
tively checked to be compliant with thememorymodel
axioms

• Testing: batch execution of regression tests
• Simulation: execution of off-the-shelf software like
Linux

Our specific formal-methods case studies include the fol-
lowing that mimic exercises with past multipurpose specs.

• Cross model-checking of our spec with another spec
• Functional-correctness proof in Coq of individualmachine-
code programs

• Checking of short litmus-test programs against RISC-V’s
standard weak memory model

Moreover, we note the existence of the following case
studies [14] based on our RISC-V Coq specification, not de-
scribed in detail in the present paper, but relevant because
to our knowledge they are firsts for use of a multipurpose
ISA spec.

• Functional-correctness proof of a pipelined processor
• Functional-correctness proof of a software compiler
• The bridging of the two theorems into end-to-end cor-
rectness of a software and hardware system (including
proof of an application in the compiler’s source lan-
guage)

The remaining sections review important elements of the
RISC-V ISA, explain our specification style, and discuss how
to cover different use cases (differentiated by how they in-
stantiate holes in our spec). Our semantics is available on
GitHub1 under a permissive open-source license.

2 Overview
The nonprofit RISC-V Foundation developed an instruction
set architecture specification in English [31, 32]. The goal
of our project is to translate the English specification into
a broadly applicable, machine- and human-readable formal
specification.
There is a particular emphasis on avoiding overspecifi-

cation: Platform-specific details that are left unspecified by
the English specification should also be unspecified in the
formal specification, while at the same time enabling users
of the formal specification to pin down as many of these
platform-specific details as appropriate for their use cases.

Orthogonally, we want to support the many different use
cases shown in Figure 1: For instance, some users want an
executable specification that returns one single final ma-
chine state, while others might want to leave some inputs,
parameters, or nondeterministic choices abstract and obtain
a logic formula restricting the set of possible final states, or
obtain a list of final states, or obtain a checker that simply

1The Haskell code is at https://github.com/mit-plv/riscv-semantics and the
Coq code is at https://github.com/mit-plv/riscv-coq/.
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Figure 1. Projects using our RISC-V specification. The boxes with rounded corners are typeclass instantiations, the instances
starting with a plus denote instances derived from other instances (adding new features). The grey boxes show external
projects that our specification interacts with.

answers whether a given execution trace is allowed by the
specification, etc.

To summarize, these requirements lead us to the following
dimensions of parameterization:

• Supported extensions (see Table 1) and bitwidth (32-
bit, 64-bit or left abstract)2

• Platform-specific details
• Use-case-specific details

2.1 Choice of language
Serious commitment to a multipurpose specification requires
careful thought about the language it should be written in.
One goal was to write readable functional programs that
could be understood intuitively by hardware engineers or
compiler hackers, without necessarily being familiar with
the underlying features (such as monads, type classes, etc.)
enabling readability and parameterizability of the specifi-
cation. Further goals were to create a specification that is
practical to use in interactive theorem provers and to con-
nect our specification to other specifications, especially from
the hardware world.

We found that Haskell was able to cover most of the con-
straints we considered, thanks to the following:

• do notation provides syntactic sugar for readable im-
perative-looking code, particularly useful for this spec-
ification.

2The RISC-V specification also defines a 128-bit variant that we did not
consider.

• the Clash compiler [27], compilingHaskell (with bounded
recursion and finite datatypes) to Verilog/VHDL, is a
bridge to hardware-model-checking tools.

• hs-to-coq [7], a compiler that uses the GHC frontend to
generate Haskell-like Coq code, built to prove Haskell
programs in Coq, is a good bridge to interactive theo-
rem proving in Coq.

We restrict ourselves to concepts supported by these three
Haskell compilers (hs-to-coq, Clash, GHC). Via hs-to-coq, we
produced a semantics that was chosen as the reference ma-
chine model in several Coq projects. Via Clash, we produced
a minimal “single-cycle” Verilog execution model for which
external people (authors of other specifications) checked the
agreement between our spec and theirs. Finally, via GHC,
we demonstrated the possibility to explore the basics of the
RISC-V memory model and to test our specification as a
simulator.
In our work, Haskell is a convenient stand-in for what-

ever turns out to be the ideal general-purpose language for
writing a variety of multipurpose specifications. Writing
translators to the input formats of different formal-methods
tools can be a significant undertaking, so that it pays to in-
troduce as few languages as possible that require translation.
It may turn out that the ideal community-shared spec lan-
guage is quite different from Haskell, but our interest here
is showing that a general-purpose language can work well
as the host for a multipurpose spec, leaving fine-tuning of
the approach for future work. An important point is that we
avoid use of any spec-language features specialized to ISAs.
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Description Name hs? Coq? Clash?
Integer I ✓ ✓ ✓
Integer Multiply/Divide M ✓ ✓ ✗
Atomics A ✓ ✗ ✗
Single Floating-Point F ✓ ✗ ✗
Control & Status Registers Zicsr ✓ (✓) ✗

Excluded: E, D, Q, L, C, B, J, T, P V, N, Zifencei, Zam, Ztso
Table 1. Standard Extensions of RISC-V Version 20191213

2.2 Structure of the specification
The RISC-V specification is composed of several extensions
listed in Table 1, and an implementation can choose which
subset of them to support. Our formalization of the specifi-
cation only covers the most important of them.

The primitives. The key to supporting many different
use cases is to specify the semantics of each instruction in
terms of a small number of primitives listed in Figure 2, while
leaving the implementations of these primitives to be filled
in by the concrete use cases. The primitives include state-like
constructs (for the registers, the memory, . . . ), plus control-
flow-like constructs (endCycle) to capture the control-flow
change in case of an exception (see subsection 3.2) raised in
the middle of the semantics of a function (an early return).

Missing equations. One may complain that our specifi-
cation style does not reveal what it means to write a register,
and so it is incomplete.
This reaction is reasonable on one level. We could hope

to define a set of laws that an instance needs to follow to be
dubbed “a RISC-V instance.” For example, getting the value
of a register that we just wrote should return the value we
have just written.

While desirable and an interesting question that we have
asked ourselves, such an axiomatic description would be
intractably complicated. Moreover, many questions related
to the specification of RISC-V are left to be decided and for-
malized – they are still research questions. Examples include
the memory model in presence of multi-size accesses, virtual
memory, self-modifying code, etc. As such, our specification
should be useful for exploring the possibilities.

Instantiation. The abstract monad p (of kind * -> *) can
be instantiated differently by each use case, which keeps our
spec agnostic to the concrete state of the machine and to
the kind of effects that instructions can have. For instance,
depending on the platform and the use case, an invocation
of the storeWord primitive could update the memory of the
machine state, or it could fail if the address is outside of
the physical address range, or it could record constraints in
a memory-model graph, or it could record an I/O event if

-- Indicates which stage is the source of a memory access

data SourceType = VirtualMemory | Fetch | Execute

-- Type class providing the RISC-V primitives:

class (Monad p, MachineWidth t) => RiscvMachine p t

| p -> t where

getRegister :: Register -> p t

setRegister :: Register -> t -> p ()

getFPRegister :: FPRegister -> p Int32

setFPRegister :: FPRegister -> Int32 -> p ()

loadByte :: SourceType -> t -> p Int8

loadHalf :: SourceType -> t -> p Int16

loadWord :: SourceType -> t -> p Int32

loadDouble :: SourceType -> t -> p Int64

storeByte :: SourceType -> t -> Int8 -> p ()

storeHalf :: SourceType -> t -> Int16 -> p ()

storeWord :: SourceType -> t -> Int32 -> p ()

storeDouble :: SourceType -> t -> Int64 -> p ()

makeReservation :: t -> p ()

checkReservation :: t -> p Bool

clearReservation :: t -> p ()

getCSRField :: CSRField -> p MachineInt

unsafeSetCSRField :: (Integral s) => CSRField -> s -> p ()

getPC :: p t

setPC :: t -> p ()

getPrivMode :: p PrivMode

setPrivMode :: PrivMode -> p ()

commit :: p ()

endCycle :: forall z. p z

flushTLB :: p ()

fence :: MachineInt -> MachineInt -> p ()

getPlatform :: p Platform

Figure 2. The primitives of the abstract RISC-V monad

the address is in a range that the platform uses for memory-
mapped I/O, etc., and our specification is completely agnostic
to these options.

The abstract type t is the type of the values stored in the
integer registers. It can be instantiated with Int32, Int64, or
left abstract for use cases where it makes sense to reason
about all bitwidths at once. Requiring a MachineWidth type-
class instance for t guarantees that there are arithmetic and
logical operators for t. To distinguish t from helper integer
values that do not live in registers, we introduce an additional
integer type MachineInt, which is an alias for Int64, and
whose more-significant bits are sometimes ignored. In fact,
whenever we need an 𝑛-bit integer (with 𝑛 ≤ 64) that does
not live in a register, we use MachineInt, applying bitmasking
where necessary. Like some other authors [21], we believe
that it is better to avoid complicating specification languages
with very precise typing and therefore do not try to use 𝑛-bit
integers for many different 𝑛.
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Instructions. The above choice also shows up in our
algebraic-datatype representation of decoded instructions:
data InstructionI =

Sw { rs1 :: Register, rs2 :: Register, simm12 :: MachineInt } |

Add { rd :: Register, rs1 :: Register, rs2 :: Register } |

Beq { rs1 :: Register, rs2 :: Register, sbimm12 :: MachineInt } |

...

For instance, even though the offset field of the store-word
instruction is only a signed 12-bit immediate, we represent
it with a (64-bit) MachineInt for simplicity. Note that this
simplification does not compromise correctness, because the
specification only creates instructions in the decoder, which
only ever writes 12-bit values into that field.

Decode. The decoder starts by defining symbolic names
for notable bitfields of the instruction inst being decoded:
opcode = bitSlice inst 0 7

rd = bitSlice inst 7 12

rs1 = bitSlice inst 15 20

rs2 = bitSlice inst 20 25

simm12 = signExtend 12 $

shift (bitSlice inst 25 32) 5 .|. bitSlice inst 7 12

...

and then defines a decoder for each RISC-V extension:
decodeI

| opcode==opcode_STORE, funct3==funct3_SW = Sw rs1 rs2 simm12

| opcode==opcode_BRANCH, funct3==funct3_BEQ = Beq rs1 rs2 sbimm12

...

and finally, checks if the decoded instruction is part of the
supported extensions.

Encode. Our specification does not contain an instruction
encoder, because its definition is implied by the decoder.
However, we did write an encoder in Coq and prove that
it is the inverse of the decoder. While conceptually trivial,
this proof took a few days of engineering effort to work
around performance limitations in Coq due to the many case
distinctions that appear in the proof.

Execute. For each RISC-V extension supported, there is
an execute function that expresses the effects of each in-
struction of the extension in terms of the primitives listed in
Figure 2. For instance, here is the definition of the jump-and-
link-register instruction, for which an explanatory prose will
be provided shortly thereafter:
execute (Jalr rd rs1 oimm12) = do

x <- getRegister rs1

pc <- getPC

let newPC = (x + fromImm oimm12) .&. (complement 1)

if (remu newPC 4 /= 0)

then raiseExceptionWithInfo 0 0 (fromIntegral newPC)

else (do

setRegister rd (pc + 4)

setPC newPC)

It was transcribed from the following English definition:
The indirect jump instruction JALR (jump and
link register) uses the I-type encoding. The tar-
get address is obtained by adding the sign-ex-
tended 12-bit I-immediate to the register 𝑟𝑠1,
then setting the least-significant bit of the result
to zero. The address of the instruction following
the jump (𝑝𝑐 + 4) is written to register 𝑟𝑑 . Regis-
ter x0 can be used as the destination if the result
is not required.
The JAL and JALR instructions will generate
an instruction-address-misaligned exception if
the target address is not aligned to a four-byte
boundary.

It uses Haskell’s do notation to chain monadic operations,
and it can also use standard Haskell constructs such as let
or if. The binary operators (such as +, /= and .&. in this
example) are provided through the MachineWidth type class,
which takes a type parameter t that can be instantiated with
32-bit or 64-bit integers depending on the desired bitwidth.
It inherits from Haskell’s standard type classes Integral

and Bits, allowing us to use the standard infix operators.
MachineWidth also provides fromImm to convert immediates
from instructions into register values t.

Run. Finally, we define what it means to run one instruc-
tion. For the Coq proofs, we use a simplified3 version that
just fetches an instruction, decodes and executes it, and up-
dates the program counter, whereas the Haskell version also
considers interrupts and exceptions.

Use-case- and platform-specific code. The components
described so far form the specification and are grouped to-
gether in a directory called Spec. However, we have not yet
defined how state is represented and how the primitives of
Figure 2 are to be implemented. These use-case- and platform-
specific definitions are in a separate directory called Platform
and are the subject of the next section. In terms of code size,
the Spec and Platform directories each are about 3K lines of
code.

3 Different monads for different use cases
Our RISC-V specification benefits from using a monad (the
p in Figure 2) in the very same way as Wadler’s interpreter
in his classic “The essence of functional programming” pa-
per [30]. In this section, wewant to demonstrate the resulting
wide coverage of practical use cases.

3.1 Simulation
The most common way of modeling processors in the formal-
methods world is to consider the machine to be deterministic,
3but still accurate with respect to real software and hardware, because both
the processor and the compiler are proven to respect this same simplified
specification
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each cycle updating the state of the registers and the mem-
ory depending on the instruction present in memory at the
location pointed to by the program counter (PC) register.
Concretely, we wrote two instances of the RiscvMachine

type class, named Minimal32 and Minimal64, to obtain a 32-
and a 64-bitmachine simulator. We instantiated the type class
in the I/O monad, using references and arrays to implement
the registers, the program counter, and the memory.

3.2 Supporting RISC-V exceptions
Many formal-methods-oriented projects do not want to deal
with exceptions or interrupts, while others are interested in
modeling and leveraging them. The formal-spec user should
experience the costs of those further features incrementally
as they are brought into play.

Raising an exception involves two components: modifying
a bunch of state (namely numerous special state registers
[CSRs]) and bailing out of a cycle early, not performing the
effects of the instruction that would have come after an
exception is raised.
Cutting the current cycle short (via an exception) is like

returning from a function early: anything prior to the ex-
ception actually happens, and nothing after the exception
should have any effect at all.

Now, what can cause an exception?
• a virtual-memory translation failure
• a system privilege check
• an alignment problem
• etc....

To be able to write monadic values carrying this early-exit in-
formation, we encode the early return in a layer of a MaybeT
monad transformer. The crucial primitive already appeared
in our definition of the RiscvMachine monad.

endCycle :: forall z. p z

Conspicuously, an implementation of endCycle is missing
from the basemachine previously described as Minimal64/32,
but there is one given in source file Machine.hs:

instance (RiscvMachine p t)

=> RiscvMachine (MaybeT p) t where

getRegister r = lift (getRegister r)

setRegister r v = lift (setRegister r v)

...

endCycle = MaybeT (return Nothing)

...

This instance demonstrates something powerful about our
spec: composability. It takes some existing instance of the
same type class and builds on it, adding in the functionality of
the Maybemonad. In that monad, a computation halts as soon
as a step returns Nothing, precisely capturing the “early-
return” behavior we want upon encountering an exception.

So, endCycle returns Nothing (halting the computation),
and all other functions do what they would normally do, just
“lifted” into the new Maybe-infused form of the monad.

With this two-layer specification, we ran in simulation the
riscv-tests test suite (rv64mi, rv64si, rv64ui, rv64ua),
which is the standard community-maintained test suite.

3.3 Platform modeling, MMIO, and devices
We actually use this kind of instance augmentation repeat-
edly in our code, first to encode the semantics of core features
(like RISC-V exceptions, as we have just seen), but also to
add features like memory-mapped I/O devices to existing
RiscvMachine instances.

For example, we enrich the platform with a concurrently
memory-mapped device: a UART that one can connect to
from a terminal, which generates interrupts received by the
main loop of the simulator.
With this implementation, composed of three layers of

specifications, we were able to run Linux in January 2019 at
about 100k instructions per second. (We have not tracked
new versions of Linux since then.)
While this strategy allows us to experiment, test, and

vouch for our good coverage of the spec, this artifact is
not especially competitive for running significant RISC-V
programs, e.g. the popular QEMU runs at several hundred
million instructions per second.

3.4 Interactive theorem proving
3.4.1 Translation fromHaskell. Using hs-to-coq [7], we
can translate the Haskell specification to Coq. Since hs-to-
coq was designed to model Haskell semantics in Coq as
faithfully as possible, it ships with handwritten and auto-
generated translations of Haskell’s standard-library files, and
by default they are referenced by the Coq files produced by
hs-to-coq. However, for this project, we were not seeking a
faithful reproduction of Haskell semantics in Coq but rather
an idiomatic RISC-V specification in Coq. Therefore, we used
hs-to-coq’s edit files feature, which allows one to provide
renaming and rewriting patterns to be applied during the
translation, so that we could map all Haskell standard-library
references to reasonably close Coq equivalents and obtain
an idiomatic, Haskell-independent Coq specification.
We used hs-to-coq to translate the files specifying how

each instruction is executed, the instruction decoder, as well
as the CSR-file specification, while we manually wrote the
remaining files such as supporting utility definitions, the
definition of the RiscvMachine type class, and proof-specific
files.

3.4.2 Use as the interface between software and hard-
ware. Our RISC-V Coq specification was used successfully
in a project [14] that combines a compiler-correctness proof
with a processor-correctness proof.

6



The combined theorem states that the I/O trace produced
by the processor matches the one produced by the source
program fed to the compiler, without referencing the RISC-V
specification any more. Thus, auditors of the system can
know the behavior of the system without having to audit
whether both the compiler and the processor interpret the
RISC-V specification in the same way, which greatly reduces
the auditing burden.

3.4.3 Opting out of features and opting back in. Our
first version of the translation to Coq was driven by the re-
quirements of the compiler-correctness project mentioned
above, which required a very simple and manageable spec to
get started, so it was decided that initially, CSRs should not
be modeled. However, this also meant that we could not use
the real raiseException function, nor the translate func-
tion (translating virtual to physical addresses), which starts
by reading a CSR that indicates whether virtual memory is
enabled. The solution was surprisingly simple: Since we had
already decided to translate manually the file containing the
declaration of the RiscvMachine type class, we were free to
abstract over raiseException and translate by adding it to
the primitives of RiscvMachine (Figure 2). That is, we made
our specification more configurable than RISC-V allows, and
for the compiler, we instantiated translate to the identity
function and raiseException to hard failure, because no in-
structions emitted by the compiler rely on exceptions, while
at the same time, we kept open the possibility to instantiate
these two functions with (more) real definitions.
These modifications are not RISC-V-compliant, but we

consider it an important feature of our specification that we
were able to make them, while still being able to translate
most of the specification to Coq automatically and thus con-
tinuously pull updates and bugfixes made in Haskell into the
Coq code base.
Later, when we added CSRs to the Coq specification, we

wrote a simplified raiseException function. Since the com-
piler does not use it, it was trivial to integrate this update
with the compiler-correctness proof, and now another project,
still in a very early stage, that requires CSRs can use exactly
the same version of our RISC-V Coq specification as the
compiler-correctness proof.

3.4.4 Simulator in Coq.

State monad. In Coq, the simplest-possible instantiation
of themonad is p := State MachineState, where State is the
state monad defined as State(S A: Type) := S → (A * S),
and MachineState is a record containing the values of the
processor’s registers, the program counter, the memory, the
CSR file, and the current privilege level. This instantiation
can be used to obtain a deterministic RISC-V simulator.

State monad with failure. An arguably even-simpler
monad instantiation is p := OState MachineState, where

OState(S A: Type) := S → (option A) * S uses a None an-
swer to indicate that a failure occurred. Its Bind and Return

operations are implemented as
Bind A B (m: OState S A) (f: A → OState S B) :=

fun (s: S) ⇒ match m s with

| (Some a, s') ⇒ f a s'

| (None, s') ⇒ (None, s')

end;

Return A (a: A) := fun (s: S) ⇒ (Some a, s)

and an unrecoverable (hard) failure can be implemented as
fail-hard S A: OState S A := fun (s: S) ⇒ (None, s)

For compiler-correctness proofs, fail-hard can be used to
indicate that a situation occurred that the compiler is sup-
posed to avoid, e.g. memory access at an invalid address,
and a compiler-correctness proof then states that all valid
source programs are translated to RISC-V programs that
never cause failures.

Moreover, if the compiler has been designed to emit code
that does not use certain features, the RISC-V specification
can be simplified by implementing the primitives of Fig-
ure 2 used by these features as just fail-hard. For instance,
the compiler presented in [14] emits code that does not de-
pend on the CSRs, does not use floating-point operations
or atomics, and assumes that there is no virtual memory
and that the code always runs at the MachineMode privilege
level. Therefore, the monad instantiation used to specify
its correctness implements the primitives makeReservation,
checkReservation, clearReservation, getCSRField, as well
as unsafeSetCSRField, getPrivMode, setPrivMode of Figure 2
as just fail-hard (while the TLB- and floating-point-related
methods were omitted altogether in the translation from
Haskell to Coq).

3.4.5 Adding instruction counters. In a separate project
(unpublished at the time of writing) building on top of the
compiler mentioned above, the MachineState record was
extended to include counters for the number of executed
instructions, number of memory accesses, and number of
jumps, and proofs about how the compiler preserves these
cost metrics were written, allowing one to calculate loose
(but formally proven) upper bounds on the execution time
of RISC-V programs.

3.4.6 Nondeterminism. One way to add nonde-
terminism is to use the nondeterministic option state monad,
OStateND S A := S → option (A * S) → Prop, where the
option’s None constructor is used to indicate failure, and
option (A * S) → Prop can be thought of as the set of all
possible outcomes. Its Bind and Return operations are imple-
mented as
Bind A B (m: OStateND S A)(f : A → OStateND S B) :=

fun (s : S) (obs: option (B * S)) ⇒
(m s None ∧ obs = None) ∨
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(∃ a s', m s (Some (a, s')) ∧ f a s' obs);

Return A (a : A) :=

fun (s : S) (oas: option (A * S)) ⇒ oas = Some (a, s)

Why not monad transformers? We use monad trans-
formers [23] to add logging or early returns in Haskell, but
they do not work to add nondeterminism as an additional fea-
ture on top of an existing instance, because in order to obtain
the right type for OStateND, one has to start the composition
with the nondeterminism monad, rather than adding nonde-
terminism at the end of the monad-transformer composition
chain, as would be required to reuse code written for OState
in code for OStateND. Moreover, since this code serves as a
specification, it should be easy to audit and understand, and
we found that the definitions of Bind and Return above are
much easier to digest than the composition of several monad
transformers, where certain composition orders can result
in unintended semantics.

3.4.7 Runtime input. Oncewe have nondeterminism, we
can use it to model memory-mapped I/O (MMIO). For in-
stance, in the implementation of the loadWord primitive, if
the address is not a physical memory address, we delegate
to the following helper function:
mmio_load32 addr: OStateND S int32 := fun s oas ⇒
(isMMIOAddr addr ∧ ∃ v: int32, oas =

Some (v, (appendLog (mmioLoadEvent addr v) s))) ∨
(∼isMMIOAddr addr ∧ oas = None)

It can be read as a function that for each current state s

returns a proposition that indicates whether an outcome
oas (of type option (int32 * MachineState)) is in the set
of possible outcomes, distinguishing two cases based on
whether the address lies in the address range reserved for
MMIO. We also augment MachineState with a log to which
we append an MMIO event on each load and store that falls
into the MMIO address range.

Proof of a compiler targeting this specification will have to
show that all states in the outcome set given by mmio_load32

satisfy the compiler’s correctness guarantees (such as being
related to a state of the source-language execution), so the
body of mmio_load32 will appear on the left-hand side of
an implication, so the existentially quantified v becomes
universally quantified, and as expected, the compiler has to
prove that its guarantees hold for all possible values v that
this MMIO load could have read.

3.4.8 Nondeterminism by means of weakest precon-
ditions. The compiler project [14] that uses our RISC-V
specification requires RISC-V semantics that given an ini-
tial state s, a monadic computation m corresponding to the
execution of a sequence of primitives from Figure 2, and
a desired postcondition, returns the weakest precondition
that must hold in order for the postcondition to hold. There-
fore, it seems that we need the following bridge definition

that tells when a monadic OStateND computation satisfies a
postcondition:
mcomp_sat S A (m: OStateND S A) s post :=

∀ o, m s o → ∃ a s', o = Some (a, s') ∧ post a s'

For an example relating this definition to the previous sub-
section, m could be instantiated with mmio_load32 addr and
post could be instantiated with the claim that the final state
is related to a state of the source-language execution.
When instantiating m with a monadic computation in-

volving many Binds, unfolding mcomp_sat and all the Binds

quickly leads to huge formulas involving an existential for
each intermediate state and answer, and we found these for-
mulas to be larger than what human brains can deal with
productively. The solution was to treat mcomp_sat and Bind

as opaque and to prove weakest-precondition-style rules
for each primitive of Figure 2, using only these rules in the
compiler-correctness proof, so that the large formulas were
confined to just the proofs of these rules.

However, when a processor in the Coq-embedded hardware-
description language Kami [12] was being proved against our
RISC-V specification, the same formula-explosion problem
struck again, but this time, on the other (left-hand) side of the
implication. Inversion rules for mcomp_sat of primitives, dual
to the weakest-precondition-style rules mentioned above,
might have been a way to go, but it turned out that it is
simpler (both for the compiler and the processor) to use an
instantiation of the abstract monad that is more suitable for
weakest-precondition generation, namely a free monad.

We use a Coq Inductive for effects with one constructor
per primitive of Figure 2, and a generic free monad with one
constructor for an effect followed by a continuation, plus
a second constructor to indicate termination. Bind for this
monad can be defined as a Fixpoint that flattens monadic
computations that might have nested Binds as the first argu-
ment of Bind into a more canonical form. A result is almost a
sequential list of effects (ended by the termination construc-
tor of the free monad), except in the case of nondeterminism,
where branching can occur, so the shape becomes a tree
there.
On this free-monad structure, we can run an interpreter

that computes weakest preconditions. The crucial difference
between OStateND and the free-monad interpreter is that
the former creates an existential for the intermediate state
and answer of each Bind, whereas the latter works similarly
to a continuation-passing-style interpreter and just passes
updated states to the right-hand sides of the Binds, leading to
considerably simpler formulas. For comparison, here is the
helper function that the interpreter invokes in the loadWord

case when the address is not a physical memory address:
mmio_load32 addr := fun s post ⇒

isMMIOAddr addr ∧ ∀ v: int32,

post v (appendLog (mmioLoadEvent addr v) s)
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Note how, contrary to OStateND, no case for failure is needed,
and the value v being read is already universally quantified,
rather than existentially quantified on the left-hand side of
the implication of mcomp_sat, and if more code follows after
this snippet, it will be put into post and thus be invoked with
the updated state (appendLog (mmioLoadEvent addr v) s),
so no intermediate existential is created.

3.5 Weak memory models
In this section we outline our approach to instantiate the
type class to generate all the possible outcomes of small
multicore litmus tests with respect to the memory model.
We instantiate the RiscvMachine type class with a runtime
implementing the exploration algorithm of Kokologiannakis
and Vafeiadis [20].

This algorithm revolves around 4 data structures:

• a control/data/addr dependency-bookkeeping data struc-
ture, to maintain a list of all the memory events that
imply dependencies on the currently interpreted in-
struction

• a current partial execution graph, which is the graph of
the memory events and their memory-model relations

• two bookkeeping data structures necessary for back-
tracking during search: a list of alternative partial exe-
cution graphs to explore later and a maintained set of
all the read events that would be subject to revisiting,
if a store to the same address would occur.

Intuitively, our implementation goes as follow: we write
an interpreter in charge of exploring an execution path depth-
first. That interpreter also records all the alternative decisions
that it could have taken on its way. The interpreter can either
return successfully with a valid execution, or it can return
that the execution that it explored ended up violating the
memory model. In both cases, the interpreter updates the
global bookkeeping of alternative executions.
More precisely, the interpreter is a classic interpreter ex-

cept for the following twists.

• It keeps track of the dependencies that previous mem-
ory events have on the different registers and the PC.
It is worth noting that this functionality does not need
to be interleaved in the execution semantics. Rather,
it can be done directly from the decoded instruction
without looking at the values in registers. The reason
is that, for one instruction, dependencies are statically
known.

• On a load, the interpreter adds to the partial execu-
tion that the load reads from one of the stores to the
same address already present in the current partial
execution. The interpreter also adds all other possible
alternative stores to the same address as alternative
executions to explore later. The interpreter then in-
teracts with Alloy [19] to give it the partial execution

graph that it just extended. Alloy verifies that this ex-
tension is RISC-V-compliant. If not, the interpreter
signals failure after updating the backtracking struc-
tures; otherwise, it keeps running.

• On a store, the interpreter both adds a new store event
to the current execution and updates the alternative
partial executions: any load in the revisit set that loads
from the address of the current store is the source of a
new partial execution to add in the alternative partial
execution list.

• When the interpreter reaches the end of one thread, it
starts running the next thread. When the interpreter
finishes running the last thread successfully, it returns
that the current execution is a valid execution.

This straightline interpreter does not do the backtracking
itself. Instead, it is called from a toplevel loop that keeps call-
ing the interpreter on the next partial execution to explore,
each time either getting a valid execution or a failure but
an updated backtracking strucutre. The top level calls the
interpreter until the alternative execution list is empty.

Interestingly enough, this algorithm does not require us to
model several cores. Instead, we effectively only run threads
one-at-a-time, just keeping track of a single register file and
program counter.

The complete implementation is 800 lines of Haskell.
We use the upstream official Alloy specification [25] for

RVWMO, one of the several machine-readable forms avail-
able online for the RISC-V weak memory model.
We only support word load and store instructions plus

a TSO fence, as our intention was simply to demonstrate that
one can implement state-of-the-artmemory-model-exploration
algorithms using our specification. Hence we did not go
through the implementation of the exploration for atomics
and release/acquire fences, which, based on the study of
Kokologiannakis and Vafeiadis [20], we predict would not
require interestingly different ingredients.
As is standard in memory-model work, we assume the

instruction memory is separate from the data memory and
not under the memory-model exploration. We also do not
support mixed-size or misaligned accesses, virtual memory
is deactivated, and there are no exceptions/interrupts.
At the top level, we expect an ELF file of the source pro-

gram, plus the start and end program counters of the different
threads. We require every thread to have only bounded ex-
ecutions (no scenario in which a thread could run into an
infinite loop). Our implementation is then able to generate
all the possible executions of the program under the RISC-V
memory model, that is, which loads observed which stores
for every thread.

Performance-wise, this prototype is currently bottlenecked
by the interaction with Alloy. For each partial execution, we
start a new Alloy session to query the freshly generated
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model-finding instance. Hence, the time is completely dom-
inated by both the repeated Java runtime startups and the
Alloy model finding (currently using SAT4J).

We tested our instance on a set of variations of store-buffer
and message-passing litmus tests, with and without fences,
with andwithout address dependencies. The longest example
takes on the order of 10 seconds.

3.6 Model-checking the decode and execute
functions

The riscv-formal project [33] proposes a Verilog descrip-
tion of the Boolean function updating one cycle: assuming a
single-cycle machine, it specifies how the register file and the
memory are transformed by an arbitrary instruction from the
backbone of the base ISA. They also have infrastructure to
model-check their Verilog description against other descrip-
tions, for example the standard RISC-V simulator Spike [4].

We used the Haskell-to-hardware converter Clash [27] to
transform our specification, using a minimal state monad
instance, into a Verilog Boolean function, and the authors of
riscv-formal model-checked that output against their refer-
ence riscv-formal to find discrepancies.
Interestingly enough, the Clash instance of the specifica-

tion is quite similar to the Minimal instances. However, the
Minimal instances are not directly usable in Clash because
they use a Map for the register file, and these potentially
arbitrary-size maps do not normalize well in Clash. Instead,
we use the Vector datatypes in Clash.

Clash compiles by normalizing a Haskell expression into a
static circuit form (eliminating recursion by unfolding it, and
compiling ifs to muxes), but it means that we are sometimes
facing instabilities when working with Clash, where the nor-
malization engine diverges. Forcing ourselves to write code
that Clash can normalize led us, to eradicate programming
patterns that we think were good ideas to eradicate anyway,
for example, avoiding recursive code that is not obviously
well-founded, in the virtual-memory translation.

Indeed, even though the virtual-memory code is always
simplified away for our simple instance that does not use
virtual memory, such dead code is not obviously dead to the
Clash compiler during compilation, and we often observed
divergence, beforewemanually performed the constant prop-
agation that would allow it to realize that the tricky code
was dead. By passing to Clash even conditionally dead code
in the specification, we make compilation more robust to
Clash version changes (normalization engine changing) and
keep the door open to writing an instance in the future that
does exercise this code.

However, there exists a snippet worth discussing because
it is causing trouble in the current version of the Clash com-
piler (understandably so). The following snippet is a list
concatenating the different possible decodings (by the dif-
ferent extensions that are activated in the machine) of an

instruction bit pattern. By construction, that list is guaran-
teed to be of size at most 1, as each bit pattern is defined in
at most one extension.

resultI ++

(if supportsM iset then resultM else []) ++

(if supportsA iset then resultA else []) ++

(if supportsF iset then resultF else []) ++

(if bitwidth iset == 64 then resultI64 else []) ++

(if bitwidth iset == 64 && supportsM iset

then resultM64 else []) ++

(if bitwidth iset == 64 && supportsA iset

then resultA64 else []) ++

(if bitwidth iset == 64 && supportsF iset

then resultF64 else []) ++

resultCSR

We used a bit of a convoluted programming pattern here
to maximize readability and concision. But lists (and more
generally, recursive data structures) are not Clash-friendly,
as they need to be normalized at compile time. Here, this nor-
malization creates an enormous term if iset is not known.
More importantly, even if iset is known, which is the case
for us, it seems that Clash does not perform the constant
propagation before running into the normalization black
hole. It is probably possible to improve Clash’s normaliza-
tion so that this case is handled properly, but we currently
shamelessly use a sed script to comment the offending lines.
This snippet highlights a classical example of a tradeoff:

if one considers extensions and bitwidths to be statically
fixed in one machine, using macros instead of if expressions
would have side-stepped this problem altogether. On the
other hand, having one spec able to handle bitwidths 32 and
64 simultaneously was a requirement for our users writing
a generic RISC-V compiler and proving it generically. We
decided having to replay all the proofs twice would have
been a bigger headache.

3.7 Simple symbolic execution and an SMT-solver
connection

As a small experiment to illustrate how flexible and light-
weight our specification is, we used a combination of Coq
and Z3 to prove equivalence between some tiny program
snippets and variations or optimizations of them.

For instance, we can prove that the following two program
snippets behave the same (a further optimization could re-
move the addi on the right that became dead code, but then
the effect on register t3 is not strictly the same any more):

addi t3, zero, 31 slli t1, t2, 5

mul t1, t2, t3 sub t1, t1, t2

addi t3, zero, 31

In Coq, we instantiate the RiscvMachine instance with a state
monad with failure, using a state record that only contains
a register file and a program counter, but no memory. Most
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of the primitives of Figure 2 are unused in this experiment,
so we implement them as failure. We implement a custom
top-level instruction-running function that does not fetch
instructions from memory but instead from a program rep-
resented as a list of instructions. Then, we state a proof
goal saying that for all initial register files, the final register
file obtained after running the program on the left equals
the one obtained after running the program on the right.
We use Coq’s term-simplification tactics (the one called hnf

turned out to work well for our use case) to partially apply
the instruction-running function to these two concrete pro-
grams and this abstract register file, so that we obtain an
equality between two register files containing the effects of
the RISC-V instructions of the two programs.

Such equalities could of course be proven manually in Coq,
but for the sake of the experiment, we preferred to think of
Coq only as a partial-evaluation engine, and we defined some
Coq notations to pretty-print this equality into the SMT-LIB
format, using which we fed this proof obligation into the Z3
SMT solver. Processing the Coq file takes less than 2 seconds,
and the tiny examples we tried are solved by Z3 within less
than 2 seconds, except for one that took 50 seconds.
The point of this experiment is not to claim that we did

any serious program verification here, but rather, that using
our RISC-V spec, one can prototype an idea with minimal
effort: The whole experiment, including the RiscvMachine

instance, the sample programs, the partial-application tactics,
and the pretty-printing into SMT-LIB syntax, fits into a Coq
file of 200 lines of code (and a two-line shell script feeds
Coq’s output into Z3).

3.8 Building hardware gadgets by partial
application

We also experimented with a more esoteric use of Clash on
our specification. When we fix a machine-code program by
choosing a very specialized instance of our RiscvMachine
type class, Clash partially evaluates the specification to pro-
duce a description of a specialized circuit.

For example, we can partially apply the RISC-V specifica-
tion on a program that computes the GCD of two numbers.
If we use a type-class instance that does not have memory,
except for two hardcoded addresses connected to input wires
and an address connected to an output wire, and use Clash
to compile to hardware, we get a sequential machine. This
technique probably is not practical, though it makes for a
fun demonstration of expressivity of our type-class repre-
sentation.

4 Limitations
Our RISC-V specification is not the one officially blessed as
the golden reference model by the RISC-V Foundation, and
we have not (yet) validated ours against it. Moreover, we
might not be fully up-to-date with the latest modifications

made in the PDF specification [31, 32] that we used as our
reference. As shown in Table 1, we only support the most
common extensions. We also do not support dynamically
changing the bitwidth.
From a design point of view, it is unsatisfactory that our

RiscvMachine type class always contains the getFPRegister

and setFPRegister primitives. It would be better if they only
were present if the floating-point extension is supported,
and similarly for makeReservation, checkReservation, and
clearReservation required by the atomics extension.
Sometimes, a deep embedding of the specification is re-

quired rather than a shallow one, for instance, to export the
specification to another language. In the case of exporting
the specification to Coq, we were able to use the existing
tool hs-to-coq which already parses Haskell to obtain a deep
embedding of the specification, so we did not need to get
access to a deep embedding ourselves.
We did a few experiments trying to translate the specifi-

cation to other languages, but it turned out to require more
engineering effort than originally expected. Parsing Haskell
is only the first step, and after that, unless the target language
supports type classes the sameway as Haskell does, the trans-
lator would have to perform semantic analysis to resolve
the meanings of overloaded operators like + or fromIntegral:
They sometimes refer to operations on the integer type t

(that can be 32-bit or 64-bit), while in other locations, they
refer to machine-width-independent operations.

The expressive power of Haskell is a double-edged sword:
It enables very concise formal specifications but puts more
burden on those whowant to translate it to another language.

5 Related work
Most recent work on multipurpose ISA specs has employed
domain-specific languages toward ends similar to ours. The
Sail [6, 26] language is the highest-profile today for defining
ISA semantics.
Probably the most important domain-specific features of

languages like Sail are dependent types for tracking bitwidths,
specialized support for instructions and their bit-level rep-
resentations, and specialized support for machine state and
updating it imperatively.

In contrast, we restrict ourselves to work within Haskell,
i.e. without dependent types or any ISA-specific language
features. One more-distinctive Haskell feature we do lean
heavily on is type classes, for one type class in particular
standing for machine models, a crucial interposition point
for running our spec in different modes.
One important distinction is that Sail is fundamentally

designed to support multiple ISAs, where we are only con-
cerned with one specific ISAs. Our understanding is that
Sail compiles its source files to an intermediate language, a
lambda calculus with dependent types, structs, and vectors,
which is then pretty-printed to the different target. While
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this strategy works well to generate fast C code, the output
of Sail for proof assistants (Coq, for example) seems to be
tainted with artifacts introduced by the elaboration to the
intermediate language. The output is a Coq representation
hard to manipulate by hand. While Sail focuses on transla-
tion to different languages, we decided first to address the
multitude of problems already arising when trying to target
very few languages.

Another DSL specific to the ARM ISA family [28] received
a lot of attention recently, thanks to systematic adoption
for several of ARM’s most-important ISA variations. That
second DSL has also been translated automatically to Sail.
A notable predecessor to Sail was L3 [15]. These DSLs have
been used for encoding several significant mainstream ISAs
beyond RISC-V, and indeed it is possible that our approach
would be less appropriate for legacy ISAs with complications
and baggage beyond what we had to deal with in RISC-V.

There has also been a good amount of past work writing
ISA semantics directly in the languages of proof assistants.
For instance, Fox and Myreen [16] defined and validated an
ARM semantics in HOL4. As in our semantics, theirs uses
a monadic style for state-threading and incorporation of
effects. However, they implemented a single monad, rather
than using parameterization over a monad as the central
approach to applying one semantics in different use cases.
They also performed extensive validation across a few use
cases, most notably in automated testing against real ARM
processors.
Goel and Hunt [17, 18] developed a detailed model of

x86 in ACL2. Like us, they observed that different use cases
impose different constraints on the formalization: On one
hand, they want to execute their model efficiently to validate
it against real x86 processors, and on the other hand, they
want to prove correctness of programs against their x86
model. To bridge between these different requirements, they
use an abstract state representation for program verification
and a concrete state representation for execution, define
correspondence predicates between the two, and prove that
all modifications preserve the correspondence. Our approach
can be seen as generalizing theirs to consider more than two
interpretations of a semantics within a single logic.

Crafting semantics for multicore systems with weak mem-
ory models has become a substantial research area in its own
right, with some of the earliest work on mainstream ISAs
centered at the University of Cambridge [5, 29]. With the Sail
language and others, it had already been demonstrated that
the meanings of opcodes could be separated from definition
of memory models. Our preliminary results show that the
same should work with our semantics style.
An ISA semantics is the natural meeting point of proofs

for software and hardware, though we have been surprised
to see how few past multipurpose specifications have been
used for substantial proofs on both sides. Considering more
single-purpose specs, CompCert [22] includes quite a few

assembly-language backends with associated operational se-
mantics (including for RISC-V), but as far as we know, these
have not been reused to reason about hardware. The CakeML
project has connected hardware and software proofs via a
semantics for the Silver ISA [24], where, to our knowledge,
neither that ISA nor its semantics have been applied outside
that case study. The most-involved functional-correctness
proof we know of, connected to prior multipurpose spec-
ifications, relates to a Sail ARM spec, proving correctness
of address translation in Isabelle/HOL [6] (with an ongoing
port to Coq [8]). In contrast, our specification has been vali-
dated through a case study [14] doing a complete functional-
correctness proof for a simple embedded system, connecting
proofs of hardware and software parts into a final theorem
whose statement does not depend on our semantics. The
software and hardware sides of that project are compatible
with mainstream RISC-V artifacts: the verified software runs
on an off-the-shelf RISC-V microcontroller, while the veri-
fied processor also runs RISC-V machine code produced by
GCC.

6 Conclusion
In this paper we presented a machine representation of the
RISC-V ISA that we demonstrated was usable in a wide
variety of formal-methods projects.

While the architectural side of the RISC-V community
is watching first and foremost for readability and a golden
standard, we think that the part of the formal-methods com-
munity that wants to use the RISC-V ISA for new research
has different priorities: the specification should work with
various tools of the community. We showed our representa-
tion could achieve that: from a small prototype interacting
with Alloy for memorymodels, to the integration of our spec-
ification in various sizable projects doing theorem proving
in Coq.

We also made sure our specification was complete enough:
we did not want to have a specification where the simplicity
of the specification would have come only from simplifica-
tions made in the subset of the ISA modeled.

While not supporting the complete ISA,we support enough
of the specification to boot an operating system (Linux) in
simulation, while thanks to various modularity techniques,
those features are completely hidden in developments that
do not need them.

This paper demonstrated a ready-to-use and customizable
solution for formal projects (Coq especially) that want a real-
istic specification. We hope our specification style promotes
smooth extension of proofs to cover system-level instruc-
tions, exceptions, and interrupts – paying the cost of each
new complexity only as it is first considered, even though
all are present in the ISA semantics from the start.
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