

Understand and Leverage the Internal Representations of Convolutional Neural Networks

Bolei Zhou MIT

CNN for Image Classification

Large-scale image classification result on ImageNet

ImageNet Classification top-5 error (%)

CNN for General AI

- SL policy network is 13 layer-CNN
- Training: 29.4 million positions from 160,000 human professional games.
- CNN beats human professional, can we discover the inside knowledge?

Mastering the game of Go with deep neural networks and tree search D Silver et al. Nature, 2016

final output is a small part of the story

Understand and leverage the internal units/representation

Outline

- Visualizing and annotating the internal units
- Application: weakly supervised localization

Zhou et al. Object Detectors Emerge from Deep Scene CNN. ICLR'15 Zhou et al. Learning Deep Features for Discriminative Localization. CVPR'16 Bau*, and Zhou*, et al. Network Dissection. CVPR'17

Joint work with: David Bau, Aditya Khosla, Agata Lapedriza, Aude Oliva, Antonio Torralba

Object Representations in Computer Vision

vehicle

Object Representations in Computer Vision

Object Representations in Computer Vision

Constellation model

Weber, Welling & Perona (2000), Fergus, Perona & Zisserman (2003)

Bag-of-word model

Lazebnik, Schmid & Ponce(2003), Fei-Fei Perona (2005)

Deformable Part model

P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan (2010)

Class-specific graph model

Kumar, Torr and Zisserman (2005), Felzenszwalb & Huttenlocher (2005)

Object Representations in CNN

Deconvolution

Zeiler, M. et al. Visualizing and Understanding Convolutional Networks, ECCV 2014.

Strong activation image

Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. CVPR 2014

Back-propagation

Simonyan, K. et al. Deep inside convolutional networks: Visualising image classification models and saliency maps. ICLR workshop, 2014

Object Representations in CNN

http://people.csail.mit.edu/torralba/research/drawCNN/drawNet.html

drawNet

A Comparison Study on CNNs

Places: Large-scale Scene Recognition Database

- Places contains 10 million images from ~400 scene categories.
- Data and models are available at http://places.csail.mit.edu

Zhou, et al. "Learning Deep Features for Scene Recognition using Places Database." NIPS'14

Data-Driven Approach to Visualize CNN

Estimating the Receptive Field of Unit

receptive field

Segmenting Images by Units' Receptive Fields

Image segmentation using units at different layers:

More semantically meaningful

Top ranked segmented images are cropped and sent to Amazon Turk for annotation.

Pool5, unit 76; Label: ocean; Type: scene; Precision: 93%

Pool5, unit 13; Label: Lamps; Type: object; Precision: 84%

Pool5, unit 77; Label:legs; Type: object part; Precision: 96%

Pool5, unit 112; Label: pool table; Type: object; Precision: 70%

Distribution of Semantic Types at Each Layer

Simple elements & colors 50 percent units (perf>75%) 0 0 0 0 0 0 0 places-CNN imagenet-CNN 0 conva pool pool convo Pools

10

5

²⁰⁰1

POOR

convo conva poolo

Histogram of Object Detectors in Pool5

Histogram of Object Detectors in Pool5

15

Buildings

56) building

120) arcade

8) bridge

123) building

119) building

9) lighthouse

Scenes 145) cementery

127) street

218) pitch

Indoor objects

182) food

46) painting

106) screen

53) staircase

107) wardrobe

People

person

49) person

138) person

100) person

Furniture

18) billard table

155) bookcase

116) bed

38) cabinet

85) chair

Lighting

55) ceiling lamp

174) ceiling lamp

223) ceiling lamp

13) desk lamp

Outdoor objects

61) road

96) swimming pool

28) water tower

windmill

Nature

195) grass

89) iceberg

140) mountain

159) sand

Issue: Manually annotating units is not scalable

Top ranked segmented images are cropped and sent to Amazon Turk for annotation.

3x3 conv, 64		
*		
3x3 conv, 64, pool/2		
¥		
3x3 conv, 128		
2.2		
3x3 conv, 128, pool/2		
3x3 conv, 256		
5X5 CONV, 250		
3x3 conv, 256		
★		
3x3 conv, 256		
*		
3x3 conv, 256, pool/2		
V		
3x3 conv, 512		
242 0004 512		
3x3 conv, 512		
3x3 conv, 512		
¥		
3x3 conv, 512, pool/2		
★		
3x3 conv, 512		
¥		
3x3 conv, 512		
2+2		
3x3 conv, 512		
3x3 conv, 512, pool/2		
JX3 COITY, J12, POOI/2		
fc, 4096		
▼		
fc, 4096		
★		
fc, 1000		

Solution: Automatic annotation for unit semantics

Corpus of color dataset, texture dataset, shape dataset, object dataset, scene dataset

Solution: Automatic annotation for unit semantics

Automatically Annotating Internal Units

Units annotated as concept detectors in the Places-AlexNet

Automatically Annotating Internal Units

Analyzing the effect of training tricks for network interpretability

A zoo of CNN models

Network	Dataset or task
AlexNet	random
AlexNet	ImageNet, Places205, Places365, Hybrid.
GoogLeNet	ImageNet, Places205, Places365.
VGG	ImageNet, Places205, Places365, Hybrid.
ResNet	ImageNet, Places365.
	context, puzzle, egomotion,
AlaxNat	tracking,moving,videoorder,
Alexinet	audio, crosschannel,colorization.
	objectcentric.
	AlexNet AlexNet GoogLeNet VGG

Supervised CNN on ImageNet/Places

Figure 4: The top ranked tokens identified in the AlexNet, VGG, GoogLeNet, and ResNet on ImageNet and Places365.

Supervised CNN on ImageNet and Places

• Analyzing concept detectors change over layers

Self-supervised CNNs

• Examples of self-supervised training tasks:

Context prediction, ICCV'15

Solving puzzle, ECCV'16

Predicting video order, ECCV'16

Colorization, ECCV'16 and CVPR'17

Self-supervised CNNs

• Comparison of supervised CNNs and self-supervised CNNs

Self-supervised CNNs

• Examples of detectors in self-supervised CNNs:

Explanatory factors in deep features

Leveraging the Internal Representations of CNNs

Zhou et al. Learning Deep Features for Discriminative Localization. Computer Vision and Pattern Recognition (CVPR), 2016

Why CNN makes the prediction?

Prediction from ImageNet-CNN: Australian terrier:0.75

Why CNN makes the prediction?

Prediction from Places-CNN: Picnic area:0.64

Why CNN makes the prediction?

Previous work:

convolutional units as concept detectors at different layers

Simplifying the Network Architecture

Activation of units as object detectors

Class Activation Mapping

- Different classes have different class activation maps
- Top5 predictions: palace, dome, church, altar, monastery

Effect from Removing the FC layers

Classification accuracy drops 2~3%, but with 90% less model parameters

Networks	top-1 val. error	top-5 val. error
VGGnet-GAP	33.4	12.2
GoogLeNet-GAP	35.0	13.2
AlexNet*-GAP	44.9	20.9
AlexNet-GAP	51.1	26.3
GoogLeNet	31.9	11.3
VGGnet	31.2	11.4
AlexNet	42.6	19.5
NIN	41.9	19.6
GoogLeNet-GMP	35.6	13.9

Table 1. Classification error on the ILSVRC validation set.

Weakly-supervised object localization

CNN-GAP is used for object localization, without training with bounding box annotation.

Table 3. Localization error on the ILSVRC test set for various weakly- and fully- supervised methods.

Method	supervision	top-5 test error
GoogLeNet-GAP (heuristics)	weakly	37.1
GoogLeNet-GAP	weakly	42.9
Backprop [22]	weakly	46.4
GoogLeNet [24]	full	26.7
OverFeat [21]	full	29.9
AlexNet [24]	full	34.2

Localizable Visual Features

Deep CAM feature + linear SVM: localize informative regions

Stanford Action40

Caltech256

Or any other tasks with any loss functions, like regression, clustering, etc.

Localizable Visual Features

Image captioning using LSTM

Visual question answering

Question: What are they doing? Prediction: texting (score: 12.02=3.78 [image] + 8.24 [word])

Question: What is he eating? Prediction: hot dog (score: 13.01=5.02 [image] + 7.99 [word])

Zhou, et al, Simple Baseline for Visual Question Answering, arXiv1512

Demo video

https://www.youtube.com/watch?v=fZvOy0VXWAI http://cnnlocalization.csail.mit.edu

- We analyzed the internal representation of CNNs, and leveraged them for weakly-supervised localization.
- The papers, the code, and pre-trained models are at

http://places.csail.mit.edu

http://cnnlocalization.csail.mit.edu