
Routing without Flow Control
Hot-Potato Routing
Simulation Analysis

Lawrence Bush

Computer Science Department
Rensselaer Polytechnic Institute

Troy, New York
December 5, 2002

Abstract

This paper presents a simulation analysis of the
algorithm presented in “Routing without Flow
Control,” by Busch, Herlihy and Wattenhoffer,
2001, [1]. The hot-potato routing algorithm is
simulated using Rensselaer’s Optimistic
Simulation System. The simulation uses a novel
reverse computation approach to efficiently and
optimistically parallelize the system simulation.
In addition to simulating and analyzing the
routing algorithm, the performance of the
simulation itself is also analyzed.

1. Problem Description

Busch (et al.) [1] presents the first dynamic hot-
potato routing algorithm that does not require
explicit flow control. Hot-potato routing is also
known as deflection routing. In hot-potato
routing, the nodes or routers in the network do
not have buffers to store the packets in transit.
They do, however, have a delay loop to contain
the packet while the routing decision is taking
place. Therefore, a packet that is being routed
must be sent along its destination path or
deflected in an alternative undesired direction.
The hot-potato algorithms are useful for optical
switching networks. This algorithm can be used
to route packets through a buffer-less optical
network.

Figure 1: 3 by 3 Torus Network

1.1.1 Topology

Each node in an N by N rectangular mesh
network is connected to its four neighbors via a
bi-directional link. If the left edge of the mesh
network is connected to the right edge of the
mesh and the top edge of the mesh is connected
to the bottom edge of the mesh, the result is a
torus shaped mesh (See Figure 2).

1.1 Network Description

The performance of the algorithm presented in
[1] is analyzed in a buffer-less, synchronous, N
by N rectangular mesh network.

The packet is delayed by an optical fiber loop to
allow time for the processing of the packet label
and the packet switching.

1.2 Algorithm

Busch (et al.) [1] details and presents proofs
regarding a hot-potato routing algorithm under
dynamic packet injection.

1.2.1 Algorithm Analysis

Figure 2: 3 - Spatial Representation
of an N by N Torus Network

Dynamic versus static analysis of a routing
algorithm differ by the definition of the
workload. In a static analysis, all packets are
assumed to be injected into the network
simultaneously when the analysis is initialized.
In a dynamic analysis, packets are injected
continuously at rates that can vary.

The network topology used in the theoretical
algorithm analysis is the more straightforward
mesh topology because it makes the problem
more tractable. The theoretical analysis could be
easily extended to the torus topology. The
simulation uses the torus network because it is a
more practical implementation of essentially the
same topology. It is more practical because the
maximum distance between any two nodes is

Under dynamic analysis, the algorithm presented
in [1] is shown to guarantee expected O(n)
delivery and injection times.

1.2.2 Algorithm Characteristics
 N – 1 rather than 2N – 1 for the mesh topology.
Flow Control is a mechanism in which packet
sources adjust their load so that they do not
overload a network. They do this by notifying or
monitoring the network. Either strategy requires
explicit communication with the overall network.

1.1.2 Characteristics

The network is synchronous. As such, time is
measured in discrete time steps. A node
traverses a link in one time step. The links are
bidirectional.

Hot-potato routing avoids flow control by using
a simple, locally optimal (greedy) routing
strategy. The simple algorithm does not need to
communicate with a central flow control
mechanism. The routing algorithm can be
implemented as a series of AND / NOT
operations to minimize switching overhead thus
allowing rapid switching implementation in an
optical network. The injection intervals and
delivery times are bounded. This allows the
network to simultaneously accommodate high-
speed injection rates and lower speed users. It
also allows a much higher utilization of network
links where flow controlled routing results in
significant under-utilization of network links.
Together these characteristics result in a more
flexible and higher performance optical network.

The network is buffer-less. Buffering allows a
network to store packets until they can be
forwarded. A buffering network makes it
difficult to establish a bound for the delay that a
packet may encounter in its route. Also,
buffering is not practical for certain types of
networks such as optical networks. In an optical
network, packets cannot be buffered without
converting them to their electronic form. It is
desirable to maintain packets in their optical
form for speed.

1.1.3 Model of Optical Switching Network

In optical label switching, a packet’s optical
label contains routing and control information
such as the source, destination and priority of the
packet. The size of the packet is not considered
in this particular model. In the hot-potato model,
the packet label contains only the destination and
priority.

The algorithm presented in [1] is greedy. A
greedy algorithm is one in which a locally
optimal solution is chosen. In the case of a
routing algorithm, it chooses to route a packet to
a link, which brings the packet closer to its

 2

destination, whenever this choice is possible. As
such, each packet attempts to take a greedy path
to its respective destination.

A similar algorithm is presented in Das (et al.)
[2]. However, that algorithm analyzed the
performance in a static system.

1.2.3 Algorithm Rules

The algorithm rules presented in this section are
defined in terms of good-links and bad-links. A
good-link is any link that brings the packet closer
to its destination. A bad-link is any link that
does not bring the packet closer to its
destination.

The basic logic behind hot-potato routing is that
at each time step a packet attempts to follow a
good-link. The result of this locally optimal
decision is a greed-path. A variation on the
greed-path is the home-run path which is also
known as a one-bend path. A home-run path is
defined as a path that only has one turn or bend
in it and follows the row first followed by the
column. For example, suppose a packet is
following its home-run path. In the first part of
its home-run path the packet remains in the row
it is in, but moves in the direction of its
destination column. The second part of the
home-run path occurs after it reaches its
destination column. Once it reaches its
destination column, the packet follows the
column links until it reaches its destination node.

There are four priority states: Sleeping, Active,
Excited and Running. Sleeping is the lowest
priority. Running is the highest priority.

The higher priority packets are given routing
precedence over the lower priority packets.
Priority ties are broken arbitrarily.

The actual routing decision is a bit more
complex and the routing decision differs for
packets of different priority states.

In the Sleeping state, the packet is routed to any
good-link. When a packet in the Sleeping state
is routed, it is given a chance with the probability
of 1/24n (where N is the dimension of the N by
N torus network) to upgrade to the Active state.

In the Active state, the packet is routed to any
good-link. When an active packet is deflected,
it is given a chance with the probability of 1/16n

(where N is the dimension of the N by N torus
network) to upgrade to the Excited state.

In the Excited state, the packet is routed via its
home-run path. If the packet can be routed via
its home-run path, the packet’s priority is
increased to the Running state. If the packet
cannot be routed via its home-run path and is
subsequently deflected, the packet returns to the
Active state. Note that a packet remains in the
Excited state for only, at most, one time step.

In the Running state, the packet is routed via its
home-run path. Due to the dynamics of the
routing algorithm, a running packet cannot be
deflected from its path except while it is turning
(from the first to the second part of its home-run
path). If a running packet is deflected (by
another running packet) while turning, it returns
to the lower priority Active state.

2. Related Work

Experimental analysis of Hot-potato Routing
Algorithms in a 2-Dimensional Torus Network is
presented in [5]. This paper compares four
different algorithms using tori of several sizes
and 100 inputs. The implementation and testing
strategy is significantly different than the
approach taken in this paper, however, the
objective is the same.

The implementation and testing strategy used in
the experiments presented in this paper is similar
to the approach taken in [4]. In [4] a parallel
simulation approach is used to simulate a
Personal Communication Service (PCS network
using Rensselaer’s Optimistic Simulation System
(ROSS). This approach extends the work
performed in [6] on the Georgia Tech Time
Warp System to use the reverse computation
method implemented by ROSS.

3. Solution Description

The hot-potato routing algorithm was simulated
on ROSS. ROSS is a parallel discrete-event
simulator, specifically, a C-based Time Warp
system. The simulation was run on a quad-
processor Personal Computer (PC) server. This
optimistic simulation system uses Fujimoto’s
Global Virtual Time (GVT) algorithm for
process synchronization, reverse computation to

 3

typedef struct { reduce rollback overhead and Kernel Processes
(KPs) to minimize total rollbacks. ...

 enum priorities priority;
 int destination_row; 3.1 Model Representation
 int destination_column;
 ... This section explains how the hot-potato

algorithm and the associated network is
represented in ROSS.

} Msg_Data;

 3.1.1 Logical Processes
3.1.3 Network Mapping
 The primary component in a ROSS simulation

application is the Logical Process (LP). A
simulation is comprised of a collection of LPs,
each simulating a separate component of the
system. In the hot-potato routing simulation,
each LP represents a router. The collection of
LPs represent an network, specifically, a buffer-
less optical network. In ROSS LPs are generated
in the startup function when the simulation is
initiated.

The routers in the dynamic hot-potato routing
algorithm are configured into an N by N torus
network. This topology is emulated in the
simulation by restricting where a router can route
a packet. Specifically, the routers are allowed to
route packets to four neighboring routers. This
is implemented by a calculation within each LP.
In ROSS each LP is given a number. For
example, if the network consists of a 32*32 torus
network, ROSS generates 1024 LPs numbered
from 0 to 1023. Row 1 contains LP 0 – 31, Row
2 contains LP 32 – 63 etc. These LPs form an
implicit wrap-around grid of 32 rows each with
32 LPs per row. Each LP can send a packet in 4
directions (North, South, East and West). If an
LP chooses to send a packet East, the LPx sends
the packet to LPx+1. The network wraps around.
Therefore, if an LP resides on the East most side
of the network, it must send the packet to the
West most LP in the same row. To do this, the
following calculation is performed:

3.1.2 Messages

The LPs communicate with each other within the
simulation via messages. Each message
represents an event in the system. These
messages are generated by the LPs when a new
event is needed. The messages keep the system
going, as such, ROSS is an event driven
simulator. ROSS runs on a shared memory
parallel processing PC server. Therefore, the
messages are not “sent” in the way they would
be on a distributed system. Sending a message
from the source LP to the destination LP merely
involves assigning ownership of the message’s
memory location from the source LP to the
destination LP. This shared memory architecture
allows ROSS to use Fujimoto’s GVT algorithm
rather than a less efficient distributed GVT
algorithm such as Mattern’s [7].

NewLp =

 ((lp->id / NumLpsRT)* NumLpsRT)
 + ((lp->id + 1) % NumLpsRT);

/*
lp->id : The sending LP
 number.

The messages in this dynamic hot-potato routing
simulation represent packets to be routed. A
router will receive a packet, decide what to do
with it and generate a new message (representing
a packet) destined for another LP if the current
router is not the packet’s destination.

NumLpsRT : The number of rows
 in the network.

NewLp : The destination LP
 number. */
 Each packet in the dynamic hot-potato routing

algorithm contains a header or label indicating its
destination and priority. The data structure in the
ROSS application that represents the message is
the message struct. The packet header is
represented in the simulation by three variables
in the message struct.

As you can see from the above description, the
network topology is not explicitly laid out by the
simulation setup. It is implicitly defined by the
routing restrictions of the destination calculation.

 4

void
Router_EventHandler(Router_State
*SV, tw_bf *CV, Msg_Data *M,
tw_lp *lp) {

3.1.4 Routing Algorithm

The dynamic hot-potato routing algorithm is
implemented within each LP or router. Each
router is identical. When a message
(synonymous with event or packet) is executed
in a given router, the router executes the given
event type denoted in the message struct. There
are four event types: ARRIVE, ROUTE,
HEARTBEAT and
PACKET_INJECTION_APPLICATION.

enum directions NewDir;
enum bool deflected;
NewDir = NO_DIRECTION;

/* reset bit fields CV->* to 0
for this event */
*(int *)CV = (int)0;
 The ARRIVE event simulates the arrival of a

packet to a router. The main function of an
ARRIVE event is to generate an appropriate
message to itself (destined for the same LP) to
initiate a ROUTE event. The priority level of the
arriving packet determines the order in which the
packet’s route will be considered by the router.
To facilitate this, the time stamps of the
generated ROUTE events are staggered based on
priority. If the packet arrives at its destination
router, no new event is created. Instead,
statistics regarding the event, such as its delivery
time, are recorded.

deflected = false;

switch(M->event_type) {

case ARRIVE:
Router_ARRIVE_EventHandler(SV,
CV, M, lp);
break;

case ROUTE:
Router_ROUTE_EventHandler(SV,
CV, M, lp);
break;

The ROUTE event determines which direction
the packet will be routed. It also determines if
the packet’s priority will be changed, as
described in the algorithm description above. It
then creates a new ARRIVE event at the
appropriate destination router.

case HEARTBEAT:
Router_HEARTBEAT_EventHandler(
SV, CV, M, lp);
break;

case
PACKET_INJECTION_APPLICATION:
Router_PACKET_INJECTION_APPLICAT
ION_EventHandler(SV, CV, M, lp
);

The HEARTBEAT event simply generates events
to perform administrative overhead. In some
configurations, that overhead can be taken care
of by other events. In those cases, the
HEARTBEAT event is not used, in order to
reduce the total number of simulated events.

break;

}

} The PACKET_INJECTION_APPLICATION

event simulates the injection of new packets into
the system. The startup program determines the
number of LPs that are packet generators based
on the application input parameters. The number
of packet generators can vary anywhere from
zero to N by N LPs. In our tests, N LPs are
packet generators. This simulates a scenario
where the network is kept relatively full, yet
there are still specific sources.

3.1.5 Statistics

This simulation collects several statistics. In
particular, we want to know what the expected
packet delivery time is with respect to the
network size. Therefore, each router keeps track
of the total number of packets that were
delivered to it, how long the packets were in
transit and how far they came.

We also want to know how long a packet waits
to be injected into the network (expected and

 5

 worst case time). Therefore, each router keeps
track of the amount of time that each injected
packet waited to be injected, the total number of
packets that were injected into the system and
the longest time that any packet had to wait to be
injected.

void
RC_Router_ROUTE_EventHandler(
 Router_State *SV,
 tw_bf *CV,
 Msg_Data *M,
 tw_lp *lp)
{ All of the above statistics are aggregated from

each router to determine system wide totals.
These statistics are aggregated by a statistics
collection function. The statistics collection
function is an adaptable ROSS construct that
executes once for each LP (router) when the
simulation finishes. The application
programmer implements the statistics collection
function content in much the same way that a
C++ visitor functor is implemented.

if(CV->c1) {
tw_rand_reverse_unif(lp->id);
}
if(CV->c2) {
tw_rand_reverse_unif(lp->id);
}

SV->link[M->Saved_NewDir]=
 M->Saved_NewDir_status;

} 3.2 ROSS Specific Issues

 There are certain aspects of the simulation

application that are specific to ROSS (or
inherited from its predecessor, Georgia Tech
Time Warp [2]). These are not simply syntactic
issues but conceptual in nature.

3.2.2 Simultaneous Events and
 Randomization

Due to the nature of this simulation,
simultaneous events are likely. The network is
synchronous, as such, routing events occur at
discrete time steps (one time step = 100). If two
packets of the same priority level are routed from
the same LP at the same time-step, the simulator
executes them in an arbitrary order. The order is
dependent on the pace of the simulation. The
simulation is parallel; therefore, events simulated
on one processor may get ahead of events
simulated on a different processor.
Consequently, the order that simultaneous events
are simulated may differ from one simulation run
to the next. As a result, the simulation is not
deterministic. In other words, the results of the
simulation may differ from one run to the next.
The results typically will be approximately the
same. However, it is desirable to show that a
simulation is repeatable.

3.2.1 Reverse Computation

ROSS is an optimistic parallel simulator.
Therefore, ROSS divides up the simulation tasks
among processors (PEs), which then execute
their assigned tasks optimistically. Basically,
each processor operates semi-autonomously by
assuming that the information that it currently
has is correct and complete. ROSS performs
inter-processor communication via messages.
Therefore, each PE operates in this manner until
an incoming message informs it differently. A
PE can get ahead of the other processors. At
some point, it may receive a message with a time
stamp (ts) that is in the past relative to that PE’s
local simulation time. At that point, the
simulation on that PE must rollback to the time-
stamp of the incoming message. ROSS uses a
technique called Reverse Computation to do this.
This technique is different than the state-saving
technique used in the Georgia Tech Time Warp
system. It rolls back the simulation by
computing the events in reverse, which re-
instates the respective LP to its previous state.

In order to make the simulation deterministic and
therefore repeatable, paradoxically, I had to use a
random number generator.

First I identified any case in the simulation
where the execution order of simultaneous
events would affect the outcome of the
simulation. The only case where this happens is
when a router routes two (or more) packets that
have the same priority level, which would have
been routed to the same link. In that case, the

For example, the following function reverse
computes a ROUTE event:

 6

packet that arrives at the router (in the
simulation) first will be routed first and will get
the desired link. Each such occurrence will
usually affect the network statistics.

In order to avoid this situation, I introduced a
randomized delay in the arrival of each packet.
This delay is introduced when the packet is
injected and is carried throughout the simulation.
In the non-random simulation a packet would
arrive at time 600 (any multiple of 100), but in
the randomized simulation the packet now
arrives at time 600 + random number from 0 to
.5. The code works as follows:

/* inject PACKET */
ts = 1+ ((double)
tw_rand_integer(lp->id, 1,
50000000)/100000000);
 CurEvent =
tw_event_new(lp, ts, lp);

The reasons that this randomization makes the
simulation deterministic are:

1. the randomization eliminates
simultaneous events,

2. the random number generator is

reversible [3, Section 3.2],

3. and the random number generator is

deterministic.

Each router uses the same random number
generator with a different seed value. The
random number generator is reversed by calling:

tw_rand_reverse_unif(lp->id);

3.2.6 LP/KP Mapping

ROSS uses KPs which are groupings of LPs
within a KP. KPs help to minimize rollbacks to
improve performance.

A key factor which impacts the effectiveness of
KPs in improving performance is the LP/KP
mapping. In the hot-potato simulation, this
mapping was constructed so as to minimize
inter-PE communication (IPC) and inter-KP
(IKC) communication. If the LPs within a given

KP are adjacent to each other, when a packet is
routed to an adjacent LP that LP is likely to be in
the same KP. However, if the LPs within a
given KP are randomly assigned, then when a
packet is routed to an adjacent LP that LP is
likely to be in another KP and quite possibly
another PE. Therefore, it is beneficial to assign
adjacent LPs to the same KP and adjacent KPs to
the same PE in order to minimize IPC and IKC.
Therefore, the hot-potato simulation uses an
LP/KP/PE mapping which divides up the
network into rectangular areas of LPs and
rectangular areas of KPs. The LPs in a given
area will be assigned to one KP and the LPs in a
given area will be assigned to one PE. This
configuration minimizes the size of the
circumference of the KP – KP boundaries and
PE – PE boundaries, which consequently
minimizes IPC and IKP.

The number of KPs also affects the number of
rollbacks. In general, the more KPs you have,
the fewer rollbacks you have. This relationship
was analyzed in the hot-potato simulation. A
detailed discussion of this is presented in Section
4.2.3 of this paper.

3.3 Workload Characteristics

This section discusses the input parameters of
the simulation and their affect on the workload
and performance of the system.

3.3.1 Configurations/Parameterization

The simulation is parameterized so that it can be
run in different configurations.

The first input parameter N indicates the size of
the network to be simulated. N must be a
multiple of 8 so that it comports with the number
of KPs (discussed below) used in the LP
mapping.

The second input parameter
number_of_processors indicates the
number of processors in the parallel processing
computer. ROSS needs this information so that
it can properly and efficiently map LPs to
processors.

The third input parameter
SIMULATION_DURATION indicates how
long, in simulation time, the simulation will run.

 7

The fourth parameter probability_i
indicates how many routers should produce
packets. The user can specify that anywhere
from 0 to 100% of the routers will be sources
and inject packets into the network. The user
input parameter is probabilistic such that if the
user inputs X% then the probability that a given
router will be an injector is X/100 (i.e. 100/100 =
all, 0/100 = none).

Note that the network is initialized to full (four
packets per router). Therefore, if the user inputs
0, then the system is run on a one-shot or static
basis.

The fifth parameter
absorb_sleeping_packet indicates if a
router should absorb a packet that is in the
sleeping state. Under normal operations, a
network running a hot-potato routing algorithm
would absorb any packet that has reached its
destination. However, the model created and
described in [1] uses certain assumptions and
rule constructions that make the anaysis more
tractable. Therefore, the simulation may be run
in either mode. One would indicate the
algorithm’s practical performance; the other only
serves as verification of the algorithm proof.

3.3.2 Parallelism

The parameters discussed in section 3.3.1
(specifically N and probability_i) affect
the workload of the simulation.

The size of the system defined by N significantly
affects the speed of the simulation. Although a
larger network with more routers generally does
increase parallelization, the simulation presented
here experienced lower event rates as N
increased (See Figure 5). Additionally, the
absolute time that the simulation takes to
advance one time step is much larger (generally
O(n2)).

The input parameter probability_i
determines how many routers have an associated
injection application. Each injection application
attempts to inject a packet at every time step.
Therefore, if N routers are injecting packets, then
O(N/N) or O(1) packets are injected at each time
step.

As stated above, a larger network yields higher
parallelism. This is because the work load on

each PE will usually be more balanced. Since
the workload on each LP is somewhat random,
the more LPs per PE that there are averages the
randomness over more LPs creating a more
balanced load.

More LPs (determined by N) per PE also creates
less inter-process communication because
adjacent LPs are simulated on the same PE. LPs
only send messages to adjacent LPs (and to
themselves). The LPs are grouped into blocks
designed to minimize the connections between
LPs on other PEs. Inter-processor
communication only occurs when a packet is
routed at the edge of one block (on one PE), to
the edge of another block (on another PE).
Rollbacks occur when messages from the past
(in simulation time) are sent to a PE from
another PE that is “behind” in simulation time.
Therefore, if we minimize inter-processor
communication, we also minimize rollbacks and
increase parallelism.

I put “behind” in quotes because the simulation
time is relative. The simulation time of the
slowest PE is actually the real overall simulation
time.

4. Solution Analysis

This section discusses the results of the hot-
potato routing simulation as well as the
performance of the simulation itself.

4.1 Algorithm Analysis

The hot-potato routing algorithm described in [1]
guarantees an expected O(N) delivery and
injection time where N is the diameter of the
network. The simulation was designed to test
these guarantees over a variety of conditions.

Figure 3 and 4 display the results of the system
simulated under four different loads and 32
different network diameters. The loads are
represented as a percentage of the total number
of LPs (routers) that will have an associated
packet injection application. Each packet
injection application injects packets at a rate of
one packet per time step. The network diameters
used in the simulated configurations range from
8 to 256.

Figure 3 shows the average packet delivery time
with respect to the network size.

 8

Packet Delivery Time

0

20

40

60

80

100

120

140

160

8 24 40 56 72 88 10
4

12
0

13
6

15
2

16
8

18
4

20
0

21
6

23
2

24
8

Network Diameter (N)

Ti
m

e
St

ep
s

25% Injecting Routers
50% Injecting Routers
75% Injecting Routers
100% Injecting Routers

You can see from the graph that the average
packet injection waiting time increases
approximately linearly with N within each
injection configuration. However, it is obvious
that the injection rate (determined by the number
of injection applications) has a significant impact
on the injection wait.

The injection of packets is ultimately controlled
by the network mechanics. The injection rate is
limited because a packet can only be injected
when there is a free link at that router. A link
becomes free when a packet is delivered to a
router. A router will have a free link if it is the
final destination of a packet that is delivered to
it. A router will also have a free link if it does
not receive a packet from one of its adjacent
routers at that time step. Therefore, it appears
that the average injection rate is linear with
respect to N and is bounded by the delivery rate.

Figure 3: Packet Delivery Time

You can see from the graph that the average
delivery time increases approximately linearly
with respect to N. The packet injection rate has a
very limited effect on the packet delivery rate.
One notable feature of the results is the change in
trajectory of the graph at approximately N = 188.
This change is caused by the probabilistic packet
state changing rules. In a larger network, a
greater percentage of packets have changed to
higher states. This change in state comes with a
change in how the packet is routed and
consequently makes the algorithm perform
slightly better.

4.2 Simulation Analysis

The purpose of using parallel simulation rather
than sequential simulation is to speed up the
simulation thus reducing simulation time.
Simulation time is measured in seconds. ROSS
is an event oriented discrete event simulator and
therefore simulates the system event by event (in
parallel). Accordingly, a simulator’s speed is the
average number of events that it simulates in a
time period. A simulator’s speed is also known
as its Event Rate. Speed is unitized into events
per second.

Another statistic of interest is how long a packet
waits to be injected into the network. Figure 4
shows the average number of time-steps a packet
waits to be injected.

ROSS uses various mechanisms to increase the
speed of the model. KPs are one such
mechanism. The effect of KPs on rollbacks and
event rate is examined in this section.

Average Wait to Inject a Packet

0

5

10

15

20

25

30

35

40

45

50

8 24 40 56 72 88 10
4

12
0

13
6

15
2

16
8

18
4

20
0

21
6

23
2

24
8

Number of Rows (N)

Ti
m

e
St

ep
s

To
 In

je
ct

25% Injecting Routers
50% Injection Routers
75% Injection Routers
100% Injection Routers

However, a fast simulation is not useful unless it
faithfully simulates the system being modeled.
Therefore, this section appropriately examines
the correctness of the simulation before speed or
its associated enhancement mechanisms.

4.2.1 Correctness

A significant concern in parallel simulation is the
correctness of the results. A useful measure of
correctness is repeatability of results.

An optimistic parallel simulation often simulates
some of the events in a different order than they
actually occur. Therefore, a synchronization

Figure 4: Average Wait to Inject a Packet

 9

mechanism must ensure that the simulation
faithfully emulates the system. However, the
complexities of the system (i.e. simultaneous
events) make this task difficult.

Therefore, it is important to validate the results
of the parallel simulation with the results of the
sequential simulation. Consequently, the only
way for the results of the parallel simulation to
match the sequential model is for the parallel
model to be deterministic.

The sample output in Attachment 3 shows that
the parallel and sequential models produce
identical results (under the same model
configuration). As such, the parallel model is
deterministic and therefore repeatable.

4.2.2 Speed-up

As noted above, the primary objective of parallel
(versus sequential) simulation is speed. This is
very important for large problems which require
the analysis of very large networks or very long
model periods.

The graph in Figure 5 compares the speed of the
simulation running in sequential mode (one
processor) with the speed of the simulation
running in parallel mode with two and four
processors. The network diameters (N) used in
the simulated configurations ranges from 16 to
256 which equates to 256 to 65,536 LPs.

Parallel Speed-Up (LPs vs. Event Rate)

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

0 50 100 150 200 250 300

Network Diameter (N)

Ev
en

ts
 p

er
 S

ec
on

d

1 Processor
2 Processor
4 Processor

Figure 5: Parallel Speed-Up

The graph shows that for 1024 LPs (N = 32), the
4-Processor simulation is almost four times as

fast as the sequential (1-Processor) simulation.
However, for larger networks, the 4-Processor
simulation is approximately twice as fast.

Linear speed-up is considered to be optimal
(although super-linear speed-up is sometimes
experienced). Linear speed-up means that a
simulator running with four processors is four
times as fast as a simulator running with one
processor. Parallel simulation requires
synchronization overhead which reduces this
speed-up.

The speed-up of a parallel simulation in
relationship to linear speed-up is the simulation’s
efficiency. The graph in Figure 6 shows the
efficiency of the graph in Figure 5.

Efficiency (Speed-Up / #PE)

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250 300

Network Diameter (LPs)

Ef
fic

ie
nc

y
(S

pe
ed

-U
p

/ P
E

)

1 Processor
2 Processor
4 Processor

Figure 6: Efficiency

The simulation for smaller networks is close to
linear (1), but the simulation of larger graphs
drops to approximately .5. Overall, the
efficiency of this simulation is very good.

4.2.3 Kernel Processes

ROSS uses KPs, which are groupings of LPs
within a PE. One purpose of a KP is to contain
rollbacks to a smaller sub-set of LPs within a PE.
This is an improvement over rolling back all of
the LPs simulated on a given PE. Rolling back
an LP that was unaffected by the past message is
called a false rollback. The more KPs you have,
the fewer false rollbacks you have because each
KP represents smaller sub-set of LPs. All else
being equal, additional false rollbacks decrease
the efficiency of the parallel simulation.
However, there are competing overhead

 10

Effect of the Number of KPs onthe Total Events Rolled
Back

-500000

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

0 50 100 150 200 250 300

Number of Kernel Processes (KPs)

To
ta

l E
ve

nt
s

R
ol

le
d

B
ac

k

16x16
32x32
64x64
128x128
256x256

considerations that compromise this assertion.
[4, Page 6] shows that the optimum number of
KPs (in terms of total events rolled back) is
between 32 and 64. The dynamic hot-potato
routing model uses 64 KPs.

The hot-potato model was tested to determine the
effect of KPs on the simulation. For example,
we measured the effect of the number of KPs on
rollbacks and, consequently, event rate.

The graphs in Figures 7a, 7b, and 7c show that
the number of rollbacks in the simulation of a
small network is significantly affected by the
number of KPs. However, as the simulation
becomes larger, the effect is lessened. This
effect is probably due to a trade-off between
rollbacks and fossil collection [4]. As the
number of KPs increases, the fossil collection
overhead also increases. However, the fossil
collection for small networks is not significant
where the fossil collection for large networks is
significant. This is due to the linear relationship
between fossil collection overhead and the
number of LPs.

Figure 7a: Effect of the Number of KPs on
Events Rolled Back (5 Network Diameters)

Effect of the Number of KPs onthe Total Events Rolled
Back

-2000

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 50 100 150 200 250 300

Number of Kernel Processes (KPs)

To
ta

l E
ve

nt
s

R
ol

le
d

B
ac

k

32x32
64x64
128x128
256x256

Therefore, for a small network, the benefit of
increasing the number of KPs far outweighs the
costs. However, for larger networks, the benefits
and costs approximately cancel each other out.

The graphs in Figures 7a, 7b, and 7c all show
essentially the same information. However, due
to the extreme variation in Total Events Rolled
Back as the network diameter changes, Figure 7a
totally obscures the Rollback – KP relationship
for the larger networks. Therefore, the
information is presented in Figure 7b and 7c
using a different scale and only the larger
configurations.

Figure 7b: Effect of the Number of KPs on
Events Rolled Back (4 Network Diameters)

Effect of the Number of KPs onthe Total Events Rolled
Back

-200

0

200

400

600

800

1000

1200

1400

1600

0 50 100 150 200 250 300

Number of Kernel Processes (KPs)

To
ta

l E
ve

nt
s

R
ol

le
d

B
ac

k

64x64
128x128
256x256

Figure 7c: Effect of the Number of KPs on

Events Rolled Back (Larger Networks)

 11

5. Conclusion One fascinating feature of the data shown in
Figure 7c is the extremely low rollback
occurrence for the N = 128 configuration, while
the larger (N = 256) and smaller (N = 64)
configurations both have more rollbacks. This
observation is incongruent with our assumptions
regarding the Rollback – KP relationship. The
only explanation that I have for this aberrant
behavior is the ethereal concept known as
serendipity.

In this paper a practical version of the algorithm
presented in [1] was analyzed using computer
simulation. The performance of the computer
simulation was analyzed as well.

This analysis:

 confirmed the theoretical analysis
presented in [1] and

The combined affect of the trade-off between the
benefits and costs of increasing the number of
KPs is captured by the event rate. The graph in
Figure 8 shows the relationship between the
number of KPs and the event rate. It is clear that
the performance of the simulation of the smaller
(16 x 16) network is improved by the use of
more KPs. However, as the network size
becomes larger, this benefit diminishes.

 demonstrated efficient parallel speed-up
for the network simulation using ROSS.

The simulation analysis provided in this paper
combined with the theoretical analysis presented
in [1] provides sound evidence of the usefulness
of the routing algorithm for optical network
routing.

 This paper also demonstrated the usefulness of
computer simulation for the analysis of network
routing algorithms. In particular, computer
simulation proved to be well-suited for analyzing
greedy routing algorithms, which are difficult to
analyze theoretically.

Effect of Kernel Processes on Event Rate

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

0 50 100 150 200 250 300

Number of Kernel Processes (KPs)

Ev
en

t R
at

e 16x16
32x32
64x64
128x128
256x256

ROSS provide very good speed-up for the
parallel processing of the above simulations.
This is very important for problems which
require the analysis of very large networks.
Consequently, ROSS proved to be a very good
tool for this type of network simulation.

Figure 8: Effect of the Number of Kernel

Processes on Event Rate

 12

 13

References

[1] C. Busch, M. Herlihy, and R. Wattenhoffer.

“Routing without flow control.” In
Proceedings of the 13th annual ACM
Symposium on Parallel Algorithms and
Architectures, (July 2001).

[2] S. Das, R. Fujimoto, K. Panesar, D. Allison,

and M. Hybinette. “GTW: A Time Warp
system for shared memory multiprocessors.”
In 1994 Winter Simulation Conference
Proceedings, pages 1332-1339, (December
1994).

[3] C.D. Carothers, K. Perumalla and R.M.

Fujimoto. “Efficient Parallel Simulation
Using Reverse Computation” In ACM
Transactions on Modeling and computer
Simulation, volume 9, number 3, (July
1999).

[4] C. D Carothers, D. Bauer, S. Pearce,

“ROSS: A High-Performance, Low
Memory, Modular Time Warp System,” In
Proceedings of the 14th Workshop on
Parallel and Distributed Simulation, pp. 53-
-60, (May 2000).

[5] Bartzis, Caragiannis, Kaklamanis, and

Vergados. “Experimental Evaluation of Hot-
Potato Routing Algorithms on 2-
Dimensional Processor Arrays”. In
EUROPAR: Parallel Processing, 6th
International EURO-PAR Conference.
LNCS, (2000).

[6] C.D. Carothers, R.M. Fujimoto and Y.-B.

Lin, “A case study in simulating PCS
networks using Time Warp,” In Proceedings
of the 9th Workshop on Parallel and
Distributed Simulation (PADS '95), 87-94,
IEEE Computer Society Press, (1995).

[7] R. M. Fujimoto, “Parallel and Distributed

Simulation Systems,” A Wiley-Interscience
publication, (2000).

[8] S. Keshav, “An Engineering approach to

Computer Networking: ATM Networks, the
Internet, and the Telephone Network,”
Addison-Wesley, (1997).

Attachments

1. Instructions

2. Test Sequence

3. Sample Output

4. Code Printouts

• Router.c
• Makefile

5. Main Reference Paper:

• C. Busch, M. Herlihy, and R.
Wattenhoffer. “Routing
without flow control.” In
Proceedings of the 13th annual
ACM Symposium on Parallel
Algorithms and Architectures,
July 2001.

6. Presentation Slides

	Abstract
	
	
	
	
	
	
	Figure 5: Parallel Speed-Up

