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Abstract 

 
The application of a Fuzzy Logic 
Controller (FLC) to the inverted 
pendulum problem is presented in this 
paper.  FLCs have been used to control 
many dynamic systems.  The inverted 
pendulum represents a challenging 
control problem, which continually 
moves toward an uncontrolled state.  
Three versions of an FLC for the 
inverted pendulum problem are 
discussed in this paper including their 
strengths, weaknesses and performance.  
Techniques for manually tuning a 
complex FLC are also implemented in 
this project and addressed in this paper. 
 
 
1. Problem Description 

  
This project addresses the inverted 
pendulum-balancing problem.  In this 
project, a simulated1 inverted pendulum 
system is used.  The system amounts to 
an inverted pendulum mounted on a cart.  
The diagram below depicts this system.   
 

    
System Constants 

 Name Value 
M cart mass 0.5 kg 
b cart friction 0.1N/m/sec 
m pendulum mass 0.2kg 
Lp pendulum length  

(to center of mass) 
0.3m 

I pendulum inertia 0.006kg*m2 
 

System Variables 
 Name Units 
F force applied to cart in N 
x cart position m 
�x cart velocity m/sec 
θ pendulum angle  

(from vertical) 
radians 

�θ pendulum angular 
velocity 

radians/sec 

 
The system works as follows.  The 
system begins at rest (all of the system 
variables are zero) with the pendulum 
standing straight up.  An initial 
disturbance force is applied to the cart, 
which puts the system out of balance. 
After this point, it is up to the controller 
to keep the system in control. 
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The system simulator provides the 
system status variables (x, �x, θ, �θ) to 
the controller.  The controller uses these 
variables to determine the force to apply 
to the cart.  The diagram below depicts 
this feedback system. 
 

 
 
Solution Evaluation Criteria:  
 
The primary objective of this problem is 
to keep the pendulum and cart in a 
controlled state over the simulation 
period (6 seconds).  This means that the 
controlled system variables are not 
monotonically increasing or decreasing 
and that the controlled system variables 
are within a certain band.  Our 
benchmark for the system variable 
control band is for θ to be within .5 
radians and x to be within .5 meters.   
 
The secondary objective is to tighten the 
system control.  The best possible result 
would be for the system to return to a 
balanced rest state (all of the system 
variables (x, �x, θ,�θ) equal to zero).  
The closer the controller comes to 
achieving this, the better. 
    
A third objective of this problem is to 
create a robust controller.  To test for 
robustness, the controller is run using a 
range of initial disturbance forces (-.5 N 
to + .5 N).  The controller should 

achieve criteria 1 and 2 over the range of 
disturbance forces. 
 
 
2. Related Work  
 
Many methods have been used to control 
the inverted pendulum problem.  These 
include a Proportional Integral-
Derivative controller2, a Neural Network 
controller3 and a Genetic Algorithm 
tuned Fuzzy Logic Controller4. 
 
A Proportional Integral-Derivative 
controller uses a three-term transfer 
function to calculate a signal (u) from an 
error signal (e).  The signal (u) is equal 
to the proportional gain (Kp) times the 
magnitude of the error plus the integral 
gain (Ki) times the integral of the error 
plus the derivative gain (Kd) times the 
derivative of the error.  This signal (u) 
will be sent to the plant, and the new 
output (Y) will be obtained. 
 
A neural network approach to the 
inverted pendulum problem was 
presented by Osamu Fujita and Kuniharu 
Uchimura.  Their approach used trial-
and-error correlation learning to train a 
four input neural controller with two 
hidden neurons.   
 
An example of a controller similar to the 
system presented in this paper is that of 
Shyh-Jier Huang and Chuan-Chang 
Hung.  They used a genetic algorithm to 
tune a fuzzy logic controller for the 
inverted pendulum problem.  Their 
system used 2 inputs (θ and �θ) and a 52 
rule-base.  A 52 rule-base is a 5 by 5 
matrix of 25 rules with corresponding 
consequent functions.  A 52 rule-base  
takes 2 inputs and has 5 membership 
functions for each input.   
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3. Solution Description  
 

For this project, I created and compared 
three FLCs for the inverted pendulum 
problem.  The three FLCs are referred to 
as the 52-FLC, 24-FLC, and 54-FLC. 
 
The 52-FLC accepts 2 input variables 
from the simulator and fuzzifies them 
with 2 sets of 5 triangular membership 
functions.  It then uses a 5 by 5 T-norm 
(minimum) rule-base with 5 consequent 
functions to determine the overall 
output.   
 
The 24-FLC accepts 4 input variables 
from the simulator and fuzzifies them 
with 4 sets of 2 triangular membership 
functions.  It then uses a 24 T-norm 
(minimum) rule-base with 5 consequent 
functions to determine the overall 
output.   
 
The 54-FLC accepts 4 input variables 
from the simulator and fuzzifies them 
with 4 sets of 5 triangular membership 
functions.  It then uses a 54 T-norm 
(minimum) rule-base with 17 consequent 
functions to determine the overall 
output.   
 
All of the above FLCs use the center of 
area method to defuzzify the consequent 
MF matrices. 
 
The following diagram depicts the 
organization of the controllers. 

 
 
The 54-FLC is described in further 
detail.   
 
The following is a graph of the 
membership functions which 54-FLC 
uses to fuzzify the 4 input variables. 
 

 
 
The membership functions determine the 
firing strength for each individual input 
variable.  54-FLC combines these firing 
strengths using a 24 T-norm (minimum) 
rule-base and applies them to 17 
consequent functions.  This produces a 
matrix of qualified consequent MFs. 
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The st45.m  function was created to 
automate the construction of the 
consequent functions.  Then the 
controller uses st45 to create a set of n 
(17) evenly spaced horizontally 
symmetrical orthogonal trapezoidal 
consequent functions across a given 
range [-5.4 : +5.4].  The support of each 
consequent function is 3 times the width 
of the core. 
 
Each of these consequent functions is 
indexed from 1 to 17.   
 
Each rule in the rule-base is associated 
with a consequent function using the 
formula: 
 

cmf(  i + (j-1) + (-k+5) + (-l+5)  ) 
 
 for  i, j, k, l  = [ 1 : 5 ] 
 
The variables i, j, k and l pertain to the 
membership of x, �x, θ and �θ.  This 
formula requires that the positive-
negative orientation of the MF-set be 
appropriately matched to the consequent 
MF-set.  However, the polarity of k and l 
were reversed by adjusting the formula.   
The resulting composed rule-base is a 4 
dimensional matrix of diagonally layered 
isogramatic hyper planes.  For example, 
the following diagonalized matrix is 
produced by applying the above formula 
in 2 dimensions resulting in 9 diagonally 
layered iso-lines. 
   

 
 

If this notion is extrapolated to 4 
dimensions, the result is a 4 dimensional 
matrix of 17 diagonally layered 
isogramatic hyper-planes.    
 
An example of a rule derived from the 
rule-base formula is as follows: 
 

Inputs 
 

Angle is large positive. 
Angular Velocity is large positive. 
Cart Position is large negative. 
Cart Velocity is large negative. 
 
Rule( 5, 5, 1, 1 )  
 
     = cmf(  i + (j-1) + (-k+5) + (-l+5)  ) 
     = cmf( 17 )  
     = large positive force  
 
The 54-FLC then defuzzies the qualified 
consequent matrix using the center of 
area method to determine the overall 
output.   
 
4. Solution Analysis  
 
The following graphs show the results of 
the three controllers for an initial 
disturbance force of .2N and -.5N. 
 

52-FLC 
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This FLC keeps the pendulum in tight 
control over the simulation period.  
However, after the first .5 seconds, the 
cart position is moving in the negative 
direction.  This is due to the fact that this 
controller only uses the pendulum angle 
and angular velocity as inputs and 
therefore, does not directly control the 
cart position.  It works well for this 
disturbance force because it was tuned 
for this force.  We can see from the 
following graph that this controller does 
not do very well on the robustness test  
(-.5N).  The controller is able to keep the 
pendulum from falling down, however, 
the cart moves far away from the starting 
point.  The oscillations are larger but are 
within the .5m benchmark.   
 
 

52-FLC 
 

 
 
The graph above shows that the 52-FLC 
is nt robust.  However, the 52-FLC has 
the advantage of being simpler and 
easier to tune because it only deals with 
2 variables and only has a 25 element 
rule-base. 
 
 

 
 

24-FLC 
The following controller performs 
reasonably well under the standard test 
and the robustness test.  However, the 
controller is unable to reduce the size of 
the oscillations in both tests.  This is due 
to the fact that the controller has only 2 
MFs for each variable.  Therefore, it 
behaves linearly.  In order for a 
controller to gradually reduce the size of 
the oscillations, it needs a polynomially 
shaped relationship between the input 
and the output.  This controller has the 
advantage of being simpler and easier to 
tune because it only has a 16 element 
rule-base. 
 
 

24-FLC 
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54-FLC 
The following controller performs very 
well under the standard test and the 
robustness test.  The controller was able 
to reduce the size of the oscillations in 
both tests.  This is due to the fact that the 
controller has 5 MFs for each variable.  
Therefore, it behaves polynomially. 
 
This controller has the disadvantage of 
being more complicated and more 
difficult to tune because it uses 5 MFs 
for each of the 4 input variables, 17 
consequent functions and has a 625 
element rule-base.  It also takes much 
more computing time. 
 
 

54-FLC 
 

 

 
 
 

5. Conclusion  
 
Manually tuned Fuzzy Logic Controllers 
can be effectively applied to control the 
inverted pendulum problem.  The 
controllers were able to recover quickly 
from various deviations and stabilize the 
pendulum within a tight band of control.   
 
The 54-FLC is by far the most accurate 
and robust model presented here.  The  
54-FLC produced a quick and smooth 
recovery on both tests.  One drawback of 
the 54-FLC is its long processing time.  
A possible next step is to improve the 
running time by converting the iterative 
calculations to matrix calculations. 
 
The techniques explained above address 
some of the complexities of tuning an 
FLC.  These techniques should be useful 
in tuning FLCs for other complex 
systems.  An appropriate future area to 
explore is testing these techniques on 
other control problems.     
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Appendix:   
 
The following source code for the        
54-FLC is provided in the appendix:  
 
controller_4.m  coa.m 
mf4b.m   trap_mf.m 
st45_mf.m   triangle_mf.m 
 
 
 

 


