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1 Introduction

Computation tasks in Computer Vision research are data-intensive. Such tasks usually involve performing repeated single operations,
such as image resizing and feature extraction, on thousands of images. They also require training iterative algorithms, such as K-means
clustering or logistic regressions, on thousands of image feature vectors. To support the computation of such tasks, the CSAIL Computer
Vision Group has been using 36 high-performance in-house computation servers1. However, currently there is no efficient way to
distribute the processing of large data sets across these servers. Each user can only connect to one single server using Secure Shell (SSH)
and perform computation task (under Matlab, Python, or C++) with data and intermediate results stored in the NFS space maintained
by CSAIL TIG. The use of centralized NFS space as data storage has caused I/O to be the bottleneck for large scale data processing
tasks. Thus, a distributed computation platform with distributed file system would highly improve the performance of computations in
computer vision research.

With Hadoop Distributed File System (HDFS) installed and configured on selected vision servers, we build a distributed computation
platform, GoSpark2, to process large data sets across these servers. GoSpark is a fast in-memory cluster computing framework Spark
[3] under the implementation of Go programming language. Our version of Resilient Distributed Dataset (RDD) in GoSpark supports a
variety of transformations and actions. GoSpark is fault-tolerant to the worker failures and network disconnections.

In the following sections, we will first explain the design and implementation of GoSpark, and then demonstrate its functionality and
fault tolerance with two image processing examples.

2 Design and Implementation

2.1 RDD Data Abstraction

RDD is the data abstraction in GoSpark. It defines the interfaces of transformations and actions, as listed in [3]. We implemented various
kinds of operationType, including Map, FlatMap, Reduce, ReduceByKey, Filter, Collect.

Code 1: RDD data structure
1 type RDD struct {
2 splits []*Split
3 dependType string // Narrow or Wide
4 splitType string // Hash partition or range partition
5 operationType string // Map, reduceBykey ...
6 fnName string // function name for map, reduce ...
7 prevRDD1 *RDD
8 prevRDD2 *RDD
9 ...

10 }

The RDD data structure maintains prevRDD1 and prevRDD2 to track the RDD(s) that this current RDD is derived from. prevRDD2
is used for join or union operation. fnName keeps the name3 of input function literal. splits is used to keep the splitIDs of the RDD,
as each splitID is a unique 64-bit integer.
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Figure 1: The system design of GoSpark (Scheduler, Master, and Workers) and HDFS (Name node, data nodes, and data splits). Due
to the high-performance of the vision servers, each vision server is both a data node in Hadoop HDFS and a worker in GoSpark at the
same time.

2.2 Roles

Figure 1 shows the overall design of GoSpark. There are three main roles:

Scheduler builds the lineage of RDDs and tracks the lineage across a wide range of transformations.

Master maintains the status of workers and communicates with them through TCP connections.

Workers read input data from either HDFS or other workers, perform specified computation, and store results in memory. Their jobs
are decided by the scheduler module and distributed by the master.

2.2.1 Scheduler

The scheduler is activated when an RDD action is triggered. When scheduling, it examines the full lineage of RDDs related to the target,
and identifies the execution order.

Code 2: Scheduler API
1 type Scheduler struct {
2 master *Master
3 }
4
5 func makeDagFromRdd(rdd *RDD) *Dag{...}
6 func (d *Scheduler) runThisSplit(rdd *RDD, SpInd int) error {...
7 switch rdd.operationType {
8 case Map: ...
9 ok, _ := d.master.AssignJob([]string{addressWorkerInMaster}, true, &args, &reply)

10 case ReduceByKey:...
11 }
12 func (d *Scheduler) computeRDD(rdd* RDD, operationType string, fn string) []interface{} {
13 switch (operationType) {
14 case "Collect":...
15 case "Count":...
16 case "Reduce":...
17 }

1Server viewboard is at http://foxtrot.csail.mit.edu/cgi/machine_stats.cgi.
2Our code is available at https://github.com/metalbubble/824project.
3Please refer to Section 2.2.3 for more detail.
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The scheduling process has the following steps: 1) Extracting stages, which are the RDDs before a wide dependency, and the tar-
get RDD; 2) Building a directed acyclic graph among the stages; 3) Topologically sorting the DAG to obtain an execution order of
stages, and execute the stages one-by-one; 4) Executing a stage and computing each split in the stage in parallel. This includes tracing
back the previous RDDs recursively and executing the corresponding split. 5) When the previous splits that another split depend on
are done, runThisSplit() is called to send job specification, including opType, inputSplits, addresses, and outputSplits through
master.AssignJob() to workers.

Data Locality The scheduler will consider the locality of data splits when distributing jobs to workers. Specifically, when the scheduler
commands the master to assign a job to workers, the scheduler will provide a list of preferred workers based on data locality. The master
will choose a worker based on this list. For example, at the beginning of a lineage, the scheduler assigns the workers that are close to the
HDFS splits with ReadHDFSSplit jobs. These workers are responsible for reading data from HDFS. Other workers that need these
data will send out GetSplit requests to them to fetch the splits.

2.2.2 Master

The master module builds the bridge between the scheduler and the workers. Specifically, when the scheduler needs to assign a job to
a worker, it calls master.AssignJob(), which selects a worker and assigns it the job through the DoJob RPC. In addition, the
master also provides a Register RPC for workers to register and to update their status.

Code 3: Master API
1 type Master struct {
2 MasterAddress string
3 MasterPort string
4 workers map[string]WorkerInfo
5 }
6 func MakeMaster(ip string, port string) *Master {...}
7 func (mr *Master) StartRegistrationServer() {...}
8 func (mr *Master) Register(args *RegisterArgs, res *RegisterReply) error {...}
9 func (mr *Master) WorkersAvailable() map[string]WorkerInfo {...}

10 func (mr *Master) AssignJob(workersPreferred []string, force bool, args *DoJobArgs, reply *DoJobReply) (bool, string) {...
11 ok := call(w, "Worker.DoJob", args, reply)...
12 }
13 func (mr *Master) webHandler(ws *websocket.Conn) {...}

Load Balancing When assigning a job, the master selects an available worker based on the following information: a) the list of data
locality preference that the scheduler provides, b) the number of CPUs on each worker machine, and c) the number of GoSpark jobs
currently running on each worker. To demonstrate the data locality and load balancing features of GoSpark, we implemented a monitor
page4 that displays the real-time CPU and memory usage of all the workers. Its implementation establishes websocket connections
between Javascript and Go. Figure 2 shows two snapshots of the status of the workers.

2.2.3 Workers

Workers directly conduct data processing tasks as specified in DoJob RPC arguments. Different jobs are processed in parallel.

Code 4: DoJob RPC arguments
1 type DoJobArgs struct {
2 Operation JobType
3 InputIDs []Split
4 OutputIDs []Split
5 Function string
6 ...
7 }

Code 5: Worker API
1 type Worker struct {
2 unreliable bool // for testing
3 mem map[string]([]interface{})
4 ...
5 }
6 func (wk *Worker) DoJob(args *DoJobArgs, res *DoJobReply) error {...}
7 func (wk *Worker) Shutdown(args *ShutdownArgs, res *ShutdownReply) error {...}
8 func MakeWorker(MasterAddress string, MasterPort string, me string, port string, unrel bool) *Worker {...}
9 func (wk *Worker) kill() {...} // for testing

4The worker status monitor is accessible at http://web.mit.edu/jiasi/www/ws.html.
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(a) At the beginning of a lineage (b) At the middle of a lineage

Figure 2: Two snapshots of worker load distribution

To tolerate network failures, the workers not only register to the master during initialization, but also frequently do so whenever they are
alive.

Memory management To achieve fast in-memory computation, each worker stores all computation results in its local memory mem
until being told to delete them by DelSplit jobs. For workers to cooperate, each intermediate result is uniquely identified by a
SplitID. The SplitIDs are allocated by the scheduler in DoJob arguments. For example, when worker A needs input data from
worker B, the scheduler tells it the address of worker B and the SplitID of the data. With these information, worker A can send a
GetSplit request to worker B. Then, worker B looks up the data in its local memory and replies to worker A with its contents.

Function Literals Since Go cannot serialize function literals, it is impossible to pass their definitions from the master to workers
through RPCs. Thus, we instead compile user functions together with our GoSpark code on worker machines. The master instructs
workers of which function to run by passing function names as strings in DoJob RPC arguments. Workers then use the run-time
reflection in Go to call the desired functions by name.

Code 6: Call a function by name with Go reflection
1 fn := reflect.ValueOf(&UserFunc{}).MethodByName(args.Function) // look up by name
2 a1 := reflect.ValueOf(KeyValue{Value:line}) // wrap arguments in data structures
3 a2 := reflect.ValueOf(KeyValue{Value:args.Data})
4 r: = fn.Call([]reflect.Value{a1, a2}) // call function by name
5 s: = r[0].Interface() // result

There are still some technical restrictions, however. The reflect package requires a data structure to be defined to look up methods by
name. Thus, we define UserFunc and restrict users to implement function literals under this type. Another restriction is that reflect
does not support calling functions whose arguments have type interface{}. Thus, we also have to wrap user function arguments in
a data structure (we chose KeyValue).

Unreliability In order to test the fault tolerance of GoSpark, we need to sometimes force the network connections to fail. To this
end, we use conn.Close() to discard RPC requests, and use syscall.Shutdown() to force discard of replies after processing
requests.

2.3 Fault Tolerance

GoSpark has three fault tolerance mechanisms, from three different levels.

RDD fault tolerance At the execution stage of RDDs, the worker will first check the dependency of RDDs based on the assigned job.
If there are some splits missing, that worker will report to the scheduler. Then scheduler will check the dependency of that missing split
and re-launch the task of processing the split on some worker. Until all the dependency of RDDs is complete, the failed job will be
assigned again.
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Worker fault tolerance Sometimes workers will be disconnected to the master due to network disconnection or the crash of the worker
server. If an RPC call from the master to a worker fails, the master will retry a few times until success. If a worker is still unreachable,
the master considers the worker as crashed and removes it from the available workers list. Then it selects another worker from the list
and assigns it the specified job. If the master cannot reach a worker while the worker is in fact alive, the worker will keep calling the
Register RPC on master. When its register requests eventually reach the master, the master will mark the worker as available again.

HDFS fault tolerance The HDFS is configured to have n replicas among the workers. If there is a machine failed after 10-minute
time-out, the HDFS master will automatically recover the lost replicas on other servers. Note that we assume the scheduler and master
will not fail.

3 Experiments

3.1 HDFS setup and access

To build and test our distributed computation platform, we installed and configured HDFS (Hadoop 2.4) on 15 selected vision servers.
Since vision servers use the shared NFS space as the primary data storage, to avoid the bottleneck of data I/O the default HDFS path is
set to the local drive of each vision server in /scratch/tmp. The replicate number is set as 4. Vision24 server is selected as the name
node of Hadoop 5 and the master/scheduler of GoSpark, while all the selected vision servers are served as data nodes and workers of
GoSpark.

HDFS partitions a large file into 128 MB data splits among data nodes. One issue here is the locality of data access between workers
and HDFS, i.e., each worker should access the data splits stored in its own drive in priority. HDFS API is provided for workers to access
the splits of the large file separately. However the official HDFS APIs are mainly in JAVA, we implement a HDFS split reader in JAVA.
We wrote a wrapper in go to call this Java reader. For example, for a large file stored at file := "hdfs://...", the scheduler will
first get the information of data splits of HDFS by calling GetSplitInfo(file), then the master in GoSpark will know where the
splits are stored and assign the HDFS link of these data splits to each worker based on locality. Finally the worker will read the data split
in HDFS using ReadHDFSSplit(file, splitID)and conduct data processing operations independently. Figure 1 illustrates the
data access process in GoSpark.

3.2 Image clustering using K-Means

We demonstrate image clustering using K-means on the GoSpark platform. We use the SUN Database [2], a scene categorization
benchmark, as the data for K-Means clustering. There are totally 108,754 images in the database, which come from 397 scene categories,
such as kitchen, coast, and mountain. The feature of each image in the database is extracted as a 4096 dimensional vector by the pre-
trained neural network [1]. All the feature vectors are then stored as a single 3.32 GB CSV file at HDFS.

K-Means is a commonly used clustering method. Given an initial set of k centers by random, the algorithm iteratively proceeds two
steps: 1) Assignment step: to assign each data vector to its closest center. 2) Update step: to recalculate the k centers by taking the mean
of vectors assigned to each label.

The key lines of the K-Means clustering in GoSpark are listed as following

1 pointsText := c.TextFile("hdfs://vision24.csail.mit.edu:54310/user/featureSUN397_combine.csv")
2 points := pointsText.Map("MapLineToFloatVectorCSVWithCat").Cache()
3 var mappedPoints *RDD
4 for i := 0; i < IterNum; i++ {
5 mappedPoints = points.MapWithData("MapToClosestCenter", centers) //AssignmentStep
6 sumCenters := mappedPoints.ReduceByKey("AddCenterWCounter")
7 newCenters := sumCenters.Map("AvgCenter") //Update Step
8 newCentersCollected := newCenters.Collect()
9 for j:=0; j<len(newCentersCollected); j++ {

10 centers[j] = *(newCentersCollected[j].(KeyValue).Value.(*Vector))
11 }
12 }

Since Go language cannot pass function literals between master and worker via RPC, we use run-time reflection in Go to call the function
in test, such as "MapToClosestCenter" listed below. The other defined function literals could be found in kmeans_test.go.

1 // function literal of "MapToClosestCenter"
2 func (f *UserFunc) MapToClosestCenter(line interface{}, userData interface{}) interface{} {
3 p := line.(KeyValue).Value.(Vector)
4 centers := userData.(KeyValue).Value.([]Vector)
5
6 minDist := p.EulaDistance(centers[0])
7 minIndex := 0

5The dashboard of our Hadoop system is at http://vision24.csail.mit.edu:50070.
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Figure 3: Representative images in 6 clusters from K-Means clustering.

8 for i := 1; i < len(centers); i++ {
9 dist := p.EulaDistance(centers[i])

10 if dist < minDist {
11 minDist = dist
12 minIndex = i
13 }
14 }
15 return KeyValue{
16 Key: minIndex,
17 Value: CenterCounter{p, 1},
18 }
19 }

The representative images from 6 clusters of K-Means (here we set k=50) 6 are shown in Figure 3. We can see that GoSpark K-Means
clusters images with the similar appearance together.

To evaluate the performance of GoSpark, we plot the iteration time of K-Means clustering with different number of workers along with
unreliable worker scenario in Figure 4. We can see that as the number of workers increases, the iteration time drops. As the data shuffle
also increases with the number of workers, the relation is not linear. Meanwhile, because of retrying RPC, the iteration time in unreliable
worker case is higher than the normal reliable worker case.

3.3 Scene classification using logistic regression

Since images in the SUN database are from 397 scene categories, we can train a classifier to recognize the scene categories based on the
image features. Here we train the logistic regression classifiers on our GoSpark platform. We use one-vs-all training scenario, i.e., for
each category we take the images in this category as positive samples and take images in all the other categories as negative samples.
Thus, we could train 397 logistic regression classifiers. Given one image in testing set, we classify the images to the category with the
largest output of logistic regression classifier.

The key lines of training logistic regression in GoSpark are listed as

1 pointsText := c.TextFile("hdfs://vision24.csail.mit.edu:54310/user/featureSUN397_binary.csv");
2 points := pointsText.Map("MapLineToFloatVectorCatCSV").Cache();
3 for i:=0; i<IterNum; i++ {
4 mappedPoints := points.MapWithData("MapToVectorGradient", w);
5 gradInterface := mappedPoints.Reduce("ReduceToOneGradient")
6 w = w.Minus((gradInterface.(Vector)))
7 }

6Cluster result is at http://wednesday.csail.mit.edu/cityimage/SUN_source_code_v2/data/clusterResult.html
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Figure 4: The running time (seconds) with various numbers of workers for K-Means and logistic regression

We define function literals "MapToVectorGradient" as follows. Note that due to the restriction that we cannot pass in interface
directly to a function obtained from reflection, we need to encapsulate the arguments into a type, e.g. we put the xy (x: feature, y: label)
into the "Value" of "KeyValue" type.

1 // function literal of "MapToVectorGradient"
2 func (f *UserFunc) MapToVectorGradient(xy interface{}, wInterface interface{}) interface{} {
3 y := xy.(KeyValue).Value.(KeyValue).Key.(float64)
4 x := xy.(KeyValue).Value.(KeyValue).Value.(Vector)
5 w := wInterface.(KeyValue).Value.(*Vector)
6 grad := x.Multiply(1/(1+math.Exp(-y*(w.Dot(x))))-1).Multiply(y)
7 return grad
8 }

The whole logistic regression test can be found in LR_test.go.

3.4 Runtime anaysis

The main purpose of adopting Spark to Computer Vision tasks is its capability to scale with huge data size and increasing number of
workers. Figure 4 shows the total runtime of K-Means and logistic regression (LR) on various number of workers, and on both scenerios
of reliable and unreliable workers. As worker number increases, the runtime generally decreases. However, there seems to be some non-
trivial overhead that prevents our system to be close to linear speedup. The source may be non-uniform processing speed of workers, i.e.
some workers were processing jobs by other users, or network bottleneck while exchanging data in the shuffle stage of K-Means. This
issue is worth investigating in the future for better scalability.

To further examine the runtime, we plot the average time for computing each RDD operations for the two applications in Figure 5, and
the runtime proportion of certain operations in the whole tests in Figure 6. The tests were run on 15 machines. For both applications, we
found that the jobs of reading splits from HDFS and parsing strings into float vectors are quite expensive in Figure 5. With the advantage
of the design of Spark, we can cache these preprocessing in memory, so that they are only one-time expense. Otherwise, in traditional
MapReduce, these expenses are added to every iteration, which greatly increases the total runtime. In LR case, the real data process jobs
in iterations like MapToVectorGradient, and ReduceToOneGradient are relatively insignificant, because they are done on
each worker independently and in memory. For K-Means, the MapToClosestCenter mapping, and AddCenterWithCounter
reduction are two expensive jobs in every iteration. The former compares 1 vector against k vectors of centers, and the latter obtains
data from other workers for reduction like the shuffle stage in MapReduce. On the right-hand side of the chart are HashPart, the
preparation of shuffle stage on individual machines, and AvgCenter an one-to-one vector mapping computation. These are relatively
cheap operations.

Figure 6 shows how the total runtime are spend. In LR case, the preprocessing occupies a major percentage of the total runtime. The over-
head would be amortized if we run LR with more number of iterations, which is currently 10 only. On the other hand for K-Means, the
preprocessing time is insignificant. The main protion of time was spent on MapToClosestCenter, and AddCenterWithCounter
in every iteration. This is a more ideal situation in terms of efficiency where time are spent on computation than preprocessing.
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Figure 5: Average runtime (seconds) of computing each type of rdd operation for one split

4 Conclusion

In this course project, we build a practical distributed in-memory computation platform GoSpark based on the RDD framework [3] using
Go language. We implemented some of the major transformations and actions for RDD, and a scheduler to order the execution of each
split based on dependency rules. We integrated HDFS to store large data and for workers to access data splits locally. Fault tolerance
to unreliable workers are tested. We evaluate the final system on 15 vision servers through the examples of image clustering and image
classification, and show that with the design of caching in Spark workers need to load the data from disk once, which effectively cut
down this expensive overhead in traditional MapReduce.
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