
Name: Lawrence Bush
RCS Account: bushl2

Section: 1
Email: bushl2@rpi.edu

 TABLE OF CONTENTS

INTRODUCTION

PURPOSE OF EACH SOURCEFILE

COMPILE AND RUN INSTRUCTIONS
 Command line arguments

RESULTS - two small primes (p=5,11)
 - plus larger primes
__
INTRODUCTION

This program implements a cryptography system.
It consists of three parts. The first part creates a key,
the second part encodes a message, and the third part decodes
the message.

The program should be compiled and run in three separate workspaces.
An organized way to do this, is to put the files into three separate
folders as follows.

create key folder:
 createkey.cpp
 gcd.h
 mmi.h

encode folder
 encode.cpp
 modexp.h

decode folder
 decode.cpp
 modexp.h
__
PURPOSE OF EACH SOURCEFILE:

 createkey.cpp - This is the main file for the create key
 workspace. The program accepts two prime
 numbers and computes a key (e), a decode key (d)
 and the product (N) of the inputs.

 encode.cpp - This is the main file for the encode workspace.
 The program accepts three arguments (M,e,N)
 (Message, encode key, product of the two
 primes). It then uses this information to
 encode M.

 decode.cpp - This is the main file for the decode workspace.
 The program accepts three arguments (R,d,N)

 (Encoded Message, decode key, product of the
 two primes). It then uses this information to
 decode N.

 gcd.h - This header file contains a function which
 computes the greatest common divisor of two
 inputs.

 mmi.h - This header file contains a function which
 computes the Modular Multiplicative Inverse.

 modexp.h - This header file contains a modexp function
 which recursively calls itself to calculate
 and return X^N mod P.

__

COMPILE AND RUN INSTRUCTIONS:

CREATE KEY

Open Create Key folder.
Open creatkey.cpp in MS Visual C++
Compile and run(! button)

The .h files (gcd.h, mmi.h) should be in the same directory as
creatkey.cpp. I always add the .h files to the project, but it
is not necessary.

Command line arguments:

Note: If you input the command line arguments incorrectly,
 the program will instruct you on how to input them.

The create key program takes two prime numbers as command line arguments.
They are used in the program as the variables: [p, q].
For example: [5, 11]

The program outputs an encode key [e], a decode key [d] and
the product of the two primes [N].
__

ENCODE

Open encode folder.
Open encode.cpp in MS Visual C++
Compile and run(! button)

The .h files (modexp.h) should be in the same directory as
encode.cpp. I always add the .h files to the project, but it
is not necessary.

Command line arguments:

Note: If you input the command line arguments incorrectly,
 the program will instruct you on how to input them.

The encode program takes three numbers as command line arguments.
They are Message, encode key, and the product of the two primes used
to develop key [M, e, N]. For example: [47, 3, 55].
e and N are outputs from create key.

The program outputs an encoded message [R].
__

DECODE

Open Decode folder.
Open decode.cpp in MS Visual C++
Compile and run(! button)

The .h files (modexp.h) must be in the same directory as
decode.cpp. I always add the .h files to the project, but it
is not necessary.

Command line arguments:

Note: If you input the command line arguments incorrectly,
 the program will instruct you on how to input them.

The decode program takes three numbers as command line arguments.
They are Encoded Message (output by encode program), decode key,
and the product of the two primes used to develop key [R, d, N].
For example: [38, 27, 55].
d and N are outputs from create key.

The program outputs an decoded message [Q], which should be the
same a the origonal message [M].

__
RESULTS -

I tested the create key program using the two primes: 5 11

The results for are:

p = 5, q = 11
N = 55
Public Key: e = 3
Private Key: d = 27

These outputs are correct because:
N = p * q = 55

gcd(e,(p-1)*(q-1)) = gcd(3,40)= 1

d = 27 = mmi(e,(p-1)*(q-1))
e*d = 1 (mod ((p-1)*(q-1)))
3*27 = 1 (mod 40)
81 % 40 = 1

I tested the encode program using: 47 3 55

The message to be encoded is 47.
The public (encoding) key is 3.
The N is 55.

The results are:

M = 47, e = 3, N = 55
Encrypted Message R = 38

This output is correct because:
R = M^e % N
 = 47^3 % 55
 = 103823 % 55
 = 38

I tested the decode program using: 38 27 55

The message to be decoded is 38.
The private (decoding) key is 27.
The N is 55.

The results are:

R = 38, d = 27, N = 55
Decoded Message Q = 47

This output is correct because:
Q = R^d % N
 = 38^27 % 55
 = ((38^3 % 55)^9) % 55
 = ((37)^9) % 55
 = ((37)^3 % 55)^3 % 55
 = (53)^3 % 55
 = 47

As you can see, the message Q decoded to the original message M.

Below are results for more, larger primes.
__
RESULTS -

Primes Message Create Key Output Encode Decode
 Output Output
 M->R R->Q
p q M e N d R Q

5 11 47 3 55 27 38 47
19 29 47 5 551 101 73 47
67 71 47 13 4757 1777 1132 47
151 157 5555 7 23707 3343 1780 5555
179 181 5555 7 32399 27463 9109 5555
223 227 5555 5 50621 20069 42643 5555
233 239 47 3 55687 36811 48136 47
239 241 47 11 57599 20771 29277 47
241 251 47 7 60491 17143 46592 47
241 89 5555 7 21449 18103 17521 5555

