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Abstract This is analogous to road construction. A system 
must be used to insert and delete pieces of road 
while cars are still going down the road. 

 
For my project, I implemented a Lock-Free 
Linked List.  This entailed the creation of new 
data structures and algorithms, the simulation of 
the compare&swap synchronization primitive 
and writing a multi-threaded simulation and test 
program.  The data structures are templated so 
that they can store any data type.  I started with 
the method that John Valois explains in his paper 
“Lock-Free Linked Lists Using 
Compare&Swap” and in his Thesis “Lock-Free 
Data Structures” and modified it so that it could 
be implemented in C++. 

 
This is accomplished by using auxiliary nodes, 
the Compare&Swap primitive to swing pointers 
and careful manipulation and checking of the 
data structure operations. 
 
Auxiliary nodes are nodes that contain a next 
pointer but no data.  These nodes are inserted 
between the real nodes in a linked list (shown 
below as the blue arrows). 
 

20

Auxiliary nodesAuxiliary nodes

a cb d

 

 
1. Problem Description 

  
This project addresses the issue of concurrent 
access to shared data.  This is important to 
applications in parallel algorithms, distributed 
computing, user-level thread implementation and 
multiprocessor operating systems. 
 
When multiple processes concurrently access 
shared data the most important issues are data 
integrity and performance.  Data integrity can be 
maintained using standard mutual exclusion 
methods, however, this comes with a 
performance cost.   

 
Compare&Swap ( shown below ) is a 
synchronization primitive that atomically 
compares and updates a value.    

An Abstract Data Type (ADT), which allows 
concurrent operations by different processors 
without using mutual exclusion while ensuring 
data integrity, is presented in John Valois’ paper 
“Lock-Free Linked Lists Using Compare-and-
Swap.”1  The ADT presented in his paper differs 
from previous “Universal” methods because his 
ADT directly manipulates the data structure to 
improve performance. 
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bool Compare&Swap ( Type * x,  Type old,  Type new) 
{

// BEGIN ATOMIC 
if *x != old {

• *x = new;
• return TRUE;

}  else  {
• return FALSE

}
// END ATOMIC

}

Compare&Swap Compare&Swap 
Synchronization PrimitiveSynchronization Primitive

 

 
The Lock-Free Linked List presented in the 
paper allows concurrent traversal, insertion and 
deletion operations by different processes 
without corrupting the data structure. 



The use of a synchronization primitive implies 
that the ADT uses mutual exclusion.  
Technically, it does.  However, the ADT makes 
only limited use of hardware level atomic 
operations to swing pointers in the insert and 
delete operations.   
 
The objective of this project is to implement 
these ideas. 
 
2. Related Work  
 
The objective of Lock-Free data structures is to 
avoid performance delays while objects are in 
the critical section.  Lock-Free data structures are 
called wait-free.  They guarantee a particular 
level of performance even if the concurrent 
objects halt.  Ordinary synchronization 
primitives use mutual exclusion.  There are 
basically 2 types of mutual exclusion: blocking 
and busy waiting.  They are both marred with 
difficulties.   
 
In blocking, convoying and deadlock are two 
potential problems.  Priority inversion is a 
problem with busy waiting.   
 
Convoying means that one slow or delayed 
process in the critical region affects all the other 
processes waiting for it. 
 
The problem of deadlock occurs when two (or 
more) processes are waiting for a resource that 
the other is using. 
 
If busy-waiting mutual exclusion is being used 
then the following situation known as priority 
inversion can result.  Suppose that a CPU 
scheduler is using a priority scheduling method 
where the high priority processes always take 
precedence over the low priority processes.  
Then, a high priority process using the CPU can 
be waiting for a resource held by a low priority 
process.  The result is that the low priority 
process will never get to use the CPU and the 
high priority process will never get to use the 
resource.    
 
Lamport discovered that these problems can be 
avoided using Lock-Free methods.  He spent 
twenty-seven years considering the benefits of 
avoiding mutual exclusion.  Lamport created the 
first Lock-Free algorithm for the single-writer/ 
multiple reader shared variable.  Lamport’s 
achievements spurred much more research and, 

consequently, improvements in the field of 
Lock-Free methods. 
 
Massalin and Pu coined the term Lock-Free.  
They wrote a multi processor Operating System 
kernel using Lock-Free data structures. 
Lock-Free is an alternative to mutual exclusion. 
It does not require exclusive access.  Lock-Free 
data structures implement concurrent objects 
without the use of mutual exclusion.  This 
method makes actions appear atomic.  
Conflicting operations do not corrupt the data 
structure.  Valois’ method allows simultaneous 
traversal, insertion and deletion. 
 
Herlihy did research on universal 
synchronization primitives.  Compare&Swap is a 
universal primitive.  A universal primitive is one 
that solves the consensus problem.  
 
Herlihy showed that a universal primitive is 
necessary and sufficient to implement Lock-Free 
ADTs.    
 
An algorithm that provides Lock-Free 
functionality for any generic ADT is also called 
universal.  Universal means “for any.”  Doing 
this requires a powerful synchronization 
primitive.  In other words, a primitive that is 
powerful enough to solve this problem is 
subsequently called universal.  It just so happens 
that this problem is analogous to the consensus 
problem and, therefore, if it can solve the 
consensus problem, it can do Lock-Free data 
structures. 
 
There are currently universal (for any ADT) wait 
free methods but they have too much overhead to 
be efficient.  This paper shows a direct 
implementation that is more efficient. 
Valois’ uses a single word version of 
Compare&Swap which is commonly available 
on most systems. 
 
3. Solution Description  

 
For this project, I implemented a Lock-Free 
Linked List, a Test class and related algorithms.  
The Lock-Free Linked List is a shared abstract 
data type (ADT) that allows operations by 
different processors to occur at the same time. 
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For this implementation I created the following 
classes:  
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List   Class 
Node   Class 
Iterator  Class 
Test   Class 
Lock   Class 
CriticalSection Class 

 
Together, the List, Node and Iterator Classes 
provide the following functionality: 
 

 Traverse 
Consider the following example where an insert 
and delete simultaneously occur on adjacent 
nodes.  We are going to delete Node b while 
inserting Node c. 

Insert 
Delete 

 
Synchronization is provided by simulating the 
Compare&Swap primitive using the Lock and 
CriticalSection classes.  Each node has its own 
distinct lock to synchronize the swinging of its 
next pointer. 

 
Step One:  Create and connect Node c and an 
accompanying auxiliary node. 
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The Test class uses multiple threads to simulate 
distributed concurrent operations on the list. 
 
Attachment 4 contains a complete description of 
each program file.  
 
The 2 most fundamental aspects of this 
implementation are pointer swinging and the use 
of auxiliary nodes.   
 
Pointer swinging entails reading a pointer and 
then using the compare and swap primitive to 
atomically recheck and change the pointer.  
Pointer swinging resolves contention when 
conflicting operations occur.  The result is that 
one of the operations fails.  An example of this is 
if two processes attempt to delete the same node. 

 
Step Two:  c->next->next = d 
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An auxiliary node is a node with only a next 
pointer ( no data ).  We insert an auxiliary node 
in between each cell in the list (shown below as 
the blue arrows).  This allows adjacent 
operations to take place without interfering with 
each other.   
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Iterator Step Three:   
 a->next->compare_and_swap_next(b, b->next) 
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In the insert/delete example above, it is not clear 
how the algorithm knows where the various 
pointers are.  This is accomplished through the 
iterator object.  The iterator in my 
implementation is analogous to the cursor in 
Valois’ paper.  It is like a pointer on steroids.  It 
is used to indicate where to insert and delete.  An 
iterator contains the following 3 node pointers: 
 

 target 
  pre_cell  

pre_aux 
 
These are shown in the picture below. 

 
 
Step Four:  auxiliary node next = node c  
b->next->compare_and_swap_next(d, c) 
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It also contains its own functions.  Its most 
fundamental operation is the forward traversal    
( ++ ).  This is implemented through operator 
overloading as shown in the following code:    

We can see from above that when an insert is 
performed a forward path remains for any 
traversing process.  If a deletion is performed the 
deleted node maintains a forward path for any 
traversing process.  In a garbage collection 
system, that deleted node will continue to exist 
until there are no more pointers to it.  However, 
in my implementation, I use the assumption 
regarding Memory Management stated in Valois’ 
paper on page 7:  

 
iterator operator++(int n) { 
  iterator temp; 
  temp = *this; 
  go_next();  

 return temp; 
  } 
 
bool go_next() { 
    

      if(target->is_last_node()) { return false; }
 pre_cell = saferead(target); “We have thus far assumed that new 

cells could be allocated whenever 
necessary, and that deleted cells could 
be left intact for cursors to continue 
traversing them.” 

 pre_aux = saferead(target->next); 
 update_iterator(); 
 return true; 
    } 

  
Note that the above concurrency depiction only 
establishes the basic logical construct for the 
operations and not the entire implementation. 
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void update_iterator() {  
 
  if ( pre_aux->next == target ) { return; } 
 list_node * p = pre_aux; 
 list_node * n = p->next; 
  

while (  ( n->is_not_lastnode() )  
&& n->is_aux_cell()  )   

{ 
pre_cell-> 
compare_and_swap_next( p, n ); 

  
 p = n; 

  n = saferead(p->next); 
 

} // end while 
 

  pre_aux = p; 
  target = n; 
 
} // end iterator update 
    
The first function (update_iterator) is 
overloaded.  It is a postfix iterator, therefore it 
prepares to return the previous value of the 
iterator.  It then calls go_next.  The go_next 
function moves the pre_cell pointer forward to 
the target pointer and moves the pre_aux forward 
to the next cell.  It then calls update_iterator 
which is where the target finally gets set.  The 
final destination target is dependent on the 
location of pre_aux.  If pre_aux already points to 
target, then the iterator does not need updating 
and the function returns.  However, while 
iterating forward, it will need updating.  
Therefore the function moves two temporary 
pointers (p and q) progressively forward until the 
n pointer is pointing to a normal cell (with data) 
rather than an aux_cell.  This will be the next 
normal cell after pre_cell.  Then it sets the 
pre_aux and target and returns. 
 
Note that if the update function encounters a 
string of aux_nodes along the way, it will 
remove the extra ones using the compare and 
swap function.  Under high contention, extra 
aux_nodes can occur.  This is by design.  
However, as page 3 of Valois’ paper indicates, 
chains of auxiliary nodes are permitted in his 
algorithm, although they are undesirable for 
performance reasons.  Therefore, any passing 
iterator removes them. 
 
The above C++ code does not show the full 
detail of every function called during the 

iteration procedure; however, it does show the 
basic logic behind the operation. 
 
4. Solution Analysis  
 
To test this ADT I created a separate class which 
runs a program test sequence.  The test sequence 
was written to be exhaustive (many inserts, 
deletes and traversals) and to create a lot of 
contention.  The test program runs 40 concurrent 
threads.  Each thread makes about 1,000 
insertions and 400 deletions for a total of about 
40,000 insertions and about 16,000 deletions.  
The function “TestFunctionG” (in the attached 
file test.cpp) performs this thread specific testing 
sequence.  The test sequence is as follows: 
 
Each thread makes 500 insertions.  It does this 
10 nodes at a time, and then moves the iterator 
back to the beginning of the list. 
 
Each thread then performs the following 
sequence 100 times. 
 

1. Move the iterator to the begining of the 
list. 

2. Iterate to the 25th cell (note iterating 
skips auxiliary cells). 

3. Delete 2 nodes. 
4. Iterate 2 nodes forward. 
5. Insert 3 cells. 
6. Move the iterator to the beginning of 

the list. 
7. Iterate to the 25th real node. 
8. Insert 3 nodes. 
9. Iterate forward 2 nodes. 
10. Delete 2 nodes. 

 
Each of the 40 threads operate concurrently. 
The general idea is that the deletions would 
cause the inserting iterators to “fall” back to its 
position.  This would then make them perform 
operations on the same cell or on directly 
adjacent cells, creating contention. 
 
The test program tracks various statistics to 
verify the results. 
 
The contention created by the numerous 
insertions and deletions causes some of the 
insertions and deletions to fail.  This is the 
intended behavior of the ADT.   
 
When an insertion or deletion fails, it returns the 
value of false.  When an insertion or deletion is 
successful, it returns the value of true. 
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There are only 4 failed deletions in this run.  
There are usually 0 –5 for this particular test.  
The test attempts to create as much contention as 
possible by having 40 concurrent threads all 
inserting and deleting in the same area of the list 
(approximately from node 20 – 40).  However, 
causing deletions to fail requires more contention 
than causing insertions to fail. 

Each thread keeps track of how many insertions 
and deletions it makes.  It also keeps track of 
how many of these fail.  Each thread then 
calculates a net number of additions to the list 
(i.e. successful insertions – successful deletions). 
Each thread then adds these figures to the (net) 
total number added to the test data structure 
(using a synchronization object to prevent race 
conditions on the value).  That number is shown 
below as the “Sum of threads net additions to the 
list.”   

 
The data in the Attachment 3 shows a list of the 
first 1,000 nodes in the final list.  The data below 
also shows the total number of real nodes and 
auxiliary nodes.  There is 1 more auxiliary node 
than normal cell in the final list. This is perfect 
because we need at least one more auxiliary node 
so that there is one before and after each cell.   

 
The number of successful and unsuccessful 
insertions and deletions for each individual 
thread is also shown in the “Sample Output” 
Attachment 3.  One interesting point that the 
data reveals is that the thread that finishes first 
typically has fewer failed insertions and 
deletions than the other threads.  This is because 
it had more time in the insertion area by itself  
(or without as many other concurrently operating 
threads).  In other words, it experiences less 
contention.  The same is true for the threads that 
finish last.  Note that the threads are run in order 
(1 – 40) but they do not necessarily finish in that 
order.  This really depends on how much CPU 
time each thread is given.   

 
The algorithm does not guarantee that there will 
be just 1 more auxiliary node than real nodes.  
However, this is usually the case.  Sometimes 
there are a few more than needed.  The algorithm 
attempts to remove them all, but depending on 
the type and amount of contention, it can leave 
some extras.  They will be cleaned up later, but 
at any given moment, there may be some extra 
auxiliary nodes in the list.  This is consistent 
with the intended operation of the ADT. 
  
Attachment 3 includes a report on the contents 
and type of the first 1,000 cells so that you can 
see that this is so.  The list also contains 1 
basenode and 1 lastnode (the last node is not 
shown in the report). 

The list data structure also tracks these additions 
and deletions.  A synchronization object also 
protects the changes to this value.  That number 
is shown below as the “List internal add/delete 
counter: ListSize.” 

  
DATA After all of the threads have quit, the program 

runs an integrity test on the list.  This is run in 
non-concurrent mode.  It adds up all the normal 
and auxiliary nodes in the list and reports the 
figures (“List internal add/delete counter: 
ListSize” and “total_aux_cells”). 

 
Report from the treads: 
Sum of threads net additions to the list  =  25485 
 
Integrity test :  
  

total_normal_cells.       =        25485 You can see from the data below that all 3 
measurements indicate the same number of 
normal cells in the list.  This shows that the list 
functions are correctly executing the insertion 
and deletion requests.  It also means that the 
ADT correctly reports to the threads when these 
operations fail.  In all the tests I performed, these 
numbers always matched.   

total_aux_cells                   =        25486 
 
List internal add/delete counter:  
 

ListSize    =       25485 
 
 

  
You can see from the data in Attachment 3 that 
there were numerous insertion failures.  This is 
normally the case.  It is a small percentage of the 
total attempts but with 40,000 inserts, the small 
percentage is a significant number (about 600 in 
total). 
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5. Conclusion  
 
In conclusion, the ADT performed exactly as 
expected.   
 
Note:  The test discussed above was run on a 600 
MHz AMD Compaq Presario running Windows 
98.  When the same test is run on a Windows 
2000 XP machine with a faster processor, the 
results are different.  The difference is that on the 
XP machine there are no insert or delete failures.  
This is most likely due to the faster processor.  It 
could also be due to the way user space threads 
are allocated CPU time, particularly when 
another thread is blocking.   
 
Running additional threads in combination with 
a different and more aggressive insertion, 
traversal, deletion pattern, would most likely 
create, additional contention and subsequent 
insertion/deletion failures.   
 
Please refer to Attachment 5, files test.cpp 
and test.h for the complete test sequence code. 
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