

Interpreting Deep Visual Representations

Bolei Zhou

MIT

David Bau

Aditya Khosla

Aude Oliva

Antonio Torralba

Background

Convolutional Neural Network (ConvNet)

Many networks

fc 1000

34-layer residual

Why works so well

Upload your image for scene recognition using **Places-CNN** from MIT.

Take/Choose a photo

Predictions:

- type: indoor
- semantic categories: hotel_room:0.50, bedroom:0.47,

••••• vodafone ES 3G 10:31 PM

places.csail.mit.edu

Predictions:

- type: indoor
- semantic categories: hotel_room:0.35, bedroom:0.15,

living_room:0.09, dorm_room:0.06, basement:0.05

When it fails, why is it?

Output: cutting vegetables. Correct label: gardening

Output: washing dishes. Correct label: brushing

Work on Network Visualization

Deconvolution

Zeiler et al., ECCV 2014.

Back-propagation

Simonyan et al., ICLR 2015

Horizon

Towers & Pagodas Buildings Birds & Insects Inceptionism. Google Blog. June 2015

Trees

Feature inversion

Mahendran et al, CVPR 2015

Top activated images

Girshick et al., CVPR 2014

Going From Visualization to Interpretation

Top Activated Images

Top Activated Images

Interpretation: lamp

Interpretation: head

Score: 0.15

Score: 0.23

Top Activated Images

Score: 0.02

Solution: Evaluate units for semantic segmentation

Unit 1 Top activated images

Bau*, Zhou*, Khosla, Oliva, Torralba. Network Dissection: quantifying interpretability of deep visual representations. CVPR'17

Network Dissection Framework to interpret the deep visual representations

Bau*, Zhou*, Khosla, Oliva, Torralba. Network Dissection: quantifying interpretability of deep visual representations. CVPR'17

Broadly and Densely (Broden) Annotated Dataset

ADE20K

Zhou et al, CVPR'17

Pascal Context

Mottaghi et al, CVPR'14

Pascal Part

Chen et al, CVPR'14

Open-Surfaces

Bell et al, SIGGRAPH'14 Describable Textures

Cimpoi et al, CVPR'14

Colors

Total = 63,305 images 1,197 visual concepts

street (scene)

headboard (part)

swirly (texture)

flower (object)

metal (material)

pink (color)

conv5 unit 79 car (object) IoU=0.13

conv5 unit 107 road (object) IoU=0.15

conv5 unit 144 mountain (object)

IoU=0.13

conv5 unit 200 mountain (object) IoU=0.11

Dissection Report

Szegedy et al. Intriguing properties of neural networks. arXiv.2014

- "No distinction between individual high level units and random linear combinations of high level unit"
- "It suggests that it is the space, rather than the individual units, that contains the semantic information in network"

Single Neuron

Random Projection

Random combination of units

Do concepts associate with individual units or the whole feature space?

Datasets

IM GENET

Interpretable Units in Different Architectures

Interpretable Units in Different Architectures

Interpretable Units in Different Architectures

Number of Unique Detectors

HE WINTS

ResNet

Interpretable Units over Layers

Interpretable Units over Layers

Interpretable Units over Layers

CNNs Trained from Self-supervised Learning

Training CNN without image labels.

Context prediction, ICCV'15

Solving puzzle, ECCV'16

Colorization, ECCV'16 and CVPR'17

(a) Video frame

(b) Cochleagram

Audio prediction, ECCV'16 ³¹

Comparison of Supervisions

Comparison of Supervisions

Interpretable Units in Self-supervised Networks

Predict audio from video frames. ECCV'16 Owens et al.

Interpretable Units in Self-supervised Networks

Emergence of Interpretable Units during Training

Individual Unit d

Unit 23 at conv5 layer

Fine-tuning from ImageNet to Places

Unit 8 at conv5 layer

Fine-tuning from ImageNet to Places

Unit 52 at conv5 layer

Fine-tuning from Places to ImageNet

Unit 35 at conv5 layer

Fine-tuning from Places to ImageNet

Unit 103 at conv5 layer

Explainable Deep Features

Activations from CNN as generic visual feature

Deep features as generic visual descriptor

Explaining the Output

Activation of units as object detectors

Zhou et al. Learning Deep Features for Discriminative Localization. CVPR 2016

Explaining the Output

- Class Activation Maps (CAM) for the top5 predictions: palace, dome, church, altar, monastery

Zhou et al. Learning Deep Features for Discriminative Localization. CVPR 2016

Explaining the Output by Unit Interpretations

Explaining the Output by Unit Interpretations

Explaining the Output by Unit Interpretations

Code and more visualizations are at http://netdissect.csail.mit.edu

Conclusion

Living room Kitchen Coast Theater

•••

Interpretability Report

Network Dissection

unit 79 car, IoU=0.13

