
Modeling Manifold Ways of Scene Perception

Mengyuan Zhu1, Bolei Zhou2

1MOE-Microsoft Key Laboratory for Intelligent Computing and Intelligent Systems,
Department of Computer Science and Engineering, Shanghai Jiao Tong University
2Department of Information Engineering, The Chinese University of Hong Kong

zhumengyuan@126.com, zhoubolei@gmail.com

Abstract. In this paper, under the efficient coding theory we propose
a computational model to explore the intrinsic dimensionality of scene
perception. This model is hierarchically constructed according to the
information pathway of visual cortex: By pooling together the activity
of local low-level feature detectors across a large regions of the visual
fields, we build the population feature representation as the statistical
summary of the input image. Then, a large amount of population fea-
ture representations of scene images are embedded unsupervisedly into
a low-dimensional space called perceptual manifold. Further analysis on
the perceptual manifold reveals the topographic properties that 1) scene
images which share similar perceptual similarity stay nearby in the man-
ifold space, and 2) dimensions of the space could describe the perceptual
continuous changes in the spatial layout of scenes, representing the de-
gree of naturalness, openness, etc. Moreover, scene classification task is
implemented to validate the topographic properties of the perceptual
manifold space.
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1 Introduction

One of the fundamental issues in computational neuroscience concerns how in-
formation is encoded and represented by the neural architecture of the brain.
As for the neural computation of visual signal, from photoreceptor of retina to
the unified scene perception in high-level cortex, the visual processing of input
signal is hierarchically constructed. With multilayers of wiring in visual cortex,
neural response gradually achieve generalization over the input signal [5].

The neurophysiologic studies [17] indicate that through the hierarchical pro-
cessing of information in the visual cortex, the extremely high-dimensional in-
put signal is gradually represented by fewer active neurons, which is believed
to achieve efficient coding [9]. One of the concepts of efficient coding theory is
that with the metabolic constraints the visual cortex relies on the environmen-
tal statistics to encode and represent the visual signal [14], that is, a group of
neurons should encode information as compactly as possible, in order to most
effectively utilize the available computing resources. Mathematically, this is ex-
pressed as to maximize the information that neural responses provide about the
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visual environment. This theory has been applied to derive efficient codes for
natural images and to explain a wide range of response properties of neurons in
the visual cortex [14].

On the other hand, studies on the natural image statistics suggest that the
natural images are usually embedded in a relatively low dimensional manifold of
image space, and there is a large amount of information redundancy within the
natural images [15]. According to the efficient coding theory, it could be implied
that neural system would be efficiently adapted to reduce information redundan-
cy and extract the underlying low meaningful dimensionality of natural image
to form the unified scene perception, in spite of the extremely high-dimensional
raw sensory input from the retina [17]. From the functional viewpoint, the hi-
erarchical architecture of visual system could be considered as the multilayered
process of nonlinear dimensionality reduction, gradually resulting in sparser and
more efficient response in higher-level neurons [13].

In this paper, from the functional view of neural architecture we propose
a computational model for visual scene processing. This model termed Percep-
tual Manifold is data-drivenly constructed on the natural image statistics and
hierarchically layered : By pooling together the activity of local low-level feature
detectors across large regions of the visual fields, we build the population feature
representation as the statistical summary of the scene image. Then, thousands
of population feature representations of scene images are extracted, and to be
mapped unsupervised along into a low dimensional space called perceptual man-
ifold space. Analysis of this perceptual manifold reveals that scene images which
share similar perceptual similarity stay nearby in the manifold space, and the
dimensions of the manifold could describe the perceptual continuous changes in
the spatial layout of scenes. In addition, scene classification task is performed to
validate the topographic property of the perceptual manifold space.

2 Perceptual Manifold Model

A hierarchical model called Perceptual Manifold is proposed. The architecture
of the proposed model includes four cortex-like layers of computation: 1) local
sparse feature encoding, 2) local higher-order feature encoding, 3)population
feature encoding and 4) perceptual manifold embedding (refer to Fig.1).

Different layers of computation abstract their own representations of input
signals, which accounts for the different hierarchical stages of neuronal response
to visual stimulus [17]. It is assumed that through the hierarchial layers of com-
putation, the dimensionality of image representation is gradually reduced, that
is, M < N < K, leading to more general organization of image representation.

2.1 Local Sparse Feature Encoding

Experimental studies have shown that the receptive fields of simple cells in the
primary visual cortex produce a sparse representation of input signal [14]. Effi-
cient coding method [1] assumes that the image patch is transformed by a set of
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Fig. 1. Schematic diagram of the Perceptual Manifold model. There are four hierarchi-
cal layers of sensory computation to form the final perceptual space, which resemble
the information pathway in visual cortex.

linear filters wi to output response ui. In matrix form,

u = Wx (1)

Or equivalently in terms of generative process, x=Au=W−1u. Then, the filter
response ui are assumed to be statistically independent,

p(u) =
∏
i

p(ui) (2)

where p(ui) ∝ exp(−|ui|). Let W = [w1,w2, ...wK ] be the learned filter
functions, and K is the number of basis functions, so that the dim(u)=K. Fig.
2 shows a subset of the filter functions w. These filter functions resemble the
receptive field properties of simple cells, i.e., they are spatially localized, oriented
and band-pass in different spatial frequency bands. A vectorized image patch x
can be decomposed into those statistically independent bases, in which only a
small portion of bases are activated at one time. They are used as the first layer
of local feature extraction in our framework, so that representation of local image
patches in first layer is u. This layer of computation resembles the simple cells
in V1 [16].

2.2 Local Higher-order Feature Encoding

Higher-level visual neurons encode statistical variations that characterize local
image regions, these results provide a functional explanation for nonlinear effects
in complex cells [3]. Thus the coefficients of local basis A are further assumed
to follow a generalized Gaussian distribution,

p(u) = N (0, λ, q) = zexp(−|u
λ
|q), (3)
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Fig. 2. A subset of filter basis W trained from natural image patches.

where z = q/(2λΓ [1/q]) is the normalizing constant, and mostly λ=1. In [2], the
variance λ value is assumed to be generated by variance basis as follows:

logλ = Bv, (4)

where B = [b1,b2, ...bN ] are variance basis functions trained from thousands
of natural image patches 1, N is the number of variance basis functions and v is
the higher-order representation of local image patches, so that the dim(v)=N,
where N<K. The transformation from sparse representation u to the higher-
order representation v is determined by maximizing the posterior distribution
for a given u,

v̂ = argmaxp(u|B,v)p(v). (5)

where p(v)=
∏

j p(vj) and p(vj) ∝ exp(−|vj |). In the simulation, v̂ is derived
by gradient ascent [2]. For simplicity, here the nonlinear transformation of u
to v is denoted as a general function f, where v=f (u). This is second layer of
computation in our framework, and through it v = [v1, v2, ..., vN ]⊤ becomes the
representation of local image patches. This layer of computation resembles the
complex cells in V1 [3].

2.3 Population Feature Encoding

The neurophysiologic study [17] suggests that on the population level in extras-
triate visual areas II(V2) and IV(V4), a normalized pooling mechanism might
be used to extract the global response of the stimulus. Let X = [x1,x2, ...,xn, ...]
denote the sample matrix, where xn is the vectorized image patch sampled from
one scene image. After the first two layers of local encoding: un = Wxn and
vn = f(un), the population feature component for the ith feature of vn is,

pi =

∑
n([vn]i)

2∑N
i=1

∑
n([vn]i)2

(6)

where [vn]i indicates the i
th element of the vector vn. Thus, p = [p1, p2, ..., pN ]⊤

indicates the normalized population feature response of scene image, which ac-
counts for the holistic representation of scene image in the third layer of com-
putation. This layer of computation resembles the population coding in V2/V4.

1 Refer to [2] for visualization of the variance basis
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2.4 Perceptual Space Embedding

To explore the intrinsic dimensionality of scene perception, the Local Linear
Embedding [10] is applied as the method of nonlinear dimensionality reduction
to a large amount of the population feature responses of different scenes:

First step: compute the weight ωij that best linearly reconstructs pi from its
neighbor pj , minimizing:

ε(ω) =
∑
i

|pi −
∑
j

ωijpj |2 (7)

Second step: compute the low-dimensional embedding vectors qi best recon-
structed by ωij , minimizing:

ϕ(q) =
∑
i

|qi −
∑
j

ωijqj |2 (8)

The resulting embedding space RM is called perceptual manifold space, as
the final layer of computation in our architecture. And q = [q1, q2, ..., qM ]⊤ is
the representation of scene perception for a specific image, in which dim(q)=M
and M < N < K. This layer of computation is believed to exist in the infer-
otemporal cortex(IT) or the prefrontal cortex(PFC), which involve in forming
the perception of objects and scenes [12].

The implementation and analysis of the perceptual manifold space are pre-
sented in the following experiment section.

3 Experiments

For the training of image basis A(or W) and variance basis B, 150000 20 × 20
gray image patches from a standard set of ten 512×512 natural images [8] are
extracted. The number of 20 × 20 filter basis W is 400, equivalently K=400, and
the number of variance basis function B is limited to 100, equivalently N=100.
For manifold embedding layer, the dataset of scene images used here comes from
[4], which contains 3890 images from 13 semantic categories of natural scenes,
like coast and forest, etc. All 3890 images are normalized to 128×128 pixels
before layers of computation. The dimensionality of manifold space M is tuned
empirically as 15, so that the manifold embedding is R100 → R15. Thus, through
the whole process of multilayered computations, the representative space changes
as R400 → R100→ R15.

In the following part, the topographic properties of the perceptual space are
analyzed at first. Then to validate those properties of perceptual space, scene
classification task is performed in this perceptual space.

3.1 Perceptual Space Analysis

For visualization of the perceptual space, data points of scene images from four
scene categories are described by the first three principal component coordinates
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Fig. 3. Data points of scene images from four categories are visualized by the first three
coordinates and first two coordinates of perceptual space. a) Clustering and nonlinear
geometric property of the data points in the 2D perceptual space. b) Representative
scenes are shown next to the corresponding data points in different parts of the 3D
perceptual space. The bottom and right sets of images correspond to points along the
two pathes(linked by solid line), illustrating particular perceptual changes in scene
images.

(Fig. 3a) and first two principal component coordinates of perceptual space (Fig.
3b). In Fig. 3a, we can see that there are clustering and nonlinear geometric
properties among the pool of data points. In Fig. 3b, representative scenes are
shown next to the corresponding data points in different regions of the perceptual
space. The bottom and right sets of images correspond to points along the two
pathes(linked by solid line), illustrating particular degree of perceptual changes
within the scene images.

As we can see, the topographic properties of perceptual space are related
to the perceptual dimensions(degree of naturalness, openness, expansion, etc)
supervised trained in [7], which represent the dominant spatial dimensions of a
scene. Our Perceptual Manifold model is layered in a bottom-up way to find the
intrinsic dimensionality of scene perception. Our finding supports the viewpoint
that the shape of a scene could be described by a few perceptual dimensions [6].
Moreover, the topographic properties give further implication that human visual
system might be adapted to both extract and integrate the lower perceptual
dimensions to form the holistic scene perception. After that, scene classification
task is performed to validate the topographic properties of perceptual manifold
space.

3.2 Scene Classification

Scene classification task is to classify each image from testing set into one cat-
egory of scenes. The dataset contains 13 categories of scenes, 100 images from
each scene class are as training set, and the rest are as testing set. Both testing
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set and training set of images have been embedded in perceptual manifold space
before the classification, so that all images are represented as 15 dimensional
feature vectors. A 13-way linear SVM classifier is trained on the training set,
then it is applied to classify images from testing set.

The average accuracy of classification for our method is 68.9%. The average
accuracy for baseline methods LDA[4] is 64.0%. Even though the Perceptual
Manifold model is not designed specifically for the scene classification task, our
model achieves good performance. Scene classification task well validates the
topographic properties of the perceptual manifold space. And it further reveals
that there is neural correlation between the perceptual space and semantic space
in human cognitive process [6].

4 Discussion

4.1 On the Dimensionality of Perceptual Manifold Space

The choice of reduced dimensionality M for manifold space is theoretically and
experimentally important. First, the local linear embedding [10] itself relies on
the amount of observation samples and the setting of reduced dimensionality
to search for intrinsically low-dimensional structures embedded nonlinearly in
high-dimensional observations. And the theoretic analysis of this point could
be found in the studies on manifold learning [11], which goes beyond the scope
of this paper. Second, the topographical properties of perceptual manifold are
influenced by the dimensionality M value, here we illustrate that by the corre-
lation between dimensionality M value and performance of scene classification,
as shown in Fig. 4. From that we can see, the dimensionality to engender the
topographic properties of perceptual manifold is rather low. For the limitation
of paper length, more theoretic analysis would be included in our further work.

Dimensionality M
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Fig. 4. The correlation between dimensionalityM and scene classification performance.

5 Conclusion

A novel hierarchical model of scene perception termed Perceptual Manifold is
introduced in this paper. Through the cortex-like layers of computation, dimen-
sionality of input visual signals is gradually reduced, and it finally leads to the
formation of perceptual manifold space. In this perceptual manifold space, there
exist topographic properties that 1) data points of perceptual similarly scene
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images stay nearby in this perceptual manifold space and 2) dimensions of the
perceptual space could describe the meaningful continuous changes in the spa-
tial layout of scene images. Scene classification task is performed to validate the
topographic properties of the perceptual manifold space.
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