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Abstract—Collective motions of crowds are common in nature and have attracted a great deal of attention in a variety of

multidisciplinary fields. Collectiveness, which indicates the degree of individuals acting as a union, is a fundamental and

universal measurement for various crowd systems. By quantifying the topological structures of collective manifolds of crowd,

this paper proposes a descriptor of collectiveness and its efficient computation for the crowd and its constituent individuals. The

Collective Merging algorithm is then proposed to detect collective motions from random motions. We validate the effectiveness

and robustness of the proposed collectiveness on the system of self-driven particles as well as other real crowd systems such

as pedestrian crowds and bacteria colony. We compare the collectiveness descriptor with human perception for collective motion

and show their high consistency. As a universal descriptor, the proposed crowd collectiveness can be used to compare different

crowd systems. It has a wide range of applications, such as detecting collective motions from crowd clutters, monitoring crowd

dynamics, and generating maps of collectiveness for crowded scenes. A new Collective Motion Database, which consists of 413

video clips from 62 crowded scenes, is released to the public.

Index Terms—Crowd behavior analysis, collective motion, video analysis, graph connectivity.

✦

1 INTRODUCTION

One of the most captivating phenomena in nature is the

collective motions of crowds. From bacterial colonies and

insect swarms to fish shoals, collective motions widely

exist in different crowd systems and reflect the ordered

macroscopic behaviors of constituent individuals. Many

interdisciplinary efforts have been made to explore the

underlying principles of this phenomenon. Physicists treat

crowds as sets of particles and use equations from fluid

mechanics to characterize individual movements and their

interactions [1]. Behavioral studies show that complex

crowd behaviors may result from repeated simple inter-

actions among its constituent individuals, i.e., individuals

locally coordinate their behaviors with their neighbors, and

then the crowd is self-organized into collective motions

without external control [2], [3]. Meanwhile, animal ag-

gregation is considered as an evolutionary advantage for

species survival, since the integrated whole of individuals

can generate complex patterns, quickly process information,

and engage in collective decision-making [4].

One remarkable observation of collective motions in

various crowd systems is that some spatially coherent

structures emerge from the movements of different individ-

uals, such as the arch-like geometric structures illustrated

in Fig.1. We refer to the spatially coherent structures

of collective motions as Collective Manifold. One of the

important structural properties of collective manifolds is

that behavioral consistency remains high among individuals

in local neighborhoods, but low among those that are far
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apart, even if they are on the same collective manifold.

In fact, individuals in crowds only have limited sensing

range, then they often base their movements on locally

acquired information such as the positions and motions

of their neighbors. However, information can propagate to

distant areas through local interactions and coordination,

which lead to the collective motion of the whole crowd.

Some empirical studies have explored the importance of

topological relations and information transmission among

neighboring individuals in crowd [5], [6]. However, there

is a lack of quantitative analysis of the collective manifold

and its structural properties corresponding to the overall

crowd dynamics.

Collectiveness describes the degree of individuals acting

as a union in collective motions. It depends on multiple

factors, such as the decision making process of individ-

uals, crowd density, and scene structures. Quantitatively

measuring this universal property and comparing it across

different crowd systems play an important role to under-

stand the general principles of various crowd behaviors. It

is important to many applications, such as monitoring the

transition of a crowd system from disordered to ordered s-

tates, studying correlation between collectiveness and other

crowd properties such as population density, characterizing

the dynamic evolution of collective motions, and compar-

ing the collectiveness of different crowd systems. Most

existing crowd surveillance technologies [7], [8] cannot

compare crowd behaviors across different scenes because

they lack universal descriptors with which to characterize

the crowd behaviors. Monitoring collectiveness is also

useful in crowd management, control of swarming desert

locusts [9], prevention of disease spreading [10], and many

other fields. However, this important property lacks accurate

measurements. Existing works [6], [11] simply measure

the average velocity of all the individuals to indicate the

collectiveness of the whole crowd, which is neither accurate

nor robust. The collectiveness of individuals in crowd is
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A) B)

Fig. 1. A) Collective motions of the bacterial colony, fish shoal, bird flock, sheep herd, athletic group, and traffic

flow. B) One common spatially coherent structure, i.e., Collective Manifold, emerges in these different crowds.

Since individuals in a crowd system only coordinate their behaviors with their local neighbors, individuals at a

distance may have low velocity correlation even though they are on the same collective manifold. Consider the

red and green individuals as examples. By characterizing the structural property of collective manifolds in various

crowds, this work aims at proposing a general measurement of collectiveness for different crowd systems and

its efficient computation. Colored dash links represent neighborhoods.

also ill-defined.

In this paper, by quantifying the structural properties of

collective manifolds of crowds, we propose a descriptor of

collectiveness for crowds as well as their constituent indi-

viduals. Based on collectiveness, we propose an algorithm

called Collective Merging to detect collective motions from

random motions. We validate the effectiveness and robust-

ness of the proposed collectiveness on self-driven particles

[11]. It is further compared with human motion perception

on a new Collective Video Database with ground-truth. In

addition, our experiments of detecting collective motions

and measuring crowd collectiveness in videos of pedes-

trian crowds and bacterial colonies demonstrate the wide

applications of the collectiveness descriptor1.

The novelty and contributions of this work are summa-

rized as follows. 1) Rather than learning/extracting mo-

tion patterns from time-series data, we propose a general

descriptor of collectiveness to measure crowd dynamics,

which is based on a common observation of collective

manifolds in collective motions of different crowds. 2)

This collectiveness descriptor along with the collective

motion detection algorithm can be effectively applied to

a variety of data (such as self-driven particle systems,

pedestrian crowd videos, natural scene videos, and real

bacteria motion data) and a range of novel applications

(such as detecting collective motions, monitoring crowd

dynamics, and generating collective maps of scenes). 3) By

applying this collectiveness descriptor to motion analysis of

bacterial colony, we illustrate that our work has potential

contributions to the scientific studies of collective motions.

4) The first video database of evaluating collectiveness

of various crowd systems is introduced to the computer

1. Data and codes are available at
http://mmlab.ie.cuhk.edu.hk/project/collectiveness/

vision community. The conference version of this work was

published in [12] as an oral presentation. More technical

details, theoretic analysis, experimental evaluations and

applications are provided in this paper.

2 RELATED WORKS

Crowd behavior analysis has recently become a hot topic

in computer vision because of the large demands on crowd

surveillance. Many studies [13], [14] show that various

crowd systems do share a set of universal properties because

some general principles underlie different types of crowd

behaviors. Quantitatively measuring such properties and

comparing them across different crowd systems is impor-

tant for understanding the underlying general principles of

various crowd behaviors and plays an important role in

surveillance applications.

2.1 Scientific Studies on Collective Motions

The remarkable collective motions of organisms have long

captivated the attention of scientists from different scientific

fields. Understanding the collective behaviors of crowds is

a fundamental problem in social science. It has shown that

individuals staying in crowd tend to lose their personalities.

Instead of behaving independently they tend to follow the

behaviors of others and move along the same direction as

their neighbors [15], [16]. Some collective behaviors of

crowds such as herding have been studied in the field of

social psychology [17].

In biology, considerable progress has been made in

revealing the principles of collective behaviors of differ-

ent crowds using empirical or theoretical approaches. A

compact review can be found in [18]. As for empirical

approaches, behavior data of different crowds such as
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bacterial colonies [10], locust swarm [19], fish shoals [20],

and bird flocks [6] has been collected and analyzed. People

study the mechanism underlying the collective organization

of individuals [4], the evolutionary origin of animal aggre-

gation [14] and collective information processing in crowds

[2] at both macroscopic and microscopic levels. Many

important factors and laws affecting collective motions have

also been discovered and analyzed, such as phase transition,

criticality of crowd density, and self-organization [21], [22].

Zhang et al. [10] studied the correlation between collective

motions and bacteria densities. Makris et al. [20] conducted

quantitative study on the collective temporal and spatial

processes formed by vast oceanic shoals.

As for theoretical approaches, differential equations of

continuum [23], statistical physics models, such as the

maximum entropy model [24], have been proposed to

understand the mechanism of collective motions. Besides,

based on some local behavioral rules many agent-based

models have been proposed for crowd modeling and sim-

ulation [3], [11], [25]. Vicsek et al. [11] and Chate et

al. [26] proposed self-driven particle (SDP) models and

observed a rapid phase transition from disordered to highly

synchronized behaviours in crowd systems as crowd density

reaches a critical level. Understanding such a transition is

crucial to many applications related to crowd systems, such

as management of locust outbreaks. Detailed quantitative

analysis of collective motions becomes essential in order

to understand when, how and where they happen and

how to improve the control of crowd systems. Buhl et

al. [9] videotaped locust motions, empirically studied the

transition phase and validated SDP.

In the field of network science and control theory, the

flock of interacting units (human beings, robots, agents, and

dynamic systems) are connected into dynamically chang-

ing networks. Then, community structures with shared

collective behaviors are detected [27]. The community

and network evolving dynamics are further analyzed [28].

Meanwhile, flocking and consensus algorithms from control

theory have been proposed to control these distributed com-

plex systems in which these units can be synchronized into

collective movements despite of the absence of centralized

coordination [29].

Given the huge literature on collective behaviors, howev-

er, the study on quantitative measurements of collectiveness

is very limited. Most existing works [11] simply measure

collectiveness as the average velocity of particles in a crowd

system, and assume that the magnitude of the average

velocity of a disordered crowd system is close to zero.

Petitjean et al. [30] computed it as the average of cos(φi)
where φi is the moving direction of each individual i. Such

measurements cannot deal with collective motions with

manifold structures or a mixture of heterogeneous collective

patterns as shown in Figure 1.

2.2 Collective Motions in Computer Vision

In computer vision, a lot of works have been done on

learning global motion patterns related to crowd behaviors

[7], [8], [31]–[39], detecting coherent or incoherent motions

from crowd clutters [40]–[49], and analyzing interactions

among individuals in crowd [25], [50]–[57]. A brief review

is given below.

There has been significant amount of work on learning

the motion patterns of crowd behaviors. Ali et al. [31] and

Lin et al. [7], [58] modeled crowd flows with Lagrangian

coherent structures or Lie algebra based on computed flow

fields. Mehran et al. [32] proposed a streakline represen-

tation for crowd flows. With topic models, Wang et al.

[33] explored the co-occurrence of moving pixels to learn

the motion patterns in crowd. Topic models have been

augmented by adding spatio-temporal dependency among

motion patterns [34], [35]. Some approaches [8], [36]–

[39] learn motion patterns through clustering trajectories

or tracklets in crowded scenes. For example, Zhou et al.

[8] used a mixture of dynamic systems to learn pedestrian

dynamics and applied it to crowd simulation. However,

none of the above-mentioned approaches measured the

collectiveness of crowd behaviors or explored its potential

applications.

Meanwhile, detecting coherent and incoherent (abnor-

mal) behaviors in crowd is of great interests in surveillance

and crowd management. Rabaud et al. [44] and Brostow

et al. [45] detected independent motions in order to count

moving objects. Zhou et al. [46] proposed a graph-based

method to detect coherent motions from tracklets. Brox

et al. [47] extended spectral clustering to group long-term

dense trajectories for the segmentation of moving objects

in videos. These coherent motion detection methods extract

and cluster collectively moving targets from randomly mov-

ing points. Some approaches have been proposed to model

local spatio-temporal variations for abnormality detection

with dynamic texture [48], [49], HMM [43], distributions

of spatio-temporal oriented energy [42], chaotic invariants

[41], and local motion descriptors [40]. These methods

are scene-specific and their features or descriptors cannot

be used to compare crowd videos captured from different

scenes.

Individuals in social groups have the same destination

and closer relationship. They are more likely to form collec-

tive behaviors. To analyze interactions and social influence

among pedestrians, the social force model, first proposed by

Helbing et al. [25] for crowd simulation, was introduced to

the computer vision community recently and was applied to

multi-target tracking [56] and abnormality detection [55].

Ge et al. [52] proposed a hierarchical clustering method to

detect groups and Chang et al. [59] proposed a probabilistic

strategy to softly assign individuals into groups. Moussaid

et al. [60] modified the social force model to account for the

influence of social groups. Lan et al. [50] analyzed individ-

ual behaviors considering the context of social groups with

hierarchical models. Recently Kratz et al. [54] proposed

efficiency to measure the difference between the actual

motion and intended motion of pedestrians in crowd for

tracking and abnormality detection.

In computer graphics, simulating collective behaviors of

virtual crowds has attracted many attentions due to its wide
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applications to digital entertainment, emergency training,

and urban planning. A recent survey can be found in

[61]. Agent-based models are commonly used to model

complex behaviors of crowd [3], [62], [63]. The seminal

work of Reynolds [3] demonstrated emergent flocking and

other collective behaviors using simple local rules. Flow-

based models have been used to simulate crowd flows and

dynamics [64]. Some approaches can learn model param-

eters from the real-world data of crowd movements then

simulate the crowd [65]. Recently an information-theoretic

metric has been proposed to measure the similarity between

real-world crowd movements and crowd simulation results

[66]. It is related to our collectiveness measurement. Rather

than directly comparing crowd movements as [66], we

first compute the collectiveness of a single crowd, then

compare the collectiveness of different crowds. It would

be interesting to integrate these two measurements in the

future to estimate cross-crowd collectiveness.

3 THEORY OF COLLECTIVENESS

3.1 Emergence of Collective Manifolds in Crowds

As shown in Fig.1A, from lower-level bacterial colony

to higher-level human crowd, one common observation of

collective motions in different crowd systems is that some

spatiotemporal coherent structures emerge from the collec-

tive movements of constituent individuals in crowds. We

define such structures as collective manifolds of collective

motions. There are two key properties of collective man-

ifolds, which distinguish collective motions from random

movements.

• Behavior consistency in neighborhoods: neighboring

constituent individuals have consistent behaviors.

• Global consistency among non-neighbors: although

constituent individuals at a distance may have different

behaviors, they are correlated by behavior similarity

through intermediate individuals in neighborhoods on

the manifold.

Thus individuals in a crowd system coordinate their

behaviors in local neighborhood, but the behavior consis-

tency betweens individuals at a distance may have some

uncertainty, such as the low velocity correlation between

the red and green individuals illustrated in Fig.1B.

Crowd collectiveness, described as the degree of indi-

viduals acting as a union in collective motion, measures

the holistic behavior consistency of collective manifold.

Meanwhile, individual collectiveness measures the behavior

consistency of each individual with all the other individuals.

But due to the behavior uncertainty between individuals at

a distance, we could not directly measure the individual

collectiveness, which prevents the estimation of crowd

collectiveness. To handle this problem, we study behavior

consistency along paths on the collective manifolds. Thus,

in our framework collectiveness is measured in a bottom-

up way: from behavior consistency in neighborhood of

individuals to behavior consistency among all pairwise

individuals along paths in the crowd, then from individual

collectiveness to crowd collectiveness.

3.2 Behavior Consistency in Neighborhood

We first measure the similarity of individual behaviors in

neighborhood. When individual j is in the neighborhood of

i, i.e., j ∈ N (i) at time t, the similarity is defined as

wt(i, j) = max(Ct(i, j), 0), (1)

where Ct(i, j) is the velocity correlation coefficient at t
between i and j, i.e., Ct(i, j) =

vi�vj
||vi||2||vj ||2

. N is defined as

K-nearest-neighbor, motivated by existing empirical studies

of collective motions, which have shown that animals

maintain local interaction among neighbors with a fixed

number of neighbors on topological distance, rather than

with all neighbors within a fixed spatial distance [5].

Thus, wt(i, j) ∈ [0, 1] measures an individual’s behavior

consistency in its neighborhood.

In fact, K represents the topological range of neigh-

borhood. A large K may result in inaccurate estimation

of behavior consistency in neighborhood. Later we will

have a discussion on how K affects the estimation of

collectiveness.

Because of the behavior uncertainty between non-

neighbors, this pairwise similarity estimation would be

unreliable if two individuals are not in neighborhood. A

better behavior similarity based on the connectivity of

collective manifold is proposed below.

3.3 Global Consistency via Paths

Since behavior consistency cannot be directly estimated

when two individuals are not in neighborhood, we propose

a new pairwise similarity based on an important structure of

collective manifold: paths, which represent the connectivity

of the network associated with a graph [67]. In crowd

systems, paths have important roles in characterizing the

behavior consistency among individuals outside neighbor-

hood in crowds.

Let W be the weighted adjacency matrix of the graph,

where an edge wt(i, j) is the similarity between individual i
and j in its neighborhood defined in Eq.1. Let γl = {p0 →
p1 → ... → pl} (p0 = i, pl = j) denote a path of length l
through nodes p0, p1, ..., pl on W between individual i and

j. Then νγl
=

∏l

k=0 wt(pk, pk+1) is defined as the path

similarity on a specific path γl. Fig.2 illustrates five specific

paths of four different lengths between two individuals

which have no neighborhood relation.

Since there can be more than one path of length l
between i and j, let the set Pl contain all the paths of length

l between i and j, then the l-path similarity is defined as

νl(i, j) =
∑

γl∈Pl

νγl
(i, j). (2)

νl(i, j) can be efficiently computed with Theorem 1.

Theorem 1. νl(i, j) is the (i, j) entry of matrix Wl.
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Fig. 2. Paths connecting two individuals. Colored

dashed lines shows some representative paths of

length l = 3, 4, 5, 6 between red and green points.

The paths could be longer and more complicated. Only

a few of them are shown due to space limit. Red

point and green points have no neighborhood relation,

but their behavior consistency can be measured via

integrating the path similarities between them.

Proof: According to the algebraic graph theory [67],

Wl(i, j) =
∑

γl∈Pl
p0=i,pl=j

l∏

k=0

wt(pk, pk+1) =
∑

γl∈Pl

νγl
(i, j)

=νl(i, j),

where set Pl contains all the paths with length l between p0
and pl. Wl(i, j) is the sum of the products of the weights

over all paths with length l that start at vertex i and finish

at vertex j in the weighted graph W.

3.4 Collectiveness at l-path scale

Since l-path similarity νl(i, j) measures the behavior con-

sistency between i and j at l-path scale, we define the

individual collectiveness of individual i at l-path scale as

φl(i) =
∑

j∈C

νl(i, j) = [Wle]i. (3)

Here C is the set containing all the individuals in the

crowd and e is a vector with all elements as 1, [.]i
denotes i-th element of a vector. Then we define the crowd

collectiveness at l-path scale as the mean of individual

collectiveness

Φl =
1

|C|
e⊤Wle. (4)

To further measure the overall collectiveness of individuals

and crowd, intuitively we should integrate the individual

collectiveness and crowd collectiveness over all the path

scales, i.e., l = {1, 2, ...,∞}. However, due to the expo-

nential growth of φl and Φl with l shown in Property 2

and Property 3 of Collectiveness in Section 4, individual

collectiveness at different path scales cannot be directly

summed. Therefore, we define a generating function with

regularization to integrate all path similarities, such that the

convergence of summation can be guaranteed.

3.5 Regularizing Collectiveness over All Scales

Generating function regularization is used to assign a

meaningful value for the sum of a possibly divergent series

[68]. There are different forms of generating functions. We

define the generating function for the l-path similarities as

τi,j =
∞∑

l=1

zlνl(i, j), (5)

where z is a real-valued regularization factor, and zl can

be interpreted as the weight for l-path similarity. z < 1
and cancels the effect that φl and Φl exponentially grow

with l. τi,j can be computed with Theorem 2.

Theorem 2. τi,j is the (i, j) entry of matrix Z, where

Z = (I − zW)−1 − I and 0 < z < 1
ρ(W) , where ρ is the

spectral radius of matrix W.
Proof: Let the eigendecomposition of the matrix W be

W = QΛQ−1, and λ1∼|C| be the diagonal elements of the
diagonal matrix Λ. The matrix summation is

Z =zW + z2W2 + ...+ z∞W∞

=zQΛQ−1 + z2QΛ2Q−1 + ...+ z∞QΛ∞Q−1

=Q(I + zΛ + z2Λ2 + ...+ z∞Λ∞)Q−1 − I

=Q









∑∞
l=0

(zλ1)l · · · 0
.
.
.

. . . 0
0 0

∑∞
l=0

(zλ|C|)
l









Q−1 − I

=Q









1

1−zλ1
· · · 0

.

.

.
. . . 0

0 0 1

1−zλ|C|









Q−1 − I

=(I − zW)−1 − I,

where z < 1
ρ(W) guarantees the convergence of series∑∞

l=0(zλi)
l as 1

1−zλi
.

Thus, the individual collectiveness from the generating

function regularization on all the path similarities can be

written as

φ(i) =

∞∑

l=1

zlφl(i) = [Ze]i. (6)

Crowd collectiveness of a crowd system C is defined as

the mean of all the individual collectiveness, which can be

explicitly written in a closed form as,

Φ =
1

|C|

|C|∑

i=1

φ(i) =
1

|C|
e⊤((I − zW)−1 − I)e. (7)

A strong convergence condition of collectiveness will be

given in Property 1 in Section 4.

4 PROPERTIES OF THE COLLECTIVENESS

We derive some important properties of collectiveness.

Property 1. (Strong Convergence Condition) Z con-

verges when z < 1
K

.

Proof: From Lemma 1, we know that ρ(W) < ρ(A) =
K. Thus, when z < 1

K
≤ 1

ρ(W) , according to Theorem 2,

Z converges.
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Lemma 1. ρ(W) ≤ ρ(A) = K, where A is any (0,1)-

adjacency matrix according to K nearest neighbors, W is

the weighted adjacency matrix corresponding to A, and all

the weights w(i, j) ∈ [0,+1] .

Proof: Since adjacency matrix A is computed from

K nearest neighbors, we have Ae = Ke, thus K is an

eigenvalue of A. Let λi be any eigenvalue of A, since aii =
0 according to Gershgorin Circle Theorem we have

|λi| ≤
∑

j ̸=i

|aij | = K.

Now we know K = maxi(|λi|), thus ρ(A) = K. Similarly,

for any eigenvalue λi of W,maxi(|λi|) ≤
∑

j ̸=i |wij | ≤
K. Thus ρ(W) ≤ ρ(A) = K

Note that it is computationally expensive to choose z
by comparing it with ρ(W), especially for a large crowd

system, since we need to compute the eigenvalues of W to

get ρ(W) with complexity O(n3). Because of Property 1,

the value of z can be determined without computing ρ(W).

Property 2. (Bounds of Φl) 0 ≤ Φl ≤ Kl.

Proof: Let A be the (0, 1) K-nearest-neighbor adja-

cency matrix corresponding to W. Then we easily have

Ae = Ke. We use mathematical induction to prove the

statement e⊤Wne ≤ |C|Kn holds for any n as follows.

(1) When n = 1, since w(i, j) ≤ a(i, j) = 1 if j ∈ N (i),
we have

e⊤We ≤
∑

i,j

w(i, j) ≤
∑

i,j

a(i, j) = e⊤Ae = |C|K.

(2) When n = m, we assume the statement e⊤Wme ≤
|C|Km holds, and let wm(i, j) denote the (i, j) entry of

Wm, then

e⊤Wm+1e =e⊤WmWe =
∑

i,j,k

wm(i, k)w(k, j)

≤
∑

i,j,k

wm(i, k)a(k, j) = e⊤WmAe

=Ke⊤Wme = |C|Km+1.

Then the statement e⊤Wm+1e ≤ |C|Km+1 holds. Thus

e⊤Wne ≤ |C|Kn holds for any n. Meanwhile, it is obvious

to see Φl ≥ 0.

We proved that Φl =
1
|C|e

⊤Wle ≤ Kl. The upper bound

is reached when W = A, where A is (0, 1) adjacency matrix

according to K-nearest-neighbor.

Property 3. (Asymptotic limit of Φl) liml→∞
ln Φl

l
=

lnλ ≤ lnK,where λ is the largest eigenvalue of W.

Proof: According to the Perron-Frobenius theorem, we

have liml→∞
Wl

λl = vw⊤, where v and w are left and right

eigenvectors of W corresponding to λ and are normalized

to w⊤v = 1. Then we have

lim
l→∞

lnΦl

l
− lnλ = lim

l→∞

ln Φl

λl

l
= lim

l→∞

ln e⊤Wle
|C|λl

l

= lim
l→∞

ln e⊤vw⊤e
|C|

l
= 0.

This quantity is related to the topological entropy of a

graph W [69], where the maximal entropy rate of random

walk on the graph is bounded by lnλ. It can be interpreted

as that as collective motion emerges among individuals of

crowd, the links of the whole crowd become homogenous,

and the random surfer on the collective manifold reaches

the maximal entropy rate. It also shows the exponential

growth of Φl with l.

Property 4. (Bounds of Φ) 0 ≤ Φ ≤ zK
1−zK

, if z < 1
K

.

Proof: From the proof of Property 2 we know that

e⊤Wne ≤ |C|Kn holds for any n. By expanding e⊤Ze we

have

Φ =
1

|C|
(ze⊤We + z2e⊤W2e...+ z∞e⊤W∞e)

≤zK + z2K2 + ...+ z∞K∞ =
zK

1− zK
. (8)

And it is obvious that Φ ≥ 0.

The equality stands when W = A, where A is the

(0, 1) adjacency matrix according to K-nearest-neighbor. It

indicates that there are perfect velocity correlations among

neighbors, i.e., wt(i, j) = 1 if j ∈ N (i) for any i, and thus

all the constituent individuals in neighborhood move in the

same direction.

Note that K determines the topological range of

neighborhood. Different K and z result in different

supΦ ≡ zK
1−zK

. We can define the normalized crowd

collectiveness Φ̂ = Φ
supΦ . Then The range of Φ̂ is scaled

to [0, 1]. For simplicity, in most of our experiments we

let K = 20 and z = 0.025, so the range of Φ is [0, 1].
Relations among Φ, K and z are discussed in Section 6.3.

Property 5. (Upper bound of entries of Z) τi,j <
z

1−zK
, for every entry (i,j) of Z.

Proof: Let the eigendecomposition of matrix W be
W = QΛQ−1, and λ1∼|C| be the diagonal elements of the
diagonal matrix Λ. From Lemma 1 we know that K >
maxi(λi). Thus we have

Z =(I − zW)−1 − I

=Q









1

1−zλ1
· · · 0

.

.

.
. . . 0

0 0 1

1−zλ|C|









Q−1 − I

=Q











zλ1

1−zλ1
· · · 0

.

.

.
. . . 0

0 0
zλ|C|

1−zλ|C|











Q−1

<Q











zλ1

1−zK
· · · 0

.

.

.
. . . 0

0 0
zλ|C|

1−zK











Q−1

=
z

1− zK
Q







λ1 · · · 0
.
.
.

. . . 0
0 0 λ|C|






Q−1 =

z

1− zK
W. (9)

Since the maximum entry on W is no larger than 1, τi,j <
z

1−zK
.
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Algorithm 1 Collective Merging

INPUT: {xi, vi|i ∈ C}t.
OUTPUT:clusters of individuals {F1, ...,FN}.
1:Compute W from K-NN using Eq. 1.

2:Z = (I − zW)−1 − I.
3:Set the entry Z(i, j) to 1 if Z(i, j) ≥ κ, otherwise to 0.
4:Search the connected components of the thresholded Z

as the collective clusters {F1, ...,FN}.

This property will be used in the following algorithm of

detecting collective motion patterns from crowd clutters.

Property 6. (Approximate error bound of Z) ∥Z −

Z1∼n∥2 ≤ (zσ(W))n+1

1−zσ(W) , where Z1∼n denotes the sum of

first n powers of W and σ(W) is the largest singular value

of matrix W.

Proof: Since Z1∼n ≡ zW + z2W2 + ... + znWn, we

can get Z1∼n − Z1∼nzW = zW − zn+1Wn+1. Then

Z1∼n = (I − zW)−1(zW − (zW)n+1). (10)

Meanwhile, with Z = (I − zW)−1 − I = (I − zW)−1zW,
we get

∥Z − Z1∼n∥2 =∥(I − zW)−1(zW)n+1∥2

≤∥(I − zW)−1∥2∥(zW)n+1∥2

=
1

1− ∥zW∥2
∥zW∥n+1

2
=

(zσ(W))n+1

1− zσ(W)
. (11)

Here ∥zW∥2 = zσ(W) and zK < 1.

According to this property, we can approximate Z by

Z1∼n with the error bound
(zσ(W))n+1

1−zσ(W) .

5 COLLECTIVE MOTION DETECTION

Based on the proposed collectiveness, an algorithm called

Collective Merging is proposed to detect collective motions

from crowd clutters with random motions (see Algorithm

1). The algorithm in the case of single frames is summa-

rized in Algorithm 1. Given the spatial locations xi and

velocities vi of individuals i at time t, we first compute

W. Then by thresholding the values on Z, we can easily

remove outlier particles with low collectiveness and get

the clusters of collective motion patterns as the connected

components from thresholded Z. As for the threshold κ,

according to the bound in Property 3 we let κ = αz
1−zK

where 0.4 < α < 0.8. On a Intel Core i5-3210M laptop,

this four-lined algorithm in Matlab implementation runs

as 10 FPS with |C| = 500. It does not include the time

of tracking keypoints. The main computation bottleneck

comes from the matrix inversion, which can be solved

with current fastest algorithm with O(n2.38) time [70]. In

the experiment section, we demonstrate its effectiveness on

detecting collective motion patterns on various videos.

6 NUMERICAL ANALYSIS ON CROWD SYS-
TEMS OF SELF-DRIVEN PARTICLES

We take the Self-Driven Particle model (SDP) [11] to

evaluate the proposed collectiveness, because SDP has

been used extensively for studying collective motion and
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Frame No. Frame 60
0

2

4

6

8

10
=0.08

Frame 6

 Φ  Φ
 Φ

0 20 40 60 80 100
0

0.25

0.5

0.75

1

Fig. 3. Emergence of collective motion in SDP. At the

beginning, Φ is low since the spatial locations and mov-

ing directions of individuals are randomly assigned.

The behaviors of individuals gradually turn into collec-

tive motion from random movements, and Φ accurately

reflects the phase transition of crowd dynamics. Here

K = 20, z = 0.025, and η = 0, then the upper bound of

Φ is 1.

shows high similarity with various crowd systems in nature

[9], [10]. Importantly, the groundtruth of collectiveness in

SDP is known for evaluation. SDP was firstly proposed to

investigate the emergence of collective motion in a system

of moving particles. These simple particles are driven with

a constant speed, and the directions of their velocities are

updated to the average direction of the particles in their

neighborhood at each frame. It is shown that the level of

random perturbation η on the aligned direction in neigh-

borhood would cause the phase transition of this crowd

system from disordered movements into collective motion.

The update of velocity direction θ for every individual i in

SDP is

θi(t+ 1) = ⟨θj(t)⟩j∈N (i) +∆θ, (12)

where ⟨θj⟩j∈N (i) denotes the average direction of velocities

of particles within the neighborhood of i, ∆θ is a random

angle chosen with a uniform distribution within the interval

[−ηπ, ηπ]. η tunes the noise level of alignment2.

6.1 Crowd Collectiveness of SDP

As shown in Fig.3, we compute crowd collectiveness Φ
at each time t. Φ monitors the emergence of collective

motion over time. At initialization, the spatial locations

and velocity directions of all the particles are randomly

assigned. The crowd gradually turns into the state of

collective motion. The dynamic variation of Φ accurately

reflects this phase transition.

As η increases, particles in SDP become disordered. As

shown in Fig.4, Φ accurately measures the collectiveness of

crowd systems under different levels of random perturba-

tion η. For comparison, Fig.4B plots the average normalized

velocity v = ∥ 1
N

∑N

i=1
vi

∥vi∥
∥, which was commonly used

as a measure of collectiveness in existing works [6], [11].

From the large standard deviation of v under multiple

simulations with the same η, we see that v is unstable

and sensitive to initialization conditions of SDP. On the

contrary, Φ shows its robustness for measuring crowd

collectiveness.

2. In our implementation of SDP, the absolute value of velocity
∥v∥=0.03, the number of individuals N = 400, and interaction radius
r = 1. Experimental results in [11] have shown that these three parameters
only have a marginal effect on the general behaviors of SDP.
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Fig. 4. A) Φ and v with increasing η. The bars indicate

the standard deviations of these two measurements.

The large deviations of v show that v is unstable and

sensitive to initialization of SDP. At each η, simulation

repeats for 20 times. B) For a low η, all the individuals

are in a global collective motion, and Φ is close to the

upper bound. For a relatively larger η , individuals form

multiple clusters of collective motions. For a high η,

individuals move randomly and Φ is low.

6.2 Collectiveness in Mixed-Crowd Systems

SDP assumes that all the individuals are homogeneous.

Studies on complex systems [71] have shown that individ-

uals in most crowd systems in nature are inhomogeneous.

To evaluate the robustness of our collectiveness descriptor,

we extend SDP to a mixture model by adding outlier

particles, which do not have alignment in neighborhood

and move randomly all the time. We measure individual

collectiveness in this mixed-crowd system. As shown in

Fig.5A, individuals are randomly initialized at the start, so

the histogram of individual collectiveness has a single mod-

e. When self-driven particles gradually turn into clusters

of collective motions, there is a clear separation between

two modes in the histogram of individual collectiveness.

By removing individuals with collectiveness smaller than

0.5, we can effectively extract collectively moving self-

driven particles from outliers as shown in Fig.5B. The

threshold is chosen empirically. Notice that although crowd

collectiveness is non-negative according to Property 4, the

computed individual collectiveness could be negative.

6.3 Collectiveness at l-path Scale

We evaluate the behaviors of collectiveness at l-path scale

while SDP are at three different levels of collective motions

in Fig.6. We can see that as the SDP gradually turns into

collective motion, the regularized 1
Klφl at large l-path scale

approaches to 1, which makes
∑∞

l=1 z
lφl not converge, and

estimated crowd collectiveness Φ unstable when z = 1/K.

In order to make it converge, we choose z < 1/K.

In Fig.7, we plot the regularized crowd collectiveness

with SDP at two different levels of collective motions in

Fig.7. In Fig.7B when z = 0.5
K

= 0.025, zlΦl decrease

quickly with l. It can be seen that when regularizing

collectiveness we consider the crowd collectiveness at

higher l-path scale Φl has less contributions to the overall

regularized Φ. In Fig.7C, we illustrate the asymptotic limit

of Φl at different l. In Fig.7D, we illustrate the approximate

error ∥Z−Z1∼n∥2 with error bound
(zσ(W))n+1

1−zσ(W) at different

n.
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Fig. 5. A) Two frames of the mixture crowd system

and their histograms of individual collectiveness. After

a while, self-driven particles are organized into clusters

of collective motions. The histogram of φt is clearly

separated into two modes. B) By removing particles

with individual collectiveness lower than 0.5, we can

extract self-driven particles in collective motions. Blue

and red points represent self-driven particles and out-

liers. The number of outliers is equal to that of self-

driven particles and η = 0.
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Fig. 6. Regularized individual collectiveness at l-path

scale 1
Klφl while SDP are at three different levels of

collective motions. In each diagram, the left-hand side

shows the average zlφl with l = 1 ∼ 30 and the right-

hand side shows the visualization of all the values of

zlφl(i) with l = 1 ∼ 30 and i = 1 ∼ 400. Since

the convergence condition is not satisfied, Φ become

unstable when SDP is in a high level of collective

motion.

6.4 Convergence Condition of Collectiveness

There are two parameters z and K for computing collec-

tiveness in practical applications: K defines the topological

range of neighborhood and z makes the series summation

converge. K affects similarity estimation in neighborhood.

A large K makes the estimation inaccurate due to the

behavior uncertainty between non-neighbors on collective

manifold. In Fig.8A, we keep z = 0.5
K

and let K take

increasingly large values, the estimated Φ become unsta-

ble. Empirically K could be 5%∼10% of |C|. In all our

experiments, we fix K = 20. Meanwhile, z is constrained

by K in Property 1. With different K and z, the upper

bound of Φ varies, as shown in Fig.8C. With a larger upper

bound, the derivative dΦ
dη

is larger and the measurement is
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Fig. 7. A) Two frames of SDP under different levels of

collective motion. B) Regularized crowd collectiveness

at l-path scale zlΦl with increasing l. The values above

are the summation of the crowd collectivenss at top

10 l-path scale. C) The asymptotic limit of Φl. λ is the

largest eigenvalue of W computed at current frame of

SDP. D) Approximate errors and error bounds of Z at

different n.
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Fig. 8. A) Large K results in the inaccurate estimation

of Φ due to the behavior uncertainty between non-

neighbors on collective manifold. Given each η, SDP

simulation repeats for 20 times. B) Given K fixed, the

upper bound of Φ grows quickly when z approaches

to 1
K

, which makes Φ unstable. C) Φ with increasing η
at different K and z in SDP. D) By dividing supΦ, the

rescaled Φ̂ have different sensitivity of dynamic order.

more sensitive to the change of crowd motion. Φ can also

be re-scaled to [0, 1] by diving it by the upper bound, the

plot of Φ̂ is shown in Fig.8D. Thus by tuning z and K
we can control the sensitivity of collectiveness in practical

applications. The upper bound of Φ grows quickly when z
approaches to 1

K
, which makes the value of Φ unstable, as

shown in Fig.8B. The ideal range is 0.4
K

< z < 0.8
K

.

7 FURTHER EVALUATION AND APPLICA-
TIONS

We evaluate the consistency between our collectiveness

and human perception, and apply the proposed descriptor

and algorithm on various videos of pedestrian crowds and

bacterial colony.
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Fig. 9. Histogram of collective scores of all the videos

in the Collective Motion Database and some represen-

tative video frames, along with their collective scores,

Φ, and v. The three rows are from the three collective-

ness categories.

7.1 Human Perception for Collective Motion

To quantitatively evaluate the proposed crowd collective-

ness, we compare it with human motion perception on a

new Collective Motion Database, and then analyze the con-

sistency and correlation with human-labeled ground-truth

for collective motions. The Collective Motion Database

consists of 413 video clips from 62 crowded scenes. 116

clips are selected from Getty Image [72], 297 clips are

collected by us. This database contains different levels

of collective motions with 100 frames per clips. Some

representative frames are shown in Fig.9. To get the ground-

truth, 10 subjects are invited to rate all the videos indepen-

dently. A subject is asked to rate the level of collective

motions in a video from three options: low, medium,

and high. Then we propose two criteria to evaluate the

consistency between human labeled ground-truth and the

proposed collectiveness.

The first is the correlation between the human scores

and our collectiveness descriptor. We count the low option

as 0, the medium option as 1, and the high option as 2.

Since each video is labeled by 10 subjects, we sum up all

the scores as the collective score for a video. The range

of collective scores is [0, 20]. The histogram of collective

scores for the whole database is plotted in Fig.9. We

compute the crowd collectiveness Φ at each frame using the

motion features extracted with a generalized KLT(gKLT)

tracker derived from [73], and take the average value of

Φ over all the frames as the collectiveness for this video.

We compute average v over all the frames using the same

motion features as a comparison baseline. Fig.9 shows the

collective scores, Φ, and v for some representative videos.

Fig.10A scatters the collective scores with Φ and v of all

the videos, respectively. There is a high correlation between

collective scores and Φ, and the proposed collectiveness is

consistent with human perception.
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Fig. 10. A) Scatters of collective scores with Φ and v for all the videos. B) Histograms of Φ and v for the

three categories of videos. C) ROC curves and best accuracies for high-low, high-medium, and medium-low

classification. D) Error examples of collectiveness due to tracking failure or perspective distortion.

The second is the classification accuracy based on the

collectiveness descriptor. We divide all the videos into three

collectiveness categories by majority voting of subjects’

rating, then evaluate how the proposed collectiveness de-

scriptor can classify them. Histograms of Φ and v for

the three categories are plotted in Fig.10B. Φ has better

discrimination capability than v. Fig.10C plots the ROC

curves and the best accuracies which can be achieved with

all the possible decision boundaries for binary classification

of high and low, high and medium, and medium and

low categories based on Φ and v, respectively. Φ can

better classify different levels of collective motions than

v, especially on the binary classification of high-medium

categories and medium-low categories of videos. It indi-

cates our collectiveness descriptor can delicately measure

the dynamic state of crowd motions.

Classification failures come from two sources. Since

there are overlapping areas between high-medium and

medium-low collective motions and it is difficult to quantify

human perception of collective motion into three class-

es, some samples are even difficult for humans to reach

consensus and are also difficult to our descriptor. Mean-

while, collectiveness may not be properly computed due

to tracking failures, projective distortion, and special scene

structures. Two failure examples are shown in Fig.10D. The

computed collectiveness in the two videos is low because

the KLT tracker does not capture the motions well due to

the perspective distortion and the extremely low frame rate,

while all 10 subjects give high collective scores because of

the regular pedestrian and traffic flows in the scenes.

Since collectiveness in videos is computed based on

keypoint tracking on image plane while human percep-

tion is based on velocities in the ground plane, here we

further evaluate how scene perspective distortion affects

the proposed collectiveness. As shown in Fig.11A, we

compare the collectiveness of self-driven particles in the

ground plane with that after three different perspective

projections. When η is small, perspective distortion leads

to smaller collectiveness. When η is large, collectiveness
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Fig. 11. A) Comparing the collectiveness of SDP

with different perspective projections and different η.

B) Comparing the collectiveness of real crowd scenes

before (φ) and after (φ̄) calibration to the ground plane.

Red polygons are manually annotated ground planes.

is large and perspective distortion does not make much

difference. This is understandable. If two points are very

close in space and move in parallel, they still move in

similar directions in the image space even with perspective

distortion. However, if they are close in space but move

in different directions, perspective projection may increase

the angles between velocities. In Fig.11B, two real scenes

are selected and calibrated to the ground plane. After

calibration, the collectiveness slightly increases.

7.2 Collective Motion Detection in Videos

We apply the proposed collectiveness descriptor and col-

lective merging algorithm to analyze collective motions

in videos. We first detect collective motions in various

videos from the Collective Motion Database. A variety of
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Fig. 12. Detecting collective motions from crowd videos. Keypoints with the same color belong to the same

cluster of collective motion. Red crosses are detected outliers.

collective motion patterns are extracted from the crowd

movements and their collectiveness is measured.

Collective motion detection in crowd videos is challeng-

ing due to the short and fragmented nature of extracted

trajectories, as well as the existence of outlier trajectories.

Fig.12A shows the detected collective motions by Collec-

tive Merging in 10 videos, along with their computed Φ and

v. The detected collective motion patterns correspond to a

variety of behaviors, such as group walking, lane formation,

and different traffic modes, which are of great interest

for further video analysis and scene understanding. The

estimated crowd collectiveness also varies across scenes

and reflects different levels of collective motions in videos.

However v cannot accurately reflect the collectiveness of

crowd motions in these videos. As the crowds in the

videos at first row of Figure 12, v is falsely rather small

because the groups of people collectively move in the

opposite directions so that the whole average velocity is

compromised.

In the algorithm of Collective Merging, α determines the

scale of collective motion patterns to be detected. Fig.13

shows the collective motion detection results with threshold

α = 0.5, α = 0.6 and α = 0.7 in three scenes. We

can see that when the threshold is high, some weak links

near the boundary of collective motions are filtered so that

the detected collective motion patterns are divided into

small fragments. When the threshold is low, the detected

collective motion patterns become large and some noise

may be included. The setting of α is related to the scale of

collective motion patterns to be detected.

7.3 Monitoring Crowd Dynamics in Videos

We use the proposed crowd collectiveness descriptor to

monitor the crowd dynamics over time. The real-time

computed collectiveness accurately records the evolving

states of crowd systems, as shown in Fig.14. In the first

scene, the collectiveness changes abruptly when two groups

of pedestrians pass with each other. In the second scene

where athletics start running, collectiveness reflects the

phase transition of the athlete crowd. In the third scene, the

collectiveness keeps relatively consistent since the flow of

α =0.5 α =0.6 α=0.7

Fig. 13. Collective motion detection results of the

Collective Merging algorithm with threshold α = 0.5,

α = 0.6, and α = 0.7, respectively.

A)

B)

C)

Fig. 14. Monitoring crowd dynamics with collective-

ness. Two frames indicate the representative states of

the crowd along the time line.
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Fig. 15. Collective map of different scenes. High

energy areas indicate scene regions with high collec-

tiveness value. These regions have fluent traffic flows.

running people continues as the same. Such events indicate

rapid phase transition of a crowd system or some critical

point has been reached. They are useful for crowd control

and scientific studies.

7.4 Generating Collective Maps of Scenes

We estimate the collective maps of scenes by accumulating

the individual collectiveness at each location over time.

They reveals valuable information on the interaction be-

tween scene structures and crowd behaviors. At each time

t we estimate φ(i) for each keypoints i at spatial location

xi of one scene. By accumulating the collectiveness values

at the spatial locations of keypoints over time, we get the

collective map of the scene, which represents the spatial

distribution of collectiveness in the scene. It might provide

valuable information for crowd management and public

facility optimization.

Fig.15 shows the estimated collective maps of six differ-

ent scenes. Areas with high collectiveness value in these

scenes are 1) traffic roads and escalators regularized by

scene structures, such as shown in the three collective maps

in the first row, and 2) pedestrian lanes formed from self-

organization, such as the first collective map in the second

row. Empirically we know that regions with high collective-

ness values would have fluent traffic thus low probability of

accidents. However, in real life crowds of pedestrians are

often hard to self-organize into walking lanes with different

moving direction. To increase the crowd collectiveness of

the scenes and promote fluent flow, physical barriers could

be used to divide the crowd into different lanes(such as the

trash bin and the barriers between escalators in the last two

collective maps in the second row in Fig.15).

7.5 Collective Motions in Bacterial Colony

In this experiment, we use the proposed collectiveness to

study collective motions emerging in a bacterial colony. The

wild-type Bacillus subtilis colony grows on agar substrates,

and bacteria inside the colony freely swim on the agar

surface. The real motion data of individual bacteria comes

from [10]. There are 200 ∼ 400 bacteria moving around at

every frame.

Fig.16A plot Φ and v with bacteria number over time

respectively. Crowd density was proved to be one of the

key factors for the formation of collective motion [10],

[11]. A lot of scientific studies are conducted to analyze

their correlation. For the same type of bacteria in the same

environment, bacteria collectiveness should monotonically

increase with density. Fig.16A shows that bacteria density

has a much better correlation with Φ than v. In Fig.16B, we

scatter Φ and v with the number of bacteria in every frames,

respectively. A fractional polynomial is fit to the data of

Φ with bacteria numbers. From the polynomial relation

we could know the expected collectiveness under some

given bacteria number. v does not have some sufficient

polynomial relation with bacteria numbers. Fig.16C shows

representative frames and the collective motion patterns de-

tected by Collective Merging. Our proposed collectiveness

measurement has promising potentials for scientific studies.

8 CONCLUSIONS AND FUTURE WORK

We proposed a collectiveness descriptor for crowd systems

as well as their constituent individuals along with the effi-

cient computation. Collective Merging can be used to detect

collective motions from randomly moving outliers. We have

validated the effectiveness and robustness of the proposed

collectiveness on the system of self-driven particles, and

shown the high consistency with human perception for

collective motion. Further experiments on videos of pedes-

trian crowds and bacteria colony demonstrate its potential

applications in video surveillance and scientific studies.

As a new universal descriptor for various types of crowd

systems, the proposed crowd collectiveness should inspire

many interesting applications and extensions in the future

work. Individuals in a crowd system can move collectively

in a single group or in several groups with different

collective patterns, even though the system has the same

value of Φ. Our single collectiveness measurement can

be well extended to a spectrum vector of characterizing

collectiveness at different length scales. It is also desirable

to enhance the descriptive power of collectiveness by mod-

eling its spatial and temporal variations. The enhanced de-

scriptor can be applied to cross-scene crowd video retrieval,

which is difficult previously because universal properties of

crowd systems could not be well quantitatively measured.

Collectiveness also provides useful information in crowd

saliency detection and abnormality detection. This paper

is an important starting point in these exciting research

directions.
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