
Lock Free Linked List using Compare & Swap

Final Project
Distributed Algorithms and Systems

Lawrence Bush

Computer Science Department
Rensselaer Polytechnic Institute

Troy, New York
April 30, 2002

Abstract This is analogous to road construction. A system
must be used to insert and delete pieces of road
while cars are still going down the road.

For my project, I implemented a Lock-Free
Linked List. This entailed the creation of new
data structures and algorithms, the simulation of
the compare&swap synchronization primitive
and writing a multi-threaded simulation and test
program. The data structures are templated so
that they can store any data type. I started with
the method that John Valois explains in his paper
“Lock-Free Linked Lists Using
Compare&Swap” and in his Thesis “Lock-Free
Data Structures” and modified it so that it could
be implemented in C++.

This is accomplished by using auxiliary nodes,
the Compare&Swap primitive to swing pointers
and careful manipulation and checking of the
data structure operations.

Auxiliary nodes are nodes that contain a next
pointer but no data. These nodes are inserted
between the real nodes in a linked list (shown
below as the blue arrows).

20

Auxiliary nodesAuxiliary nodes

a cb d

1. Problem Description

This project addresses the issue of concurrent
access to shared data. This is important to
applications in parallel algorithms, distributed
computing, user-level thread implementation and
multiprocessor operating systems.

When multiple processes concurrently access
shared data the most important issues are data
integrity and performance. Data integrity can be
maintained using standard mutual exclusion
methods, however, this comes with a
performance cost.

Compare&Swap (shown below) is a
synchronization primitive that atomically
compares and updates a value.

An Abstract Data Type (ADT), which allows
concurrent operations by different processors
without using mutual exclusion while ensuring
data integrity, is presented in John Valois’ paper
“Lock-Free Linked Lists Using Compare-and-
Swap.”1 The ADT presented in his paper differs
from previous “Universal” methods because his
ADT directly manipulates the data structure to
improve performance.

5

bool Compare&Swap (Type * x, Type old, Type new)
{

// BEGIN ATOMIC
if *x != old {

• *x = new;
• return TRUE;

} else {
• return FALSE

}
// END ATOMIC

}

Compare&Swap Compare&Swap
Synchronization PrimitiveSynchronization Primitive

The Lock-Free Linked List presented in the
paper allows concurrent traversal, insertion and
deletion operations by different processes
without corrupting the data structure.

The use of a synchronization primitive implies
that the ADT uses mutual exclusion.
Technically, it does. However, the ADT makes
only limited use of hardware level atomic
operations to swing pointers in the insert and
delete operations.

The objective of this project is to implement
these ideas.

2. Related Work

The objective of Lock-Free data structures is to
avoid performance delays while objects are in
the critical section. Lock-Free data structures are
called wait-free. They guarantee a particular
level of performance even if the concurrent
objects halt. Ordinary synchronization
primitives use mutual exclusion. There are
basically 2 types of mutual exclusion: blocking
and busy waiting. They are both marred with
difficulties.

In blocking, convoying and deadlock are two
potential problems. Priority inversion is a
problem with busy waiting.

Convoying means that one slow or delayed
process in the critical region affects all the other
processes waiting for it.

The problem of deadlock occurs when two (or
more) processes are waiting for a resource that
the other is using.

If busy-waiting mutual exclusion is being used
then the following situation known as priority
inversion can result. Suppose that a CPU
scheduler is using a priority scheduling method
where the high priority processes always take
precedence over the low priority processes.
Then, a high priority process using the CPU can
be waiting for a resource held by a low priority
process. The result is that the low priority
process will never get to use the CPU and the
high priority process will never get to use the
resource.

Lamport discovered that these problems can be
avoided using Lock-Free methods. He spent
twenty-seven years considering the benefits of
avoiding mutual exclusion. Lamport created the
first Lock-Free algorithm for the single-writer/
multiple reader shared variable. Lamport’s
achievements spurred much more research and,

consequently, improvements in the field of
Lock-Free methods.

Massalin and Pu coined the term Lock-Free.
They wrote a multi processor Operating System
kernel using Lock-Free data structures.
Lock-Free is an alternative to mutual exclusion.
It does not require exclusive access. Lock-Free
data structures implement concurrent objects
without the use of mutual exclusion. This
method makes actions appear atomic.
Conflicting operations do not corrupt the data
structure. Valois’ method allows simultaneous
traversal, insertion and deletion.

Herlihy did research on universal
synchronization primitives. Compare&Swap is a
universal primitive. A universal primitive is one
that solves the consensus problem.

Herlihy showed that a universal primitive is
necessary and sufficient to implement Lock-Free
ADTs.

An algorithm that provides Lock-Free
functionality for any generic ADT is also called
universal. Universal means “for any.” Doing
this requires a powerful synchronization
primitive. In other words, a primitive that is
powerful enough to solve this problem is
subsequently called universal. It just so happens
that this problem is analogous to the consensus
problem and, therefore, if it can solve the
consensus problem, it can do Lock-Free data
structures.

There are currently universal (for any ADT) wait
free methods but they have too much overhead to
be efficient. This paper shows a direct
implementation that is more efficient.
Valois’ uses a single word version of
Compare&Swap which is commonly available
on most systems.

3. Solution Description

For this project, I implemented a Lock-Free
Linked List, a Test class and related algorithms.
The Lock-Free Linked List is a shared abstract
data type (ADT) that allows operations by
different processors to occur at the same time.

 2

For this implementation I created the following
classes:

20

Auxiliary nodesAuxiliary nodes

a cb d

List Class
Node Class
Iterator Class
Test Class
Lock Class
CriticalSection Class

Together, the List, Node and Iterator Classes
provide the following functionality:

 Traverse
Consider the following example where an insert
and delete simultaneously occur on adjacent
nodes. We are going to delete Node b while
inserting Node c.

Insert
Delete

Synchronization is provided by simulating the
Compare&Swap primitive using the Lock and
CriticalSection classes. Each node has its own
distinct lock to synchronize the swinging of its
next pointer.

Step One: Create and connect Node c and an
accompanying auxiliary node.

21

Step OneStep One

a

c

b d

The Test class uses multiple threads to simulate
distributed concurrent operations on the list.

Attachment 4 contains a complete description of
each program file.

The 2 most fundamental aspects of this
implementation are pointer swinging and the use
of auxiliary nodes.

Pointer swinging entails reading a pointer and
then using the compare and swap primitive to
atomically recheck and change the pointer.
Pointer swinging resolves contention when
conflicting operations occur. The result is that
one of the operations fails. An example of this is
if two processes attempt to delete the same node.

Step Two: c->next->next = d

22

Step TwoStep Two

a

c

b d

An auxiliary node is a node with only a next
pointer (no data). We insert an auxiliary node
in between each cell in the list (shown below as
the blue arrows). This allows adjacent
operations to take place without interfering with
each other.

 3

Iterator Step Three:
 a->next->compare_and_swap_next(b, b->next)

23

Step ThreeStep Three

a

c

b d

In the insert/delete example above, it is not clear
how the algorithm knows where the various
pointers are. This is accomplished through the
iterator object. The iterator in my
implementation is analogous to the cursor in
Valois’ paper. It is like a pointer on steroids. It
is used to indicate where to insert and delete. An
iterator contains the following 3 node pointers:

 target
 pre_cell

pre_aux

These are shown in the picture below.

Step Four: auxiliary node next = node c
b->next->compare_and_swap_next(d, c)

24

Step FourStep Four

a d

c

b

20

Iterator Iterator (at node b)(at node b)

a cb d

pre_aux

pre_cell target

It also contains its own functions. Its most
fundamental operation is the forward traversal
(++). This is implemented through operator
overloading as shown in the following code:

We can see from above that when an insert is
performed a forward path remains for any
traversing process. If a deletion is performed the
deleted node maintains a forward path for any
traversing process. In a garbage collection
system, that deleted node will continue to exist
until there are no more pointers to it. However,
in my implementation, I use the assumption
regarding Memory Management stated in Valois’
paper on page 7:

iterator operator++(int n) {
 iterator temp;
 temp = *this;
 go_next();

 return temp;
 }

bool go_next() {

 if(target->is_last_node()) { return false; }
 pre_cell = saferead(target); “We have thus far assumed that new

cells could be allocated whenever
necessary, and that deleted cells could
be left intact for cursors to continue
traversing them.”

 pre_aux = saferead(target->next);
 update_iterator();
 return true;
 }

Note that the above concurrency depiction only
establishes the basic logical construct for the
operations and not the entire implementation.

 4

void update_iterator() {

 if (pre_aux->next == target) { return; }
 list_node * p = pre_aux;
 list_node * n = p->next;

while ((n->is_not_lastnode())
&& n->is_aux_cell())

{
pre_cell->
compare_and_swap_next(p, n);

 p = n;

 n = saferead(p->next);

} // end while

 pre_aux = p;
 target = n;

} // end iterator update

The first function (update_iterator) is
overloaded. It is a postfix iterator, therefore it
prepares to return the previous value of the
iterator. It then calls go_next. The go_next
function moves the pre_cell pointer forward to
the target pointer and moves the pre_aux forward
to the next cell. It then calls update_iterator
which is where the target finally gets set. The
final destination target is dependent on the
location of pre_aux. If pre_aux already points to
target, then the iterator does not need updating
and the function returns. However, while
iterating forward, it will need updating.
Therefore the function moves two temporary
pointers (p and q) progressively forward until the
n pointer is pointing to a normal cell (with data)
rather than an aux_cell. This will be the next
normal cell after pre_cell. Then it sets the
pre_aux and target and returns.

Note that if the update function encounters a
string of aux_nodes along the way, it will
remove the extra ones using the compare and
swap function. Under high contention, extra
aux_nodes can occur. This is by design.
However, as page 3 of Valois’ paper indicates,
chains of auxiliary nodes are permitted in his
algorithm, although they are undesirable for
performance reasons. Therefore, any passing
iterator removes them.

The above C++ code does not show the full
detail of every function called during the

iteration procedure; however, it does show the
basic logic behind the operation.

4. Solution Analysis

To test this ADT I created a separate class which
runs a program test sequence. The test sequence
was written to be exhaustive (many inserts,
deletes and traversals) and to create a lot of
contention. The test program runs 40 concurrent
threads. Each thread makes about 1,000
insertions and 400 deletions for a total of about
40,000 insertions and about 16,000 deletions.
The function “TestFunctionG” (in the attached
file test.cpp) performs this thread specific testing
sequence. The test sequence is as follows:

Each thread makes 500 insertions. It does this
10 nodes at a time, and then moves the iterator
back to the beginning of the list.

Each thread then performs the following
sequence 100 times.

1. Move the iterator to the begining of the
list.

2. Iterate to the 25th cell (note iterating
skips auxiliary cells).

3. Delete 2 nodes.
4. Iterate 2 nodes forward.
5. Insert 3 cells.
6. Move the iterator to the beginning of

the list.
7. Iterate to the 25th real node.
8. Insert 3 nodes.
9. Iterate forward 2 nodes.
10. Delete 2 nodes.

Each of the 40 threads operate concurrently.
The general idea is that the deletions would
cause the inserting iterators to “fall” back to its
position. This would then make them perform
operations on the same cell or on directly
adjacent cells, creating contention.

The test program tracks various statistics to
verify the results.

The contention created by the numerous
insertions and deletions causes some of the
insertions and deletions to fail. This is the
intended behavior of the ADT.

When an insertion or deletion fails, it returns the
value of false. When an insertion or deletion is
successful, it returns the value of true.

 5

There are only 4 failed deletions in this run.
There are usually 0 –5 for this particular test.
The test attempts to create as much contention as
possible by having 40 concurrent threads all
inserting and deleting in the same area of the list
(approximately from node 20 – 40). However,
causing deletions to fail requires more contention
than causing insertions to fail.

Each thread keeps track of how many insertions
and deletions it makes. It also keeps track of
how many of these fail. Each thread then
calculates a net number of additions to the list
(i.e. successful insertions – successful deletions).
Each thread then adds these figures to the (net)
total number added to the test data structure
(using a synchronization object to prevent race
conditions on the value). That number is shown
below as the “Sum of threads net additions to the
list.”

The data in the Attachment 3 shows a list of the
first 1,000 nodes in the final list. The data below
also shows the total number of real nodes and
auxiliary nodes. There is 1 more auxiliary node
than normal cell in the final list. This is perfect
because we need at least one more auxiliary node
so that there is one before and after each cell.

The number of successful and unsuccessful
insertions and deletions for each individual
thread is also shown in the “Sample Output”
Attachment 3. One interesting point that the
data reveals is that the thread that finishes first
typically has fewer failed insertions and
deletions than the other threads. This is because
it had more time in the insertion area by itself
(or without as many other concurrently operating
threads). In other words, it experiences less
contention. The same is true for the threads that
finish last. Note that the threads are run in order
(1 – 40) but they do not necessarily finish in that
order. This really depends on how much CPU
time each thread is given.

The algorithm does not guarantee that there will
be just 1 more auxiliary node than real nodes.
However, this is usually the case. Sometimes
there are a few more than needed. The algorithm
attempts to remove them all, but depending on
the type and amount of contention, it can leave
some extras. They will be cleaned up later, but
at any given moment, there may be some extra
auxiliary nodes in the list. This is consistent
with the intended operation of the ADT.

Attachment 3 includes a report on the contents
and type of the first 1,000 cells so that you can
see that this is so. The list also contains 1
basenode and 1 lastnode (the last node is not
shown in the report).

The list data structure also tracks these additions
and deletions. A synchronization object also
protects the changes to this value. That number
is shown below as the “List internal add/delete
counter: ListSize.”

DATA After all of the threads have quit, the program

runs an integrity test on the list. This is run in
non-concurrent mode. It adds up all the normal
and auxiliary nodes in the list and reports the
figures (“List internal add/delete counter:
ListSize” and “total_aux_cells”).

Report from the treads:
Sum of threads net additions to the list = 25485

Integrity test :

total_normal_cells. = 25485 You can see from the data below that all 3
measurements indicate the same number of
normal cells in the list. This shows that the list
functions are correctly executing the insertion
and deletion requests. It also means that the
ADT correctly reports to the threads when these
operations fail. In all the tests I performed, these
numbers always matched.

total_aux_cells = 25486

List internal add/delete counter:

ListSize = 25485

You can see from the data in Attachment 3 that
there were numerous insertion failures. This is
normally the case. It is a small percentage of the
total attempts but with 40,000 inserts, the small
percentage is a significant number (about 600 in
total).

 6

 7

5. Conclusion

In conclusion, the ADT performed exactly as
expected.

Note: The test discussed above was run on a 600
MHz AMD Compaq Presario running Windows
98. When the same test is run on a Windows
2000 XP machine with a faster processor, the
results are different. The difference is that on the
XP machine there are no insert or delete failures.
This is most likely due to the faster processor. It
could also be due to the way user space threads
are allocated CPU time, particularly when
another thread is blocking.

Running additional threads in combination with
a different and more aggressive insertion,
traversal, deletion pattern, would most likely
create, additional contention and subsequent
insertion/deletion failures.

Please refer to Attachment 5, files test.cpp
and test.h for the complete test sequence code.

References

1. J.D. Valois. “Lock-Free Linked Lists
Using Compare-and Swap.” In
Proceedings of the Fouteenth
Symposium on Principles of Distributed
Comuting (1995)

2. J.H. Anderson. “Lamport on Mutual

Exclusion: 27 Years of Planting Seeds”
(2001)

3. H. Massalin and C. Pu. “A Lock-Free

Multiprocessor OS Kernel.” Technical
report CUCS-005-91.

4. M. Herlihy. “Impossibility and

Universality Results for Wait-Free
synchronization.” In Proceedings of the
Seventh Symposium on Principles of
Distributed Computing.

Attachments:

1. Instructions

2. Test Sequence

3. Sample Output

4. Program File Descriptions

5. Code Printouts:

• main.cpp
• test.h
• test.cpp
• lockfreelist.h
• lock.h
• lock.cpp
• criticalsection.h
• criticalsection.cpp

6. Main Reference Paper: J. Valois.

“Lock-Free Linked Lists Using
Compare and Swap.”

7. Project Proposal

	Abstract
	
	
	
	
	Insert

	Iterator
	
	
	
	DATA

	References

