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Abstract

Lock-free data structures implement concurrent objects with-
out the use of mutual exclusion. This approach can avoid
performance problems due to unpredictable delays while
processes are within critical sections. Although universal
methods are known that give lock-free data structures for
any abstract data type, the overhead of these methods makes
them inefficient when compared to conventional techniques
using mutual exclusion, such as spin locks.

We give lock-free data structures and algorithms for im-
plementing a shared singly-linked list, allowing concurrent
traversal, insertion, and deletion by any number of pro-
cesses. We also show how the basic data structure can be
used as a building block for other lock-free data structures.

Our algorithms use the single word Compare-and-Swap
synchronization primitive to implement the linked list di-
rectly, avoiding the overhead of universal methods, and are
thus a practical alternative to using spin locks.

1 Introduction

A concurrent object is an abstract data type that permits
concurrent operations that appear to be atomic. We can
implement a concurrent object as a data structure in shared
memory and a set of algorithms that manipulate the data
structure using atomic synchronization primitives, such as
READ, WRITE, FETCH&ADD, and COMPARE&SWAP. Care
is required to synchronize concurrent processes so that the
data structure is not corrupted and so that operations return
the correct results. The conventional way to do this is with
mutual ezclusion, guaranteeing exclusive access to a process
manipulating the data structure.

Mutual exclusion is well understood; in particular, a
number of efficient spin locking techniques have been de-
veloped [3, 8, 20]. However, the delay of a process while in
a critical section (for example, due to a page fault, multi-
tasking preemption, memory access latency, etc.) forms a
bottleneck which can cause performance problems such as
convoying and priority inversion.

Lock-free data structures implement concurrent objects
without the use of mutual exclusion. Such data structures
may be able to guarantee that some process will complete its

operation in a finite amount of time, even if other processes
halt; in this case the data structure is non-blocking. If the
data structure can guarantee that every (non-faulty) process
will complete its operation in a finite amount of time, then
it is wait-free.

Although several universal methods are known for wait-
free implementation of any arbitrary concurrent object, they
involve considerable overhead, making them impractical, es-
pecially compared to spin locks. It is sometimes possible to
devise lock-free data structures that implement a particu-
lar concurrent object directly, without the use of universal
methods. Such techniques can offer the benefits of lock-free
synchronization without sacrificing efficiency.

We present algorithms and data structures that directly
implement a non-blocking singly-linked list. To our knowl-
edge, these are the first such algorithms to allow processes
to arbitrarily traverse the linked list structure, inserting and
deleting nodes at any point in the list, using only the com-
monly available COMPARE&SWAP primitive’, and providing
performance competitive with spin locks.

A linked list is also useful as a building block for other
concurrent objects. We show how the lock-free linked list
can be used to build several non-blocking implementations
of a concurrent dictionary object.

The rest of this paper is organized as follows: Section 2
reviews related work, and describes the requirements of the
linked list data structure as well as some of the problems en-
countered in implementing one in a lock-free manner. Sec-
tion 3 describes the data structure and basic algorithms for
list traversal, insertion, and deletion. Section 4 shows how to
extend these techniques to implement higher-level abstract
data types such as a dictionary. Section 5 discusses the man-
agement and allocation of memory, garbage collection, and
the ABA problem. Section 6 concludes with some directions
for further work.

2 Related Work

Researchers have considered the benefits of avoiding mu-
tual exclusion since at least the early 1970’s [6]. Lam-
port [17] gave the first lock-free algorithm for the problem
of a singe-writer /multi-reader shared variable. Herlihy [10]
proved that for non-blocking implementation of most inter-
esting data types (linked lists among them), a synchroniza-
tion primitive that is universal, in conjunction with READ
and WRITE, is both necessary and sufficient. A universal

1We also use Test&Set and Fetch&Add; however, these are easily
implemented with Compare&Swap.



COMPARE&SWAP(a : address, old, new : word)
returns boolean

BEGIN ATOMIC
if a” # old
a” + new
return TRUE
else
return FALSE
END ATOMIC
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Figure 1: The COMPARE&SWAP synchronization primitive.

primitive is one that can solve the consensus problem (7] for
any number of processes; COMPARE&SWAP is a universal
primitive.

The first universal method was given by Herlihy [13];
many others followed [1, 4, 11, 22, 26]. However, it has
become increasingly apparent that universal methods suffer
from several sources of inefficiency, such as wasted paral-
lelism, excessive copying, and generally high overhead.

In addition to the universal methods, algorithms have
also been developed for lock-free objects that are imple-
mented directly. Most of this work has focused on the FIFO
queue data type (cf. [27] for many references), but algo-
rithms have also been developed for sets [18], union-find [2],
scheduling [16], and garbage collection [12]. There has also
been a large body of work on implementing more primitive
types of objects, such as atomic registers and counters. We
note that many of these papers present data structures that
are based on the linked list; however, none of them permit
modifications to the interior of the list.

Massalin and Pu [19] coined the term lock-free and im-
plemented a multiprocessor operating system kernel using
lock-free data structures. However, their algorithms require
a two word version of the COMPARE&SWAP synchronization
primitive that is not widely available.

2.1 Requirements

The abstract concept of a list is a collection of items which
have a linear order; i.e., each item in the list has a position.
A singly-linked list data structure consists of a collection
of cells, each representing an item in the list. These cells
contains a number of fields, in particular a field next, which
contains a pointer to the cell occupying the next position
in the list. Other fields may contain memory management
information, data dependent on the application using the
list, etc. A special root pointer points to the first cell in the
list.

We use the following notation in our algorithms: if p is
a pointer, then p” represents the contents of the memory
location pointed to. If p points at a structure in memory,
for example a cell, then p".field refers to a field within the
structure.

We use COMPARE&SWAP as our main synchronization
primitive. The COMPARE&SWAP primitive takes as argu-
ments the pointer, and old and new values. As shown in
Figure 1, it atomically checks the value of the pointer, and
if it is equal to the old value, updates the pointer to the new
value. In either case, it returns an indication of whether it
succeeded or not.

The COMPARE&SWAP primitive is often used to swing
pointers; to atomically change them from one value to an-
other. We will also make use of the primitives TEST&SET
and FETCH&ADD. Both atomically read and modify the
value of a shared memory location, returning the original
value. The TEST&SET primitive sets the new value to TRUE,
while FETCH& ADD adds and arbitrary value to it.

The COMPARE&SWAP primitive is widely available, be-
ing found on many common architectures. Newer architec-
tures include the LOAD-LOCKED and STORE-CONDITIONAL
primitives, which can implement COMPARE&SWAP. It can
also be implemented on uniprocessors using the technique
of atomic restartable sequences [5]. Finally, we note that
there is growing support for providing COMPARE&SWAP in
distributed memory machines as well [9, 21].

In order to make concrete the abstract notion of posi-
tion, it is convenient to introduce the idea of a cursor. A
cursor is associated with an item in the list; the cursor is
said to be visiting that item. A cursor may also be visiting
a distinguished position at the end of the list which is not
associated with any item.

All access to the list is accomplished via a cursor. When
a new cursor is created, it is visiting the first item in the list
(or the special end position if the list is empty). An exist-
ing cursor can traverse the list by moving from its current
position to the next one in the list.

New items can be added to the list by inserting them at
the position immediately preceding that visited by a given
cursor. An item being visited by a cursor can be removed
from the list by deleting it.

We require our lock-free objects to be non-blocking, but
not necessarily wait-free. The non-blocking requirement en-
sures that the delay of one process cannot affect any other;
the wait-free property, while desirable, imposes too much
overhead upon the implementation. Furthermore, starva-
tion at high levels of contention is more efficiently han-
dled by techniques such as exponential backoff (for example,
see [15]).

We also require our objects to be linearizable [14]; this
implies that operations appear to happen atomically at some
point during their execution. Proofs that our data structures
are linearizable are beyond the scope of this paper, but are
straightforward.

2.2 Problems

The use of COMPARE&SWAP to swing pointers is suscep-
tible to the ABA problem, discussed in depth in Section 5.
Our solution relies on the careful memory management, and
in particular on the use of two operations, SAFEREAD and
RELEASE. They will be fully described in Section 5; however,
for the time being SAFEREAD can be treated as a normal
READ and RELEASE can be treated as a no-op. In addition
to these two operations, we will also discuss the management
of free cells in Section 5.

At first glance, it may not seem too difficult to imple-
ment a lock-free linked list. Traversing this data struc-
ture is simple, since it does not involve changes to the list
structure. Insertion of new cells is straightforward using
COMPARE&SWAP; given a pointer g to a new cell, and point-
ers p and s to cells in the list such that p".next = s, we
initialize ¢".next = s and then swing the next field of p
to q. If the operation succeeds, then the new cell has been
linked into the list; otherwise, a concurrent operation has



changed the list structure, and we must retry the operation
after re-reading the pointers.

However, when we consider deleting cells from the list we
run into difficulties. First, note that when we delete a cell
from the list, other processes may have cursors visiting that
cell; we would like these processes to be able to continue
using their cursors to traverse the list, as well as to access
the contents of the deleted cell. This can be accomplished
by simply keeping the contents of the deleted cell intact; but
this will complicate the reuse of cells that have been deleted
from the list. We call this cell persistence.

Two more serious difficulties are the following. When we
delete a cell from the list, we swing the next pointer in the
preceding cell to point at the following cell. Suppose that
another process concurrently inserts a cell at the position
immediately following a cell being deleted. It is possible
that we might end up with the situation in Figure 2; the
cell containing B has been deleted successfully, but the cell
containing C has not been inserted into the list correctly.

Another problem occurs if another process concurrently
deletes an adjacent cell; this can result in one of the deletions
being undone, as shown in Figure 3. These problems stem
from the fact that we cannot observe the state of the next
fields in two different cells simultaneously, and overcoming
them would seem to require the use of a synchronization
primitive capable of operating on two words of memory si-
multaneously. However, we shall show in the next section
that this is not the case.
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Figure 2: Deletion of B concurrent with insertion of C.
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Figure 3: Concurrent deletion of B and C; second is undone.

3 Auxiliary Nodes and Basic Operations

In order to overcome the problems described in the last sec-
tion, we add auziliary nodes to the data structure. An auxil-
iary node is a cell that contains only a next field. We require
that every normal cell in the list have an auxiliary node as
its predecessor and as its successor. We permit “chains” of
auxiliary nodes in the list (i.e., we do not require that ev-
ery auxiliary node have a normal cell as its predecessor and
successor), although such chains are undesirable for perfor-
mance reasons.

The list also contains two dummy cells as the first and
last normal cells in the list. These two cells are pointed
at by the root pointers First and Last. These dummy cells

need not, respectively, be preceded and followed by auxiliary
nodes. Thus, an empty list data structure consists of these
two dummy cells separated by an auxiliary node (Figure 4).
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Figure 4: An empty linked list, with two dummy nodes and
an auxiliary node.

A cursor is implemented as three pointers into the data
structure: target is a pointer to the cell at the position the
cursor is visiting. If the cursor is visiting the end-of-list
position, then target will be equal to Last.

The pointer pre_aux points to an auxiliary node in the
data structure. For a cursor ¢, if ¢".pre.aux = c.target,
then the cursor is valid; otherwise it is invalid.

The pointer pre_cell points to a regular cell in the data
structure. This pointer is used only by the TRYDELETE
operation described below.

An invalid cursor indicates that the structure of the list
in the vicinity of the cursor has changed (due to a concurrent
insertion or deletion by another process) since the pointers
in the cursor were last read. The UPDATE algorithm, given
in Figure 5, examines the state of the list and updates the
pointers in the cursor so that it becomes valid.

Since the list structure contains auxiliary nodes (perhaps
more than one in a row), the UPDATE algorithm must skip
over them. If two adjacent auxiliary nodes are found in the
list, the UPDATE algorithm will remove one of them.

Traversal of the list data structure is accomplished us-
ing the FIRST and NEXT operations, which use the UPDATE
operation. Algorithms are given in Figures 6 and 7. The
NEXT operation returns FALSE if the cursor is already at
the end of the list and cannot be advanced.

Adding new cells into the list requires the insertion of
both the cell and a new auxiliary node. This insertion is
restricted to occur in the following way: The new auxiliary
node will follow the new cell in the list, and insertion can
only occur between an auxiliary node and a normal cell, as
shown in Figure 8.

Figure 9 gives an algorithm, which takes as arguments a
cursor and pointers to a new cell and auxiliary node. The
algorithm will try to insert the new cell and auxiliary node

UPDATE(c : cursor)

if ¢".pre_aux”.next = ¢".target
return

p + ¢ .pre_aux

n < SAFEREAD(p".next)

RELEASE(c".target)

while n # Last and n” is not a normal cell
COMPARE&SWAP(c".pre_cell”.next, p, n)
RELEASE(p)
pémn

10 n < SAFEREAD(p".next)

11 c".pre_aux < p

12 c".target < n
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Figure 5: The cursor UPDATE algorithm.



FIRST(c : cursor)

W N =

c".pre_cell <~ SAFEREAD(First)
¢".pre_aux < SAFEREAD(First".next)
¢ .target <— NULL

UPDATE(c)

Figure 6: The FIRST algorithm.

NEXT(c : cursor)
returns boolean

1
2
3
4
5
6
7
8

if ¢".target = Last
return FALSE
RELEASE(c".pre_cell)
c".pre_cell <~ SAFEREAD(c".target)
RELEASE(c".pre_aux)
¢".pre_aux < SAFEREAD(c".target".next)
UPDATE(c)
return TRUE

Figure 8: Inserting a new cell and auxiliary node.

Figure 7: The NEXT algorithm.

p

TRYINSERT(c : cursor, q : cell”,a : aux. node”)
returns boolean

WRITE(q".next, a)
WRITE(a".next, ¢".target)

r + CSW(c".pre_aux, c".target, q)
return r

AW N =

Figure 9: The TRYINSERT algorithm.

at the position specified by the cursor, returning the value
TRUE if successful.

If the cursor becomes invalid, then the operation returns
without inserting the new cell and returns the value FALSE.
This allows a higher-level operation to detect that a change
to the structure of the list occured and to take it into account
before attempting to insert the new cell again. For example,
in the next section we show how the items in the list can be
kept sorted using this technique.

Given a valid cursor, the cell that it is visiting can also
be deleted from the list. As with the insertion of new cells,
if the list structure changes (i.e., the cursor becomes invalid)
then the operation fails and must be tried again. Figure 10
gives the TRYDELETE algorithm.

The deletion of the cell from the list leaves an “extra”
auxiliary node; concurrent processes deleting adjacent cells
can result in longer chains. Most of the TRYDELETE algo-
rithm is concerned with removing the extra auxiliary nodes
from the list. Normally, removing the extra auxiliary node
that results from the deletion of a cell from the list is accom-
plished by simply swinging the pointer in the cell pointed at
by the pre_cell pointer in the cursor.

However, this does not always work; in particular, this
cell may have itself been deleted from the list, in which case
swinging its next pointer will not remove the extra auxiliary
node. In order to overcome this problem, we add a back_link
field to the normal cells in the list. When a cell is deleted
from the list, the pre_cell field of the cursor is copied into
the cell’s back_link field. The TRYDELETE algorithm can
then use these pointers to traverse back to a cell that has
not been deleted from the list.

With just two processes, it is possible to create a chain
of auxiliary nodes (with no intervening normal cells) of any
length. However, any such chain can exist in the list only
as long as some process is executing the TRYDELETE algo-
rithm. If all deletions have been completed, then the list
will contain no extra auxiliary nodes.

To see this, assume that there is a chain of two or more
auxiliary nodes in the list. Let z be the normal cell that
was deleted from between the first two auxiliary nodes in
the chain. Note that this implies that the normal cell that
immediately preceded x in the list has not been deleted.

By assumption, the operation that deleted = has com-
pleted. Consider the loop at lines 17-21 of the TRYDELETE
algorithm. The only way for the process to exit this loop,
and hence to complete the operation, is for another deletion
operation to have extended the chain of auxiliary nodes by
deleting the normal cell y immediately following the chain,
since the cell z is at the front of the chain.

Furthermore, the deletion of y must have occured af-
ter the operation deleting z had set its back_link pointer
at line 6; otherwise the auxiliary node following y would



TRYDELETE(c : cursor)
returns boolean
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22
23
24
25

d < ¢ ".target
n < ¢ .target”.next
r « CSW(c".pre_aux”.next,d, n)
if r # TRUE
return FALSE
WRITE(d". back_link, ¢".pre_cell)
p ¢ .pre_cell
while p”.back_link # NULL
q + SAFEREAD(p".back_link)
RELEASE(p)
p<q
s <~ SAFEREAD(p".next)
while n".next" is not a normal cell
q < SAFEREAD(n".next)
RELEASE(n)
n<q
repeat
r < CSW(p".next, s,n)
if r = FALSE
RELEASE(s)
s < SAFEREAD(p".next)
until r = TRUE
or p".back_link # NULL
or n".next is not a normal cell
RELEASE(p)
RELEASE(s)
RELEASE(n)
return TRUE

Figure 10: The TRYDELETE algorithm.

FINDFrROM(k : key, ¢ : cursor)
returns boolean

while ¢".target # Last
if ¢".target” . key = k
return TRUE
else if c".target”.key > k
return FALSE
else
NEXT(c)
return FALSE

NG R W~

Figure 11: The FINDFROM algorithm.

have been included in the chain found in lines 13-16. Thus,
the chain of back_link pointers followed by the process that
deleted y will lead to the same normal cell that preceded z.

Now, the only way for the operation that deleted y to
have completed is for the same reason as above; i.e., an-
other TRYDELETE operation must extend the chain of aux-
iliary nodes by deleting a cell z. Since the length of the
list must be finite, there must be a last such deletion which,
but by the argument above, cannot have completed. Thus
this operation must still be in progress, contradicting the
assumption that there were no TRYDELETE operations in
progress.

4 Dictionaries

A linked list is useful as a building block for other data
structures. We now show how the ideas in the last section
can be applied to the problem of implementing various lock-
free data structures for the dictionary abstract data type.

A dictionary contains a collection of items which are
distinguished by distinct keys, and provides the operations
FiND, INSERT, and DELETE. Using the data structures and
algorithms presented in Section 3, we can implement a non-
blocking dictionary using four data structures: a sorted list,
a hash table, a skip list, and a binary search tree.

4.1 List Structures

We will assume that each cell has a field key which contains
the unique key for the item stored in the cell. We will ensure
that the keys of items stored in the dictionary are unique
be keeping the items in the list sorted by their key values.
Figure 11 gives an algorithm that searches the list, starting
from a given cursor position, for a cell containing a given
key. It returns a boolean value indicating whether or not an
item with the requested key was found. The dictionary FIND
operation is implemented by using this operation, starting
from the first position in the list.

The dictionary INSERT operation is performed by the al-
gorithm in Figure 12. It is necessary to first ensure that
an item with the same key is not already in the dictionary.
If one is not, then the FINDFROM algorithm will leave the
cursor positioned in the correct place to insert the new cell.

If the insertion of the new cell fails due to changes to the
list structure by concurrent operations, it is necessary to
check again that the key value will be unique, after updat-
ing the value of the cursor. Note that the cursor UPDATE
algorithm ensures that if another cell is inserted with the



INSERT (K : key)

FIrsT(c)

q + new cell

a < new aux. node
initialize other fileds of ¢

W N~

loop:
5 r + FINDFrROM(K;, ¢)
6 if r = TRUE
7 return
8 r < TRYINSERT(c, ¢, a)
9 if r = TRUE
10 return
11 UPDATE(c)
12 goto loop

Figure 12: The INSERT algorithm.

DELETE(k : key)

1 FIRsT(c)
loop:
r < FINDFrROM(E;, ¢)
if r = FALSE
return
r < TRYDELETE(c)
if r = TRUE
return
UPDATE(c)
goto loop
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Figure 13: The DELETE algorithm.

same key, the cursor will be positioned in such a way that
the FINDFROM algorithm will find it.

The dictionary DELETE operation is accomplished in a
similar way; the FINDFROM algorithm is used to locate the
position of the cell containing the given key (if it is in the
list), and the TRYDELETE algorithm is then used to delete
the cell. If the TRYDELETE algorithm fails, we update the
cursor and continue the search for the key.

We can compare the performance of this non-blocking
concurrent dictionary implementation to a similar sequential
implementation using a sorted linked list. A non-constant
factor slowdown can come from two sources: work done
traversing extra auxiliary nodes in the list structure, and
repetitive calls to TRYINSERT and TRYDELETE. For a sin-
gle operation, it is impossible to place bounds on this extra
work.

However, we can bound the amortized work by consid-
ering a sequence of dictionary operations performed by a
number of processes. With p concurrent processes, each
successfully completed operation can cause p— 1 concurrent
processes to have to retry a TRYINSERT or TRYDELETE op-
eration. In addition, in the worst case each operation may
have to traverse an extra auxiliary node left by every previ-
ous operation. Thus, the total work done by the concurrent
non-blocking implementation for a sequence of n operations
by p processes is O(n?), within a constant factor of optimal.

A straightforward extension of this implementation uses

a hash table. In this case, if we assume that the hash func-
tion evenly distributes the operations across the lists, then
we would expect the extra work done to be O(1).

We can implement a lock-free skip list [24] as a collection
of k sorted singly-linked lists?, such that higher level lists
contain a subset of the cells in lower level lists. As in [23],
insertions and deletions are performed one level at a time,
insertions starting with the bottom level and working up,
and deletions starting at the top and working down.

Although the structure of the skip list reduces the amount
of work done traversing the list, a large amount of extra work
may be incurred due to processes attempting to modify the
same portion of the list. In the worst case this extra work
may be O(plogn).

4.2 Binary Search Trees

Binary search trees can also be implemented by adapting the
techniques of Section 3. Each cell in the tree has a left and
right auxiliary node between itself and its subtrees (these
auxiliary nodes are present even if the subtree is empty).
Thus, searching for a cell with a given key in the binary
search tree is almost identical to the algorithm for the stan-
dard sequential binary search tree.

Since the insertion of new cells occurs only at the leaves
of the tree, adding new cells to the tree is fairly straightfor-
ward, involving simply swinging the pointer in the auxiliary
node at the leaf. The remainder of this section will deal with
the deletion of cells from the tree.

To delete cells with at most one child, we must first in-
sure that the cell will not gain a second child during deletion.
To do this we first merge the subtrees by swinging the aux-
iliary node pointer preceding the empty child to point at
the auxiliary node preceding the child to be deleted. Thus
we effectively “short circuit” any processes traversing the
tree from proceeding down that branch of the tree, shunting
them to the other branch instead. We can then splice out
the cell to be deleted and remove extra auxiliary nodes using
techniques similar to those in Section 3.

If a cell has two children, we must move one of the sub-
trees first. Note that we cannot move any cell closer to the
root, since this could result in concurrent processes being
unable to find its key while traversing the tree, resulting
in non-linearizable behavior. Instead, we can move one of
the subtrees of the cell being deleted down in the tree; e.g.,
making its left subtree the left child of its in-order successor.

Figure 14 illustrates how this could be done; first we find
the in-order successor (node G) of the node to be deleted
(node F). We then swing the auxiliary node preceding its
(empty) left child to point at the left subtree of the cell to
be deleted. We can then remove the cell and extra auxiliary
nodes with three more steps, as indicated in the figure.

The effect of this deletion method on the performance
of the binary search tree is unknown. If we consider only
FIND and INSERT dictionary operations, then the amount of
extra work done by a sequence of operations is expected to
be O(nlogn), since the tree has expected height O(logn)
and any cell that is inserted can only have been retried once
for every cell on the path back to the root.

2k is a parameter generally chosen to be ©(log N), where N is the
number of items expected to be in the skip list.
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Figure 14: Deletion of cell with two children.

5 Memory Management

We have thus far assumed that new cells could be allocated
whenever necessary, and that deleted cells could be left in-
tact for cursors to continue traversing them. In addition, we
claimed in Section 2.1 that our solution to the ABA problem
relied on careful memory management. In this section we
address these issues.

5.1 The ABA Problem

We have used the COMPARE&SWAP primitive in our algo-
rithms to atomically swing pointers from their current value
to a new one. However, using COMPARE&SWAP in this man-
ner is susceptible to the following problem known as the
ABA problem. When swinging a pointer, we do not want
the pointer to change if its value has changed from when
it was read. This problem occurs when the pointer has
changed, but then subsequently changes back to its origi-
nal value. In this case, the COMPARE&SWAP primitive will
successfully change the value of the pointer, possibly cor-
rupting the data structure.

There are several ways to avoid this problem. One com-
monly used approach makes use of a double-word version
of the COMPARE&SWAP operation. The idea is to attach a
tag value to each pointer; every time the pointer is changed,
the tag is incremented (the double-word COMPARE&SWAP
is used to change both the pointer and tag values simulta-
neously). Thus, even if the pointer changes back to a pre-
vious value, the tag value will most likely be different and
the COMPARE& SWAP operation will fail. Unfortunately, this
double-word version of COMPARE&SWAP is not available on
most architectures.

Another approach is to use a stronger primitive. For
example, on on architectures such as the DEC Alpha, the
LoAD-LOCKED operation can be used to read a pointer, and
the STORE-CONDITIONAL operation can be used to swing it.
Unlike COMPARE&SWAP, the STORE-CONDITIONAL primi-
tive will change the pointer only if it has not changed, and
it is not susceptible to the ABA problem.

Although the LOAD-LOCKED and STORE-CONDITIONAL
primitives are found on a fair number of newer architectures,
this technique suffers from the fact that these primitives
are implemented with certain restrictions; for example, it
is generally not possible to read from memory between a
LoAD-LOCKED and a STORE-CONDITIONAL (cf. [25]). This
restriction makes it impossible to implement our algorithms
using these primitives.

The approach we take in this paper makes use of the
observation that in the normal operation of the algorithms
given in the previous sections, a pointer is never changed
back to a previous value. The only way for a pointer to
take on a previous value is for cells to be reused after they
have been deleted from the data structure. If we prohibit
this reuse, then we may use the COMPARE&SWAP primitive
without worrying about the ABA problem.

In most applications, it is probably not realistic to as-
sume that cells will not be reused. However, we make the
further observation that the ABA problem can only occur
if a cell is reused while another process has a pointer to it.
Thus, we can safely reuse cells, avoiding the ABA problem,
as long as we can guarantee that no other processes have
pointers to the cell.

We accomplish this through the use of reference counts;
each cell has a field refct and another field claim (described
below). These reference counts are manipulated through the
SAFEREAD and RELEASE operations used in the algorithms.
Note that the problem of cell persistence is also solved by
the use of these reference counts, as cells that can no longer
be accessed from the list or through cursors are available for
reuse.

The SAFEREAD operation atomically reads a pointer and
increments the reference count in the cell being pointed at.
The RELEASE operation decrements the reference count and
reclaims the cell for reuse, if there are not other pointers
to the cell. Figures 15 and 16 give algorithms for these
operations.

SAFEREAD(p : pointer)
returns pointer

1 loop: ¢« READ(p)
2 if ¢ = NULL then
3 return NULL
4 INCREMENT(q".refct)
5 if ¢ = READ(p) then
6 return ¢
else
7 RELEASE(q)
8 goto loop

Figure 15: Algorithm for the SAFEREAD operation.

RELEASE(p : pointer)

¢ « FETCH& ADD(p".refct, —1)
if ¢ > 1 then
return
¢ + TEST&SET(p".claim)
if c =1 then
return
else
7 RECLAIM(p)
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Figure 16: Algorithm for the RELEASE operation.

Note that care must be taken in the RELEASE algorithm,
as it is possible for more than one processes to concurrently



see the reference count go to zero in the same cell. The claim
field in the cell is used to ensure that only one process will
actually try to reclaim the cell for reuse.

5.2 Managing Free Cells

In addition to the SAFEREAD and RELEASE operations, we
need to be able to allocate and reclaim cells, One way
of solving this problem is with another concurrent object,
which acts as a set containing free cells that may be al-
located to processes. This object provides two operations:
ALLocC removes a free cell from the set and returns it to
be used by a process, and RECLAIM returns a cell no longer
being used to the set of free cells.

For brevity, we describe only a very simple implemen-
tation of this object, in which free cells must all be of the
same size. are kept on a simple list. Much more elaborate
schemes are possible; in particular, in [28] we show how to
extend these ideas to implement a lock-free buddy system
which provides management of variable-sized cells.

We keep cells which are not in use on a free list. New
cells are allocated by removing them from the front of the
list, and cells are reclaimed by putting them back on the
front (i.e., the list acts as a stack). Figures 17 and 18 give
algorithms for the ALLOC and RECLAIM operations.

Avvoc()
returns pointer

repeat
q <+ SAFEREAD(Freelist)
if ¢ = NULL
return NULL
r < CSW(Freelist, q, ¢".next)
if r = FALSE
RELEASE(q)
until r = TRUE
WRITE(q".claim, 0)
return q
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Figure 17: Algorithm for the ALLOC operation.

The variable Freelist is a pointer to the first free cell on
the list. Note that the ALLOC algorithm must make use of
the SAFEREAD and RELEASE operations in order to avoid
the ABA problem.

RECLAIM(p : pointer)

repeat
q ¢ Freelist
WRITE(p".next, q)
r < CSW(Freelist, q,p)
until » = TRUE

W N~

Figure 18: Algorithm for the RECLAIM operation.

6 Conclusion

We have presented algorithms using COMPARE&SwWAP for
manipulating a singly-linked list with concurrent processes
without the use of mutual exclusion. This includes travers-
ing the list using cursors, insertion and deletion of nodes at
any point in the list, and memory management. We have
shown how these techniques can be used as building blocks
for other types of concurrent objects, such as the dictionary
abstract data type. All of our algorithms have the property
that they are non-blocking.

‘We chose COMPARE&SWAP as our synchronization prim-
itive for several reasons. Not only is it is universal, in the
sense that it is powerful enough to implement a non-blocking
linked list, but it is also commonly available on a number of
architectures.

We expect the performance of our algorithms to be com-
petitive with similar data structures that use spin locks. The
most time consuming operation is most likely performing a
SAFEREAD on each cell as we traverse the list; it would be
useful to have this operation implemented in hardware.

Preliminary performance analysis of these algorithms can
be found in [28]; however, more work remains to be done in
order to quantitatively determine the performance trade-
offs between algorithms such as these and more traditional
methods using mutual exclusion. We are currently examin-
ing the performance of these algorithms and data structures
experimentally.
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