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Abstract  
 
This paper presents a simulation analysis of the 
algorithm presented in “Routing without Flow 
Control,” by Busch, Herlihy and Wattenhoffer, 
2001, [1].  The hot-potato routing algorithm is 
simulated using Rensselaer’s Optimistic 
Simulation System.  The simulation uses a novel 
reverse computation approach to efficiently and 
optimistically parallelize the system simulation.  
In addition to simulating and analyzing the 
routing algorithm, the performance of the 
simulation itself is also analyzed.   
 
 
1. Problem Description 
 
Busch (et al.) [1] presents the first dynamic hot-
potato routing algorithm that does not require 
explicit flow control.  Hot-potato routing is also 
known as deflection routing.  In hot-potato 
routing, the nodes or routers in the network do 
not have buffers to store the packets in transit.  
They do, however, have a delay loop to contain 
the packet while the routing decision is taking 
place.  Therefore, a packet that is being routed 
must be sent along its destination path or 
deflected in an alternative undesired direction.  
The hot-potato algorithms are useful for optical 
switching networks.  This algorithm can be used 
to route packets through a buffer-less optical 
network.   

 
 

Figure 1:  3 by 3 Torus Network 
 
 
 
 
 
 
 
 
 
1.1.1  Topology 
 
Each node in an N by N rectangular mesh 
network is connected to its four neighbors via a 
bi-directional link.  If the left edge of the mesh 
network is connected to the right edge of the 
mesh and the top edge of the mesh is connected 
to the bottom edge of the mesh, the result is a 
torus shaped mesh (See Figure 2).   

 
1.1 Network Description 
 
The performance of the algorithm presented in 
[1] is analyzed in a buffer-less, synchronous, N 
by N rectangular mesh network.   
  
 
 



 

 

The packet is delayed by an optical fiber loop to 
allow time for the processing of the packet label 
and the packet switching.   
 
1.2 Algorithm 
 
Busch (et al.) [1] details and presents proofs 
regarding a hot-potato routing algorithm under 
dynamic packet injection.   
 
1.2.1 Algorithm Analysis   

Figure 2:  3 - Spatial Representation 
of an N by N Torus Network 

Dynamic versus static analysis of a routing 
algorithm differ by the definition of the 
workload.  In a static analysis, all packets are 
assumed to be injected into the network 
simultaneously when the analysis is initialized.  
In a dynamic analysis, packets are injected 
continuously at rates that can vary. 

  
 
The network topology used in the theoretical 
algorithm analysis is the more straightforward 
mesh topology because it makes the problem 
more tractable.  The theoretical analysis could be 
easily extended to the torus topology.  The 
simulation uses the torus network because it is a 
more practical implementation of essentially the 
same topology.  It is more practical because the 
maximum distance between any two nodes is  

 
Under dynamic analysis, the algorithm presented 
in [1] is shown to guarantee expected O(n) 
delivery and injection times.    
 
1.2.2 Algorithm Characteristics 
 N – 1 rather than 2N – 1 for the mesh topology. 
Flow Control is a mechanism in which packet 
sources adjust their load so that they do not 
overload a network.  They do this by notifying or 
monitoring the network.  Either strategy requires 
explicit communication with the overall network.  

 
1.1.2 Characteristics 
 
The network is synchronous.  As such, time is 
measured in discrete time steps.  A node 
traverses a link in one time step.  The links are 
bidirectional.   

 
Hot-potato routing avoids flow control by using 
a simple, locally optimal (greedy) routing 
strategy.  The simple algorithm does not need to 
communicate with a central flow control 
mechanism.  The routing algorithm can be 
implemented as a series of AND / NOT 
operations to minimize switching overhead thus 
allowing rapid switching implementation in an 
optical network.  The injection intervals and 
delivery times are bounded.  This allows the 
network to simultaneously accommodate high-
speed injection rates and lower speed users.  It 
also allows a much higher utilization of network 
links where flow controlled routing results in 
significant under-utilization of network links.  
Together these characteristics result in a more 
flexible and higher performance optical network. 

 
The network is buffer-less.  Buffering allows a 
network to store packets until they can be 
forwarded.  A buffering network makes it 
difficult to establish a bound for the delay that a 
packet may encounter in its route.  Also, 
buffering is not practical for certain types of 
networks such as optical networks.  In an optical 
network, packets cannot be buffered without 
converting them to their electronic form.  It is 
desirable to maintain packets in their optical 
form for speed. 
 
1.1.3 Model of Optical Switching Network 
 
In optical label switching, a packet’s optical 
label contains routing and control information 
such as the source, destination and priority of the 
packet.  The size of the packet is not considered 
in this particular model.  In the hot-potato model, 
the packet label contains only the destination and 
priority. 

 
The algorithm presented in [1] is greedy.  A 
greedy algorithm is one in which a locally 
optimal solution is chosen.  In the case of a 
routing algorithm, it chooses to route a packet to 
a link, which brings the packet closer to its 
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destination, whenever this choice is possible.  As 
such, each packet attempts to take a greedy path 
to its respective destination. 
 
A similar algorithm is presented in Das (et al.) 
[2].  However, that algorithm analyzed the 
performance in a static system.   
 
1.2.3 Algorithm Rules 
 
The algorithm rules presented in this section are 
defined in terms of good-links and bad-links.  A 
good-link is any link that brings the packet closer 
to its destination.  A bad-link is any link that 
does not bring the packet closer to its 
destination. 
 
The basic logic behind hot-potato routing is that 
at each time step a packet attempts to follow a 
good-link.  The result of this locally optimal 
decision is a greed-path.  A variation on the 
greed-path is the home-run path which is also 
known as a one-bend path.  A home-run path is 
defined as a path that only has one turn or bend 
in it and follows the row first followed by the 
column.  For example, suppose a packet is 
following its home-run path.  In the first part of 
its home-run path the packet remains in the row 
it is in, but moves in the direction of its 
destination column.  The second part of the 
home-run path occurs after it reaches its 
destination column.  Once it reaches its 
destination column, the packet follows the 
column links until it reaches its destination node. 
 
There are four priority states:  Sleeping, Active, 
Excited and Running.  Sleeping is the  lowest 
priority.  Running is the highest priority. 
 
The higher priority packets are given routing 
precedence over the lower priority packets.  
Priority ties are broken arbitrarily.   
 
The actual routing decision is a bit more 
complex and the routing decision differs for 
packets of different priority states. 
 
In the Sleeping state, the packet is routed to any 
good-link.  When a packet in the Sleeping state 
is routed, it is given a chance with the probability 
of 1/24n (where N is the dimension of the N by 
N torus network) to upgrade to the Active state. 
 
In the Active state, the packet is routed to any 
good-link.   When an active packet is deflected, 
it is given a chance with the probability of 1/16n 

(where N is the dimension of the N by N torus 
network) to upgrade to the Excited state. 
 
In the Excited state, the packet is routed via its 
home-run path.  If the packet can be routed via 
its home-run path, the packet’s priority is 
increased to the Running state.  If the packet 
cannot be routed via its home-run path and is 
subsequently deflected, the packet returns to the 
Active state.  Note that a packet remains in the 
Excited state for only, at most, one time step. 
  
In the Running state, the packet is routed via its 
home-run path.  Due to the dynamics of the 
routing algorithm, a running packet cannot be 
deflected from its path except while it is turning 
(from the first to the second part of its home-run 
path).  If a running packet is deflected (by 
another running packet) while turning, it returns 
to the lower priority Active state. 
 
 
2. Related Work  
 
Experimental analysis of Hot-potato Routing 
Algorithms in a 2-Dimensional Torus Network is 
presented in [5].  This paper compares four 
different algorithms using tori of several sizes 
and 100 inputs.  The implementation and testing 
strategy is significantly different than the 
approach taken in this paper, however, the 
objective is the same. 
 
The implementation and testing strategy used in 
the experiments presented in this paper is similar 
to the approach taken in [4].  In [4] a parallel 
simulation approach is used to simulate a 
Personal Communication Service (PCS network 
using Rensselaer’s Optimistic Simulation System 
(ROSS).  This approach extends the work 
performed in [6] on the Georgia Tech Time 
Warp System to use the reverse computation 
method implemented by ROSS. 
 
 
3. Solution Description  
 
The hot-potato routing algorithm was simulated 
on ROSS.  ROSS is a parallel discrete-event 
simulator, specifically, a C-based Time Warp 
system.  The simulation was run on a quad-
processor Personal Computer (PC) server.  This 
optimistic simulation system uses Fujimoto’s 
Global Virtual Time (GVT) algorithm for 
process synchronization, reverse computation to 
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typedef struct { reduce rollback overhead and Kernel Processes 
(KPs) to minimize total rollbacks.    ... 

 enum  priorities priority;  
 int  destination_row; 3.1 Model Representation 
 int  destination_column;  
 ... This section explains how the hot-potato 

algorithm and the associated network is 
represented in ROSS.   

} Msg_Data; 
 
  
 3.1.1 Logical Processes 
3.1.3 Network Mapping  
 The primary component in a ROSS simulation 

application is the Logical Process (LP).  A 
simulation is comprised of a collection of LPs, 
each simulating a separate component of the 
system.  In the hot-potato routing simulation, 
each LP represents a router.  The collection of 
LPs represent an network, specifically, a buffer-
less optical network.  In ROSS LPs are generated 
in the startup function when the simulation is 
initiated.  

The routers in the dynamic hot-potato routing 
algorithm are configured into an N by N torus 
network.  This topology is emulated in the 
simulation by restricting where a router can route 
a packet.  Specifically, the routers are allowed to 
route packets to four neighboring routers.  This 
is implemented by a calculation within each LP.  
In ROSS each LP is given a number.  For 
example, if the network consists of a 32*32 torus 
network, ROSS generates 1024 LPs numbered 
from 0 to 1023.  Row 1 contains LP 0 – 31, Row 
2 contains LP 32 – 63 etc.  These LPs form an 
implicit wrap-around grid of 32 rows each with 
32 LPs per row.  Each LP can send a packet in 4 
directions (North, South, East and West).  If an 
LP chooses to send a packet East, the LPx sends 
the packet to LPx+1.  The network wraps around.  
Therefore, if an LP resides on the East most side 
of the network, it must send the packet to the 
West most LP in the same row.  To do this, the 
following calculation is performed: 

 
3.1.2 Messages 
 
The LPs communicate with each other within the 
simulation via messages.  Each message 
represents an event in the system.  These 
messages are generated by the LPs when a new 
event is needed.  The messages keep the system 
going, as such, ROSS is an event driven 
simulator.  ROSS runs on a shared memory 
parallel processing PC server.  Therefore, the 
messages are not “sent” in the way they would 
be on a distributed system.   Sending a message 
from the source LP to the destination LP merely 
involves assigning ownership of the message’s 
memory location from the source LP to the 
destination LP.  This shared memory architecture 
allows ROSS to use Fujimoto’s GVT algorithm 
rather than a less efficient distributed GVT 
algorithm such as Mattern’s [7].   

 
 
NewLp =  
 
  ((lp->id / NumLpsRT)* NumLpsRT)    
  +     ((lp->id + 1) % NumLpsRT);  
 
/* 
lp->id   :  The sending LP  
  number. 

 
The messages in this dynamic hot-potato routing 
simulation represent packets to be routed.  A 
router will receive a packet, decide what to do 
with it and generate a new message (representing 
a packet) destined for another LP if the current 
router is not the packet’s destination.  

 
NumLpsRT :  The number of rows 
  in the network.  
 
NewLp    :  The destination LP  
  number. */  
 Each packet in the dynamic hot-potato routing 

algorithm contains a header or label indicating its 
destination and priority.  The data structure in the 
ROSS application that represents the message is 
the message struct.  The packet header is 
represented in the simulation by three variables 
in the message struct.   

 
 
As you can see from the above description, the 
network topology is not explicitly laid out by the 
simulation setup.  It is implicitly defined by the 
routing restrictions of the destination calculation. 
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void 
Router_EventHandler(Router_State 
*SV, tw_bf *CV, Msg_Data *M, 
tw_lp *lp) { 

3.1.4 Routing Algorithm 
 
The dynamic hot-potato routing algorithm is 
implemented within each LP or router.  Each 
router is identical.  When a message 
(synonymous with event or packet) is executed 
in a given router, the router executes the given 
event type denoted in the message struct.  There 
are four event types: ARRIVE, ROUTE, 
HEARTBEAT and 
PACKET_INJECTION_APPLICATION.   

 
enum directions NewDir; 
enum bool deflected; 
NewDir = NO_DIRECTION; 
 
/* reset bit fields CV->* to 0 
for this event */ 
*(int *)CV = (int)0;  
 The ARRIVE event simulates the arrival of a 

packet to a router.  The main function of an 
ARRIVE event is to generate an appropriate 
message to itself (destined for the same LP) to 
initiate a ROUTE event.  The priority level of the 
arriving packet determines the order in which the 
packet’s route will be considered by the router.  
To facilitate this, the time stamps of the 
generated ROUTE events are staggered based on 
priority.  If the packet arrives at its destination 
router, no new event is created.  Instead, 
statistics regarding the event, such as its delivery 
time, are recorded.   

deflected = false; 
 
switch(M->event_type) { 
 
case ARRIVE: 
Router_ARRIVE_EventHandler( SV, 
CV, M, lp ); 
break; 
 
case ROUTE: 
Router_ROUTE_EventHandler( SV, 
CV, M, lp ); 
break; 

  
The ROUTE event determines which direction 
the packet will be routed.  It also determines if 
the packet’s priority will be changed, as 
described in the algorithm description above.  It 
then creates a new ARRIVE event at the 
appropriate destination router.   

case HEARTBEAT: 
Router_HEARTBEAT_EventHandler( 
SV, CV, M, lp ); 
break; 
 
case 
PACKET_INJECTION_APPLICATION:  
Router_PACKET_INJECTION_APPLICAT
ION_EventHandler( SV, CV, M, lp 
); 

The HEARTBEAT event simply generates events 
to perform administrative overhead.  In some 
configurations, that overhead can be taken care 
of by other events.  In those cases, the 
HEARTBEAT event is not used, in order to 
reduce the total number of simulated events. 

break; 
 
} 
  
} The PACKET_INJECTION_APPLICATION 

event simulates the injection of new packets into 
the system.  The startup program determines the 
number of LPs that are packet generators based 
on the application input parameters.  The number 
of packet generators can vary anywhere from 
zero to N by N LPs.  In our tests, N LPs are 
packet generators.  This simulates a scenario 
where the network is kept relatively full, yet 
there are still specific sources. 

 
 
3.1.5 Statistics 
 
This simulation collects several statistics.  In 
particular, we want to know what the expected 
packet delivery time is with respect to the 
network size.  Therefore, each router keeps track 
of the total number of packets that were 
delivered to it, how long the packets were in 
transit and how far they came.    

 
  
We also want to know how long a packet waits 
to be injected into the network (expected and 
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 worst case time).  Therefore, each router keeps 
track of the amount of time that each injected 
packet waited to be injected, the total number of 
packets that were injected into the system and 
the longest time that any packet had to wait to be 
injected. 

void 
RC_Router_ROUTE_EventHandler( 
 Router_State *SV,  
 tw_bf *CV,  
 Msg_Data *M,  
 tw_lp *lp)   
{ All of the above statistics are aggregated from 

each router to determine system wide totals.  
These statistics are aggregated by a statistics 
collection function.  The statistics collection 
function is an adaptable ROSS construct that 
executes once for each LP (router) when the 
simulation finishes.   The application 
programmer implements the statistics collection 
function content in much the same way that a 
C++ visitor functor is implemented.   

 
if( CV->c1 ) { 
tw_rand_reverse_unif(lp->id);  
}   
if( CV->c2 ) { 
tw_rand_reverse_unif(lp->id);  
} 
 
SV->link[M->Saved_NewDir]= 
 M->Saved_NewDir_status;  
  
} 3.2 ROSS Specific Issues 

  
 There are certain aspects of the simulation 

application that are specific to ROSS (or 
inherited from its predecessor, Georgia Tech 
Time Warp [2]).  These are not simply syntactic 
issues but conceptual in nature. 

3.2.2 Simultaneous Events and 
 Randomization 
 
Due to the nature of this simulation, 
simultaneous events are likely.  The network is 
synchronous, as such, routing events occur at 
discrete time steps (one time step = 100).  If two 
packets of the same priority level are routed from 
the same LP at the same time-step, the simulator 
executes them in an arbitrary order.  The order is 
dependent on the pace of the simulation.  The 
simulation is parallel; therefore, events simulated 
on one processor may get ahead of events 
simulated on a different processor.  
Consequently, the order that simultaneous events 
are simulated may differ from one simulation run 
to the next.  As a result, the simulation is not 
deterministic.  In other words, the results of the 
simulation may differ from one run to the next.  
The results typically will be approximately the 
same.  However, it is desirable to show that a 
simulation is repeatable. 

 
3.2.1 Reverse Computation 
 
ROSS is an optimistic parallel simulator.  
Therefore, ROSS divides up the simulation tasks 
among processors (PEs), which then execute 
their assigned tasks optimistically.  Basically, 
each processor operates semi-autonomously by 
assuming that the information that it currently 
has is correct and complete.  ROSS performs 
inter-processor communication via messages.   
Therefore, each PE operates in this manner until 
an incoming message informs it differently.  A 
PE can get ahead of the other processors.  At 
some point, it may receive a message with a time 
stamp (ts) that is in the past relative to that PE’s 
local simulation time.  At that point, the 
simulation on that PE must rollback to the time-
stamp of the incoming message.  ROSS uses a 
technique called Reverse Computation to do this.  
This technique is different than the state-saving 
technique used in the Georgia Tech Time Warp 
system.  It rolls back the simulation by 
computing the events in reverse, which re-
instates the respective LP to its previous state.   

 
In order to make the simulation deterministic and 
therefore repeatable, paradoxically, I had to use a 
random number generator.   
 
First I identified any case in the simulation 
where the execution order of simultaneous 
events would affect the outcome of the 
simulation.  The only case where this happens is 
when a router routes two (or more) packets that 
have the same priority level, which would have 
been routed to the same link.  In that case, the 

 
For example, the following function reverse 
computes a ROUTE event: 
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packet that arrives at the router (in the 
simulation) first will be routed first and will get 
the desired link.  Each such occurrence will 
usually affect the network statistics.  
 
In order to avoid this situation, I introduced a 
randomized delay in the arrival of each packet.  
This delay is introduced when the packet is 
injected and is carried throughout the simulation.  
In the non-random simulation a packet would 
arrive at time 600 (any multiple of 100), but in 
the randomized simulation the packet now 
arrives at time 600 + random number from 0 to 
.5.  The code works as follows: 
 
 
/*  inject PACKET  */ 
ts = 1+ ( (double) 
tw_rand_integer( lp->id, 1, 
50000000)/100000000);  
  CurEvent = 
tw_event_new(lp, ts, lp); 
 
 
 
The reasons that this randomization makes the 
simulation deterministic are: 
 

1. the randomization eliminates 
simultaneous events, 

 
2. the random number generator is 

reversible [3, Section 3.2], 
 
3. and the random number generator is 

deterministic.   
 
Each router uses the same random number 
generator with a different seed value.  The 
random number generator is reversed by calling: 
 
tw_rand_reverse_unif(lp->id);  
   
 
3.2.6 LP/KP Mapping 
 
ROSS uses KPs which are groupings of LPs 
within a KP.  KPs help to minimize rollbacks to 
improve performance.   
 
A key factor which impacts the effectiveness of 
KPs in improving performance is the LP/KP 
mapping.  In the hot-potato simulation, this 
mapping was constructed so as to minimize 
inter-PE communication (IPC) and inter-KP 
(IKC) communication.  If the LPs within a given 

KP are adjacent to each other, when a packet is 
routed to an adjacent LP that LP is likely to be in 
the same KP.  However, if the LPs within a 
given KP are randomly assigned, then when a 
packet is routed to an adjacent LP that LP is 
likely to be in another KP and quite possibly 
another PE.  Therefore, it is beneficial to assign 
adjacent LPs to the same KP and adjacent KPs to 
the same PE in order to minimize IPC and IKC.  
Therefore, the hot-potato simulation uses an 
LP/KP/PE mapping which divides up the 
network into rectangular areas of LPs and 
rectangular areas of KPs.  The LPs in a given 
area will be assigned to one KP and the LPs in a 
given area will be assigned to one PE.  This 
configuration minimizes the size of the 
circumference of the KP – KP boundaries and 
PE – PE boundaries, which consequently 
minimizes IPC and IKP. 
 
The number of KPs also affects the number of 
rollbacks.  In general, the more KPs you have, 
the fewer rollbacks you have.  This relationship 
was analyzed in the hot-potato simulation.  A 
detailed discussion of this is presented in Section 
4.2.3 of this paper. 

 
3.3 Workload Characteristics 
 
This section discusses the input parameters of 
the simulation and their affect on the workload 
and performance of the system. 
 
3.3.1 Configurations/Parameterization 
 
The simulation is parameterized so that it can be 
run in different configurations.   
 
The first input parameter N indicates the size of 
the network to be simulated.  N must be a 
multiple of 8 so that it comports with the number 
of KPs (discussed below) used in the LP 
mapping. 
 
The second input parameter 
number_of_processors indicates the 
number of processors in the parallel processing 
computer.  ROSS needs this information so that 
it can properly and efficiently map LPs to 
processors.  
 
The third input parameter 
SIMULATION_DURATION indicates how 
long, in simulation time, the simulation will run. 
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The fourth parameter probability_i 
indicates how many routers should produce 
packets.  The user can specify that anywhere 
from 0 to 100% of the routers will be sources 
and inject packets into the network.  The user 
input parameter is probabilistic such that if the 
user inputs X% then the probability that a given 
router will be an injector is X/100 (i.e. 100/100 = 
all, 0/100 = none).   
 
Note that the network is initialized to full (four 
packets per router).  Therefore, if the user inputs 
0, then the system is run on a one-shot or static 
basis. 
 
The fifth parameter 
absorb_sleeping_packet indicates if a 
router should absorb a packet that is in the 
sleeping state.  Under normal operations, a 
network running a hot-potato routing algorithm 
would absorb any packet that has reached its 
destination.  However, the model created and 
described in [1] uses certain assumptions and 
rule constructions that make the anaysis more 
tractable.  Therefore, the simulation may be run 
in either mode.  One would indicate the 
algorithm’s practical performance; the other only 
serves as verification of the algorithm proof. 
 
3.3.2 Parallelism  
 
The parameters discussed in section 3.3.1 
(specifically N and probability_i) affect 
the workload of the simulation. 
 
The size of the system defined by N significantly 
affects the speed of the simulation.  Although a 
larger network with more routers generally does 
increase parallelization, the simulation presented 
here experienced lower event rates as N 
increased (See Figure 5).  Additionally, the 
absolute time that the simulation takes to 
advance one time step is much larger (generally 
O(n2)). 
 
The input parameter probability_i 
determines how many routers have an associated 
injection application.  Each injection application 
attempts to inject a packet at every time step.  
Therefore, if N routers are injecting packets, then 
O(N/N) or O(1) packets are injected at each time 
step. 
 
As stated above, a larger network yields higher 
parallelism.  This is because the work load on 

each PE will usually be more balanced.  Since 
the workload on each LP is somewhat random, 
the more LPs per PE that there are averages the 
randomness over more LPs creating a more 
balanced load.   
 
More LPs (determined by N) per PE also creates 
less inter-process communication because 
adjacent LPs are simulated on the same PE.  LPs 
only send messages to adjacent LPs (and to 
themselves).  The LPs are grouped into blocks 
designed to minimize the connections between 
LPs on other PEs.  Inter-processor 
communication only occurs when a packet is 
routed at the edge of one block (on one PE), to 
the edge of another block (on another PE).  
Rollbacks occur when messages from the past 
(in simulation time) are sent to a PE from 
another PE that is “behind” in simulation time.  
Therefore, if we minimize inter-processor 
communication, we also minimize rollbacks and 
increase parallelism. 
 
I put “behind” in quotes because the simulation 
time is relative.  The simulation time of the 
slowest PE is actually the real overall simulation 
time.   
 
 
4. Solution Analysis  
 
This section discusses the results of the hot-
potato routing simulation as well as the 
performance of the simulation itself. 
 
4.1 Algorithm Analysis 
 
The hot-potato routing algorithm described in [1] 
guarantees an expected O(N) delivery and 
injection time where N is the diameter of the 
network.  The simulation was designed to test 
these guarantees over a variety of conditions. 
 
Figure 3 and 4 display the results of the system 
simulated under four different loads and 32 
different network diameters.  The loads are 
represented as a percentage of the total number 
of LPs (routers) that will have an associated 
packet injection application.  Each packet 
injection application injects packets at a rate of 
one packet per time step.  The network diameters 
used in the simulated configurations range from 
8 to 256. 
 
Figure 3 shows the average packet delivery time 
with respect to the network size.   
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You can see from the graph that the average 
packet injection waiting time increases 
approximately linearly with N within each 
injection configuration.  However, it is obvious 
that the injection rate (determined by the number 
of injection applications) has a significant impact 
on the injection wait.   
 
The injection of packets is ultimately controlled 
by the network mechanics.  The injection rate is 
limited because a packet can only be injected 
when there is a free link at that router.  A link 
becomes free when a packet is delivered to a 
router.  A router will have a free link if it is the 
final destination of a packet that is delivered to 
it.  A router will also have a free link if it does 
not receive a packet from one of its adjacent 
routers at that time step.  Therefore, it appears 
that the average injection rate is linear with 
respect to N and is bounded by the delivery rate. 

 
Figure 3:  Packet Delivery Time 

 
 
You can see from the graph that the average 
delivery time increases approximately linearly 
with respect to N.  The packet injection rate has a 
very limited effect on the packet delivery rate.  
One notable feature of the results is the change in 
trajectory of the graph at approximately N = 188.  
This change is caused by the probabilistic packet 
state changing rules.  In a larger network, a 
greater percentage of packets have changed to 
higher states.  This change in state comes with a 
change in how the packet is routed and 
consequently makes the algorithm perform 
slightly better.   

 
4.2 Simulation Analysis 
 
The purpose of using parallel simulation rather 
than sequential simulation is to speed up the 
simulation thus reducing simulation time.  
Simulation time is measured in seconds.  ROSS 
is an event oriented discrete event simulator and 
therefore simulates the system event by event (in 
parallel).  Accordingly, a simulator’s speed is the 
average number of events that it simulates in a 
time period.  A simulator’s speed is also known 
as its Event Rate.  Speed is unitized into events 
per second. 

 
Another statistic of interest is how long a packet 
waits to be injected into the network.  Figure 4 
shows the average number of time-steps a packet 
waits to be injected.   

 
ROSS uses various mechanisms to increase the 
speed of the model.  KPs are one such 
mechanism.  The effect of KPs on rollbacks and 
event rate is examined in this section.   
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However, a fast simulation is not useful unless it 
faithfully simulates the system being modeled.  
Therefore, this section appropriately examines 
the correctness of the simulation before speed or 
its associated enhancement mechanisms.  
 
4.2.1 Correctness 
 
A significant concern in parallel simulation is the 
correctness of the results.  A useful measure of 
correctness is repeatability of results. 
 
An optimistic parallel simulation often simulates 
some of the events in a different order than they 
actually occur.  Therefore, a synchronization 

 
Figure 4:  Average Wait to Inject a Packet 
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mechanism must ensure that the simulation 
faithfully emulates the system.  However, the 
complexities of the system (i.e. simultaneous 
events) make this task difficult.   
 
Therefore, it is important to validate the results 
of the parallel simulation with the results of the 
sequential simulation.  Consequently, the only 
way for the results of the parallel simulation to 
match the sequential model is for the parallel 
model to be deterministic.   
 
The sample output in Attachment 3 shows that 
the parallel and sequential models produce 
identical results (under the same model 
configuration).  As such, the parallel model is 
deterministic and therefore repeatable.   
 
4.2.2 Speed-up 
 
As noted above, the primary objective of parallel 
(versus sequential) simulation is speed.  This is 
very important for large problems which require 
the analysis of very large networks or very long 
model periods. 
 
The graph in Figure 5 compares the speed of the 
simulation running in sequential mode (one 
processor) with the speed of the simulation 
running in parallel mode with two and four 
processors.  The network diameters (N) used in 
the simulated configurations ranges from 16 to 
256 which equates to 256 to 65,536 LPs. 
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Figure 5:  Parallel Speed-Up 

The graph shows that for 1024 LPs (N = 32), the 
4-Processor simulation is almost four times as 

fast as the sequential (1-Processor) simulation.  
However, for larger networks, the 4-Processor 
simulation is approximately twice as fast. 
 
Linear speed-up is considered to be optimal 
(although super-linear speed-up is sometimes 
experienced).  Linear speed-up means that a 
simulator running with four processors is four 
times as fast as a simulator running with one 
processor.  Parallel simulation requires 
synchronization overhead which reduces this 
speed-up. 
 
The speed-up of a parallel simulation in 
relationship to linear speed-up is the simulation’s 
efficiency.  The graph in Figure 6 shows the 
efficiency of the graph in Figure 5. 
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Figure 6:  Efficiency 
 

 
The simulation for smaller networks is close to 
linear (1), but the simulation of larger graphs 
drops to approximately .5.  Overall, the 
efficiency of this simulation is very good. 
 
4.2.3 Kernel Processes 
 
ROSS uses KPs, which are groupings of LPs 
within a PE.  One purpose of a KP is to contain 
rollbacks to a smaller sub-set of LPs within a PE.  
This is an improvement over rolling back all of 
the LPs simulated on a given PE.  Rolling back 
an LP that was unaffected by the past message is 
called a false rollback.  The more KPs you have, 
the fewer false rollbacks you have because each 
KP represents smaller sub-set of LPs.  All else 
being equal, additional false rollbacks decrease 
the efficiency of the parallel simulation.  
However, there are competing overhead 
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considerations that compromise this assertion.  
[4, Page 6] shows that the optimum number of 
KPs (in terms of total events rolled back) is 
between 32 and 64.  The dynamic hot-potato 
routing model uses 64 KPs. 
 
The hot-potato model was tested to determine the 
effect of KPs on the simulation.  For example, 
we measured the effect of the number of KPs on 
rollbacks and, consequently, event rate. 
 
The graphs in Figures 7a, 7b, and 7c show that 
the number of rollbacks in the simulation of a 
small network is significantly affected by the 
number of KPs.  However, as the simulation 
becomes larger, the effect is lessened.  This 
effect is probably due to a trade-off between 
rollbacks and fossil collection [4].  As the 
number of KPs increases, the fossil collection 
overhead also increases.  However, the fossil 
collection for small networks is not significant 
where the fossil collection for large networks is 
significant.  This is due to the linear relationship 
between fossil collection overhead and the 
number of LPs.   

 
Figure 7a:  Effect of the Number of KPs on 
Events Rolled Back  (5 Network Diameters) 
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Therefore, for a small network, the benefit of 
increasing the number of KPs far outweighs the 
costs.  However, for larger networks, the benefits 
and costs approximately cancel each other out. 
 
The graphs in Figures 7a, 7b, and 7c all show 
essentially the same information.  However, due 
to the extreme variation in Total Events Rolled 
Back as the network diameter changes, Figure 7a 
totally obscures the Rollback – KP relationship 
for the larger networks.  Therefore, the 
information is presented in Figure 7b and 7c 
using a different scale and only the larger 
configurations. 

 
Figure 7b:  Effect of the Number of KPs on 
Events Rolled Back  (4 Network Diameters) 
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Figure 7c:  Effect of the Number of KPs on 

Events Rolled Back  (Larger Networks) 
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5. Conclusion  One fascinating feature of the data shown in 
Figure 7c is the extremely low rollback 
occurrence for the N = 128 configuration, while 
the larger (N = 256) and smaller (N = 64) 
configurations both have more rollbacks.  This 
observation is incongruent with our assumptions 
regarding the Rollback – KP relationship.  The 
only explanation that I have for this aberrant 
behavior is the ethereal concept known as 
serendipity. 

 
In this paper a practical version of the algorithm 
presented in [1] was analyzed using computer 
simulation.  The performance of the computer 
simulation was analyzed as well.   
   
This analysis: 
 

 confirmed the theoretical analysis 
presented in [1] and  

The combined affect of the trade-off between the 
benefits and costs of increasing the number of 
KPs is captured by the event rate.  The graph in 
Figure 8 shows the relationship between the 
number of KPs and the event rate.  It is clear that 
the performance of the simulation of the smaller 
(16 x 16) network is improved by the use of 
more KPs.  However, as the network size 
becomes larger, this benefit diminishes. 

 demonstrated efficient parallel speed-up 
for the network simulation using ROSS. 

 
The simulation analysis provided in this paper 
combined with the theoretical analysis presented 
in [1] provides sound evidence of the usefulness 
of the routing algorithm for optical network 
routing.   
 

 This paper also demonstrated the usefulness of 
computer simulation for the analysis of network 
routing algorithms.  In particular, computer 
simulation proved to be well-suited for analyzing 
greedy routing algorithms, which are difficult to 
analyze theoretically. 
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ROSS provide very good speed-up for the 
parallel processing of the above simulations.  
This is very important for problems which 
require the analysis of very large networks.  
Consequently, ROSS proved to be a very good 
tool for this type of network simulation. 
 
 

 
Figure 8:  Effect of the Number of Kernel 

Processes on Event Rate 
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