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Abstract

Scene parsing, or recognizing and segmenting objects
and stuff in an image, is one of the key problems in computer
vision. Despite the community’s efforts in data collection,
there are still few image datasets covering a wide range of
scenes and object categories with dense and detailed anno-
tations for scene parsing. In this paper, we introduce and
analyze the ADE20K dataset, spanning diverse annotations
of scenes, objects, parts of objects, and in some cases even
parts of parts. A scene parsing benchmark is built upon the
ADE20K with 150 object and stuff classes included. Several
segmentation baseline models are evaluated on the bench-
mark. A novel network design called Cascade Segmentation
Module is proposed to parse a scene into stuff, objects, and
object parts in a cascade and improve over the baselines.
We further show that the trained scene parsing networks
can lead to applications such as image content removal and
scene synthesis1.

1. Introduction
Semantic understanding of visual scenes is one of the

holy grails of computer vision. The emergence of large-
scale image datasets like ImageNet [26], COCO [17] and
Places [35], along with the rapid development of the deep
convolutional neural network (ConvNet) approaches, have
brought great advancements to visual scene understanding.
Nowadays, given a visual scene of a living room, a robot
equipped with a trained ConvNet can accurately predict the
scene category. However, to freely navigate in the scene
and manipulate the objects inside, the robot has far more
information to digest. It needs to recognize and localize not
only the objects like sofa, table, and TV, but also their parts,
e.g., a seat of a chair or a handle of a cup, to allow proper
interaction, as well as to segment the stuff like floor, wall
and ceiling for spatial navigation.

Scene parsing, or recognizing and segmenting objects
and stuff in an image, remains one of the key problems in

1Dataset and pretrained models are available at
http://groups.csail.mit.edu/vision/datasets/ADE20K/

  

Figure 1. Images in the ADE20K dataset are densely annotated
in details with objects and parts. The first row shows the sample
images, the second row shows the annotation of objects and stuff,
and the third row shows the annotation of object parts.

scene understanding. Going beyond image-level recogni-
tion, scene parsing requires a much denser annotation of
scenes with a large set of objects. However, the current
datasets have limited number of objects (e.g., COCO [17],
Pascal [10]) and in many cases those objects are not the
most common objects one encounters in the world (like fris-
bees or baseball bats), or the datasets only cover a limited
set of scenes (e.g., Cityscapes [7]). Some notable excep-
tions are Pascal-Context [21] and the SUN database [32].
However, Pascal-Context still contains scenes primarily fo-
cused on 20 object classes, while SUN has noisy labels at
the object level.

Our goal is to collect a dataset that has densely annotated
images (every pixel has a semantic label) with a large and
an unrestricted open vocabulary. The images in our dataset
are manually segmented in great detail, covering a diverse
set of scenes, object and object part categories. The chal-
lenges for collecting such annotations include finding reli-
able annotators, as well as the fact that labeling is difficult
if the class list is not defined in advance. On the other hand,
open vocabulary naming also suffers from naming inconsis-
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tencies across different annotators. In contrast, our dataset
was annotated by a single expert annotator, providing ex-
tremely detailed and exhaustive image annotations. On av-
erage, our annotator labeled 29 annotation segments per im-
age, compared to the 16 segments per image labeled by ex-
ternal annotators (like workers from Amazon Mechanical
Turk). Furthermore, the data consistency and quality are
much higher than that of external annotators. Fig. 1 shows
examples from our dataset.

The paper is organized as follows. Firstly we describe
the ADE20K dataset, the collection process and statistics.
We then introduce a generic network design called Cascade
Segmentation Module, which enables neural networks to
segment stuff, objects, and object parts in cascade. Several
semantic segmentation networks are evaluated on the scene
parsing benchmark of ADE20K as baselines. The proposed
Cascade Segmentation Module is shown to improve over
those baselines. We further apply the scene parsing net-
works to the tasks of automatic scene content removal and
scene synthesis.

1.1. Related work

Many datasets have been collected for the purpose of se-
mantic understanding of scenes. We review the datasets
according to the level of details of their annotations, then
briefly go through the previous work of semantic segmenta-
tion networks.

Object classification/detection datasets. Most of the
large-scale datasets typically only contain labels at the im-
age level or provide bounding boxes. Examples include Im-
agenet [26], Pascal [10], and KITTI [12]. Imagenet has the
largest set of classes, but contains relatively simple scenes.
Pascal and KITTI are more challenging and have more ob-
jects per image, however, their classes as well as scenes are
more constrained.

Semantic segmentation datasets. Existing datasets
with pixel-level labels typically provide annotations only
for a subset of foreground objects (20 in PASCAL VOC [10]
and 91 in Microsoft COCO [17]). Collecting dense anno-
tations where all pixels are labeled is much more challeng-
ing. Such efforts include SIFT Flow dataset [18], Pascal-
Context [21], NYU Depth V2 [22], SUN database [32],
SUN RGB-D dataset [28], CityScapes dataset [7], and
OpenSurfaces [2, 3].

Datasets with objects, parts and attributes. Core
dataset [6] is one of the earliest work that explores the object
part annotation across categories. Recently, two datasets
were released that go beyond the typical labeling setup by
also providing pixel-level annotation for the object parts, i.e.
Pascal-Part dataset [5], or material classes, i.e. OpenSur-
faces [2, 3]. We advance this effort by collecting very high-
resolution imagery of a much wider selection of scenes,
containing a large set of object classes per image. We an-

notated both stuff and object classes, for which we addi-
tionally annotated their parts, and parts of these parts. We
believe that our dataset, ADE20K, is one of the most com-
prehensive datasets of its kind. We provide a comparison
between datasets in Sec. 2.5.

Semantic segmentation/parsing models.. There are a
lot of models proposed for image parsing. For example,
MRF frameworks are proposed to parse images in differ-
ent levels [30] or segment rare object classes [33]; detec-
tion is combined with segmentation to improve the perfor-
mance [31]; stuff classes are leveraged to localize objects
[13]. With the success of convolutional neural networks
(CNN) for image classification [16], there is growing in-
terest for semantic image parsing using CNNs with dense
output, such as the multiscale CNN [11], recurrent CNN
[25], fully CNN [19], deconvolutional neural networks [24],
encoder-decoder SegNet [1], multi-task network cascades
[9], and DilatedNet [4, 34]. They are benchmarked on Pas-
cal dataset with impressive performance on segmenting the
20 object classes. Some of them [19, 1] are evaluated on
Pascal-Context [21] or SUN RGB-D dataset [28] to show
the capability to segment more object classes in scenes.
Joint stuff and object segmentation is explored in [8] which
uses pre-computed superpixels and feature masking to rep-
resent stuff. Cascade of instance segmentation and catego-
rization has been explored in [9]. In this paper we introduce
a generic network module to segment stuff, objects, and ob-
ject parts jointly in a cascade, which could be integrated in
existing networks.

2. ADE20K: Fully Annotated Image Dataset

In this section, we describe our ADE20K dataset and an-
alyze it through a variety of informative statistics.

2.1. Dataset summary

There are 20,210 images in the training set, 2,000 images
in the validation set, and 3,000 images in the testing set. All
the images are exhaustively annotated with objects. Many
objects are also annotated with their parts. For each object
there is additional information about whether it is occluded
or cropped, and other attributes. The images in the valida-
tion set are exhaustively annotated with parts, while the part
annotations are not exhaustive over the images in the train-
ing set. The annotations in the dataset are still growing.
Sample images and annotations from the ADE20K dataset
are shown in Fig. 1.

2.2. Image annotation

For our dataset, we are interested in having a diverse set
of scenes with dense annotations of all the objects present.
Images come from the LabelMe [27], SUN datasets [32],
and Places [35] and were selected to cover the 900 scene



Figure 2. Annotation interface, the list of the objects and their as-
sociated parts in the image.

categories defined in the SUN database. Images were an-
notated by a single expert worker using the LabelMe inter-
face [27]. Fig. 2 shows a snapshot of the annotation inter-
face and one fully segmented image. The worker provided
three types of annotations: object segments with names, ob-
ject parts, and attributes. All object instances are segmented
independently so that the dataset could be used to train and
evaluate detection or segmentation algorithms. Datasets
such as COCO [17], Pascal [10] or Cityscape [7] start by
defining a set of object categories of interest. However,
when labeling all the objects in a scene, working with a
predefined list of objects is not possible as new categories
appear frequently (see fig. 5.d). Here, the annotator cre-
ated a dictionary of visual concepts where new classes were
added constantly to ensure consistency in object naming.

Object parts are associated with object instances. Note
that parts can have parts too, and we label these associa-
tions as well. For example, the ‘rim’ is a part of a ‘wheel’,
which in turn is part of a ‘car’. A ‘knob’ is a part of a ‘door’
that can be part of a ‘cabinet’. The total part hierarchy has
a depth of 3. The object and part hierarchy is in the supple-
mentary materials.

2.3. Annotation consistency

Defining a labeling protocol is relatively easy when the
labeling task is restricted to a fixed list of object classes,
however it becomes challenging when the class list is open-
ended. As the goal is to label all the objects within each
image, the list of classes grows unbounded. Many object
classes appear only a few times across the entire collection
of images. However, those rare object classes cannot be ig-
nored as they might be important elements for the interpre-
tation of the scene. Labeling in these conditions becomes
difficult because we need to keep a growing list of all the
object classes in order to have a consistent naming across
the entire dataset. Despite the annotator’s best effort, the
process is not free of noise.

To analyze the annotation consistency we took a subset
of 61 randomly chosen images from the validation set, then
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Figure 3. Analysis of annotation consistency. Each column shows
an image and two segmentations done by the same annotator at
different times. Bottom row shows the pixel discrepancy when
the two segmentations are subtracted, and the percentage of pixels
with the same label. On average across all re-annotated images,
82.4% of pixels got the same label. In the example in the first
column the percentage of pixels with the same label is relatively
low because the annotator labeled the same region as ‘snow’ and
‘ground’ during the two rounds of annotation. In the third column,
there were many objects in the scene and the annotator missed
some between the two segmentations.

asked our annotator to annotate them again (there is a time
difference of six months). One expects that there are some
differences between the two annotations. A few examples
are shown in Fig 3. On average, 82.4% of the pixels got the
same label. The remaining 17.6% of pixels had some errors
for which we grouped into three error types as follows:

• Segmentation quality: Variations in the quality of
segmentation and outlining of the object boundary.
One typical source of error arises when segmenting
complex objects such as buildings and trees, which can
be segmented with different degrees of precision. 5.7%
of the pixels had this type of error.

• Object naming: Differences in object naming (due
to ambiguity or similarity between concepts, for in-
stance, calling a big car a ‘car’ in one segmentation and
a ‘truck’ in the another one, or a ‘palm tree’ a ‘tree’.
6.0% of the pixels had naming issues. These errors can
be reduced by defining a very precise terminology, but
this becomes much harder with a large growing vocab-
ulary.

• Segmentation quantity: Missing objects in one of the
two segmentations. There is a very large number of
objects in each image and some images might be an-
notated more thoroughly than others. For example, in
the third column of Fig 3 the annotator missed some



small objects in different annotations. 5.9% of the pix-
els are due to missing labels. A similar issue existed
in segmentation datasets such as the Berkeley Image
segmentation dataset [20].

The median error values for the three error types are:
4.8%, 0.3% and 2.6% showing that the mean value is dom-
inated by a few images, and that the most common type of
error is segmentation quality.

To further compare the annotation done by our single
expert annotator and the AMT-like annotators, 20 images
from the validation set are annotated by two invited exter-
nal annotators, both with prior experience in image labeling.
The first external annotator had 58.5% of inconsistent pixels
compared to the segmentation provided by our annotator,
and the second external annotator had 75% of the inconsis-
tent pixels. Many of these inconsistencies are due to the
poor quality of the segmentations provided by external an-
notators (as it has been observed with AMT which requires
multiple verification steps for quality control [17]). For the
best external annotator (the first one), 7.9% of pixels have
inconsistent segmentations (just slightly worse than our an-
notator), 14.9% have inconsistent object naming and 35.8%
of the pixels correspond to missing objects, which is due to
the much smaller number of objects annotated by the exter-
nal annotator in comparison with the ones annotated by our
expert annotator. The external annotators labeled on aver-
age 16 segments per image while our annotator provided 29
segments per image.

2.4. Dataset statistics

Fig. 4.a shows the distribution of ranked object frequen-
cies. The distribution is similar to a Zipf’s law and is typi-
cally found when objects are exhaustively annotated in im-
ages [29, 32]. They differ from the ones from datasets such
as COCO or ImageNet where the distribution is more uni-
form resulting from manual balancing.

Fig. 4.b shows the distributions of annotated parts
grouped by the objects they belong to and sorted by fre-
quency within each object class. Most object classes also
have a non-uniform distribution of part counts. Fig. 4.c and
Fig. 4.d show how objects are shared across scenes and how
parts are shared by objects. Fig. 4.e shows the variability in
the appearances of the part ‘door’.

The mode of the object segmentations is shown in
Fig. 5.a and contains the four objects (from top to bottom):
‘sky’, ‘wall’, ‘building’ and ‘floor’. When using simply the
mode to segment the images, it gets, on average, 20.9% of
the pixels of each image right. Fig. 5.b shows the distribu-
tion of images according to the number of distinct classes
and instances. On average there are 19.5 instances and 10.5
object classes per image, larger than other existing datasets
(see Table 1). Fig. 5.c shows the distribution of parts.

Table 1. Comparison of semantic segmentation datasets.
Images Obj. Inst. Obj. Cls. Part Inst. Part Cls. Obj. Cls. per Img.

COCO 123,287 886,284 91 0 0 3.5
ImageNet∗ 476,688 534,309 200 0 0 1.7
NYU Depth V2 1,449 34,064 894 0 0 14.1
Cityscapes 25,000 65,385 30 0 0 12.2
SUN 16,873 313,884 4,479 0 0 9.8
OpenSurfaces 22,214 71,460 160 0 0 N/A
PascalContext 10,103 ∼104,398∗∗ 540 181,770 40 5.1
ADE20K 22,210 434,826 2,693 175,961 476 9.9

∗ has only bounding boxes (no pixel-level segmentation). Sparse annotations.
∗∗ PascalContext dataset does not have instance segmentation. In order to estimate
the number of instances, we find connected components (having at least 150pixels)
for each class label.

As the list of object classes is not predefined, there are
new classes appearing over time of annotation. Fig. 5.d
shows the number of object (and part) classes as the number
of annotated instances increases. Fig. 5.e shows the proba-
bility that instance n + 1 is a new class after labeling n in-
stances. The more segments we have, the smaller the proba-
bility that we will see a new class. At the current state of the
dataset, we get one new object class every 300 segmented
instances.

2.5. Comparison with other datasets

We compare ADE20K with existing datasets in Tab. 1.
Compared to the largest annotated datasets, COCO [17] and
Imagenet [26], our dataset comprises of much more diverse
scenes, where the average number of object classes per im-
age is 3 and 6 times larger, respectively. With respect to
SUN [32], ADE20K is roughly 35% larger in terms of im-
ages and object instances. However, the annotations in our
dataset are much richer since they also include segmenta-
tion at the part level. Such annotation is only available for
the Pascal-Context/Part dataset [21, 5] which contains 40
distinct part classes across 20 object classes. Note that we
merged some of their part classes to be consistent with our
labeling (e.g., we mark both left leg and right leg as the same
semantic part leg). Since our dataset contains part annota-
tions for a much wider set of object classes, the number of
part classes is almost 9 times larger in our dataset.

An interesting fact is that any image in ADE20K con-
tains at least 5 objects, and the maximum number of object
instances per image reaches 273, and 419 instances, when
counting parts as well. This shows the high annotation com-
plexity of our dataset.

3. Cascade Segmentation Module
While the frequency of objects appearing in scenes fol-

lows a long-tail distribution, the pixel ratios of objects also
follow such a distribution. For example, the stuff classes
like ‘wall’, ‘building’, ‘floor’, and ‘sky’ occupy more than
40% of all the annotated pixels, while the discrete objects,
such as ‘vase’ and ‘microwave’ at the tail of the distribution
(see Fig. 4b), occupy only 0.03% of the annotated pixels.
Because of the long-tail distribution, a semantic segmenta-
tion network can be easily dominated by the most frequent
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Figure 4. a) Object classes sorted by frequency. Only the top 270 classes with more than 100 annotated instances are shown. 68 classes
have more than a 1000 segmented instances. b) Frequency of parts grouped by objects. There are more than 200 object classes with
annotated parts. Only objects with 5 or more parts are shown in this plot (we show at most 7 parts for each object class). c) Objects ranked
by the number of scenes they are part of. d) Object parts ranked by the number of objects they are part of. e) Examples of objects with
doors. The bottom-right image is an example where the door does not behave as a part.
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Figure 5. a) Mode of the object segmentations contains ‘sky’, ‘wall’, ‘building’ and ‘floor’. b) Histogram of the number of segmented
object instances and classes per image. c) Histogram of the number of segmented part instances and classes per object. d) Number of
classes as a function of segmented instances (objects and parts). The squares represent the current state of the dataset. e) Probability of
seeing a new object (or part) class as a function of the number of instances.
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Figure 6. The framework of Cascade Segmentation Module for scene parsing. Stuff stream generates the stuff segmentation and objectness
map from the shared feature activation. The object stream then generates object segmentation by integrating the objectness map from the
stuff stream. Finally the full scene segmentation is generated by merging the object segmentation and the stuff segmentation. Similarly, part
stream takes object score map from object stream to further generate object-part segmentation. Since not all objects have part annotation,
the part stream is optional. Feature sizes are based on the Cascade-dilatedNet, the Cascade-SegNet has different but similar structures.

stuff classes. On the other hand, there are spatial layout
relations among stuffs and objects, and the objects and the
object parts, which are ignored by the design of the previ-
ous semantic segmentation networks. For example, a draw-
ing on a wall is a part of the wall (the drawing occludes the
wall), and the wheels on a car are also parts of the car.

To handle the long-tail distribution of objects in scenes
and the spatial layout relations of scenes, objects, and ob-
ject parts, we propose a network design called Cascade Seg-
mentation Module. This module is a generic network de-
sign which can potentially be integrated in any previous
semantic segmentation networks. We first categorize se-
mantic classes of the scenes into three macro classes: stuff
(sky, road, building, etc), foreground objects (car, tree, sofa,
etc), and object parts (car wheels and door, people head and
torso, etc). Note that in some scenarios there are some ob-
ject classes like ‘building’ or ‘door’ that could belong to ei-
ther of two macro classes, here we assign the object classes
to their most likely macro class.

In the network for scene parsing, different streams of
high-level layers are used to represent different macro
classes and recognize the assigned classes. The segmenta-
tion results from each stream are then fused to generate the
segmentation. The proposed module is illustrated in Fig. 6.

More specifically, the stuff stream is trained to classify
all the stuff classes plus one foreground object class (which
includes all the non-stuff classes). After training, the stuff
stream generates stuff segmentation and a dense objectness
map indicating the probability that a pixel belongs to the
foreground object class. The object stream is trained to clas-
sify the discrete objects. All the non-discrete objects are
ignored in the training loss function of the object stream.
After training, the object stream further segments each dis-
crete object on the predicted objectness map from the stuff
stream. The result is merged with the stuff segmentation to
generate the scene segmentation. For those discrete objects

annotated with parts, the part stream can be jointly trained
to segment object parts. Thus the part stream further seg-
ments parts on each object score map predicted from the
object stream.

The network with the two streams (stuff+objects) or
three streams (stuff+objects+parts) could be trained end-to-
end. The streams share the weights of the lower layers.
Each stream has a training loss at the end. For the stuff
stream we use the per-pixel cross-entropy loss, where the
output classes are all the stuff classes plus the foreground
class (all the discrete object classes are included in it). We
use the per-pixel cross-entropy loss for the object stream,
where the output classes are all the discrete object classes.
The objectness map is given as a ground-truth binary mask
that indicates whether a pixel belongs to any of the stuff
classes or the foreground object class. This mask is used to
exclude the penalty for pixels which belong to any of the
stuff classes in the training loss for the object stream. Sim-
ilarly, we use cross-entropy loss for the part stream. All
part classes are trained together, while non-part pixels are
ignored in training. In testing, parts are segmented on their
associated object score map given by the object stream. The
training losses for the two streams and for the three streams
areL = Lstuff+Lobject andL = Lstuff+Lobject+Lpart

respectively.
The configurations of each layer are based on the base-

line network being used. We integrate the proposed module
on two baseline networks Segnet [1] and DilatedNet [4, 34].
In the following experiments, we evaluate that the proposed
module brings great improvements for scene parsing.

4. Experiments

To train the networks for scene parsing, we select the
top 150 objects ranked by their total pixel ratios from the
ADE20K dataset and build a scene parsing benchmark of



ADE20K, termed as MIT SceneParse1502. As the orig-
inal images in the ADE20K dataset have various sizes,
for simplicity we rescale those large-sized images to make
their minimum heights or widths as 512 in the benchmark.
Among the 150 objects, there are 35 stuff classes (i.e., wall,
sky, road) and 115 discrete objects (i.e., car, person, table).
The annotated pixels of the 150 objects occupy 92.75% of
all the pixels in the dataset, where the stuff classes occupy
60.92%, and discrete objects occupy 31.83%.

4.1. Scene parsing

As for baselines of scene parsing on SceneParse150
benchmark, we train three semantic segmentation networks:
SegNet [1], FCN-8s [19], and DilatedNet [4, 34]. SegNet
has encoder and decoder architecture for image segmen-
tation; FCN upsamples the activations of multiple layers
in the CNN for pixelwise segmentation; DilatedNet drops
pool4 and pool5 from fully convolutional VGG-16 net-
work, and replaces the following convolutions with dilated
convolutions (or atrous convolutions), a bilinear upsam-
pling layer is added at the end.

We integrate the proposed cascade segmentation module
on the two baseline networks: SegNet and DilatedNet. We
did not integrate it with FCN because the original FCN re-
quires a large amount of GPU memory and has skip connec-
tions across layers. For the Cascade-SegNet, two streams
share a single encoder, from conv1 1 to conv5 3, while
each stream has its own decoder, from deconv5 3 to
loss. For the Cascade-DilatedNet, the two streams split
after pool3, and keep spatial dimensions of their feature
maps afterwards. For a fair comparison and benchmark pur-
poses, the cascade networks only have stuff stream and ob-
ject stream. We train these network models using the Caffe
library [15] on NVIDIA Titan X GPUs. Stochastic gradient
descent with 0.001 learning rate and 0.9 momentum is used
as optimizer, and we drop learning rate every 10k iterations.

Results are reported in four metrics commonly used
for semantic segmentation [19]: Pixel accuracy indicates
the proportion of correctly classified pixels; Mean accu-
racy indicates the proportion of correctly classified pix-
els averaged over all the classes. Mean IoU indicates the
intersection-over-union between the predicted and ground-
truth pixels, averaged over all the classes. Weighted IoU
indicates the IoU weighted by the total pixel ratio of each
class.

Since some classes like ‘wall’ and ‘floor’ occupy far
more pixels of the images, pixel accuracy is biased to reflect
the accuracy over those few large classes. Instead, mean
IoU reflects how accurately the model classifies each dis-
crete class in the benchmark. The scene parsing data and
the development toolbox will be made available to the pub-
lic. We take the average of the pixel accuracy and mean IoU

2http://sceneparsing.csail.mit.edu/

Table 2. Performance on the validation set of SceneParse150.
Networks Pixel Acc. Mean Acc. Mean IoU Weighted IoU
FCN-8s 71.32% 40.32% 0.2939 0.5733
SegNet 71.00% 31.14% 0.2164 0.5384
DilatedNet 73.55% 44.59% 0.3231 0.6014
Cascade-SegNet 71.83% 37.90% 0.2751 0.5805
Cascade-DilatedNet 74.52% 45.38% 0.3490 0.6108

Table 3. Performance of stuff and discrete object segmentation.
35 stuff 115 discrete objects

Networks Mean Acc. Mean IoU Mean Acc. Mean IoU
FCN-8s 46.74% 0.3344 38.36% 0.2816
SegNet 43.17% 0.3051 27.48% 0.1894
DilatedNet 49.03% 0.3729 43.24% 0.3080
Cascade-SegNet 40.46% 0.3245 37.12% 0.2600
Cascade-DilatedNet 49.80% 0.3779 44.04% 0.3401

as the evaluation criteria in the challenge.
The segmentation results of the baselines and the cas-

cade networks are listed in Table 2. Among the base-
lines, the DilatedNet achieves the best performance on the
SceneParse150. The cascade networks, Cascade-SegNet
and Cascade-DilatedNet both outperform the original base-
lines. In terms of mean IoU, the improvement brought by
the proposed cascade segmentation module for SegNet is
6%, and for DilatedNet is 2.5%. We further decompose the
performance of networks on 35 stuff and 115 discrete ob-
ject classes respectively, in Table 3. We observe that the
two cascade networks perform much better on the 115 dis-
crete objects compared to the baselines. This validates that
the design of cascade module helps improve scene parsing
for the discrete objects as they have less training data but
more visual complexity compared to those stuff classes.

Segmentation examples from the validation set are
shown in Fig. 7. Compared to the baseline SegNet and Di-
latedNet, the segmentation results from the Cascade-SegNet
and Cascade-DilatedNet are more detailed. Furthermore,
the objectness maps from the stuff stream highlight the pos-
sible discrete objects in the scenes.

4.2. Part segmentation

For part segmentation, we select the eight object classes
frequently annotated with parts: ‘person’, ‘building’, ‘car’,
‘chair’,‘table’, ‘sofa’, ‘bed’, ‘lamp’. After we filter out the
part classes of those objects with instance number smaller
than 300, there are 36 part classes included in the train-
ing and testing. We train the part stream on the Cascade-
DilatedNet used in the scene parsing.

The results of joint segmentation for stuff, objects, and
object parts are shown in Fig. 8. In a single forward pass the
network with the proposed cascade module is able to parse
scenes at different levels. We use the accuracy instead of the
IoU as the metric to measure the part segmentation results,
as the parts of object instances in the dataset are not fully
annotated. The accuracy for all the parts of the eight objects
is plotted in Fig.8.a The average accuracy is 55.47%.

4.3. Further applications

We show two applications of the scene parsing below:
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Figure 7. Ground-truths, segmentation results given by the networks, and objectness maps given by the Cascade-DilatedNet.
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Figure 8. Part segmentation results.

Automatic image content removal. Image content
removal methods typically require the users to annotate
the precise boundary of the target objects to be removed.
Here, based on the predicted object probability map from
Cascade-DilatedNet, we automatically identify the image
region of the target objects. After cropping out the target ob-
jects using the predicted object probability map, we simply
use image completion/inpainting methods to fill the holes
in the image. Fig. 9.a shows some examples of the auto-
matic image content removal. It can be seen that with the
predicted object score maps, we are able to crop out the ob-
jects from the image in a precise way. We used the image
completion technique described in [14].

Scene synthesis. Given an scene image, the scene pars-
ing network could predict a semantic label mask. Further-
more, by coupling the scene parsing network with the recent
image synthesis technique proposed in [23], we could also
synthesize a scene image given the semantic label mask.
The general idea is to optimize the code input of a deep im-
age generator network to produce an image that highly ac-
tivates the pixel-wise output of the scene parsing network.
Fig. 9.b shows two synthesized image samples given the se-
mantic label mask in each row. As comparison, we also
show the original image associated with the semantic label
mask.

person

tree

a)

b)

Figure 9. Applications of scene parsing: a) Automatic image con-
tent removal using the object score maps predicted by the scene
parsing network. The first column shows the original images, the
second column contains the object score maps, the third column
shows the filled-in images. b) Scene synthesis. Given annotation
masks, images are synthesized by coupling the scene parsing net-
work and the image synthesis method proposed in [23].

5. Conclusion

In this paper, we introduced a new densely annotated
dataset with the instances of stuff, objects, and parts, cov-
ering a diverse set of visual concepts in scenes. A generic
network design was proposed to parse scenes into stuff, ob-
jects, and object parts in a cascade.

Acknowledgement: This work was supported by Sam-
sung and NSF grant No.1524817 to AT. SF acknowledges
the support from NSERC. BZ is supported by Facebook
Fellowship.



References
[1] V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A

deep convolutional encoder-decoder architecture for image
segmentation. arXiv:1511.00561, 2015.

[2] S. Bell, P. Upchurch, N. Snavely, and K. Bala. OpenSurfaces:
A richly annotated catalog of surface appearance. ACM
Trans. on Graphics (SIGGRAPH), 32(4), 2013.

[3] S. Bell, P. Upchurch, N. Snavely, and K. Bala. Material
recognition in the wild with the materials in context database.
In Proc. CVPR, 2015.

[4] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and
A. L. Yuille. Deeplab: Semantic image segmentation with
deep convolutional nets, atrous convolution, and fully con-
nected CRFs. arXiv:1606.00915, 2016.

[5] X. Chen, R. Mottaghi, X. Liu, N.-G. Cho, S. Fidler, R. Ur-
tasun, and A. Yuille. Detect what you can: Detecting and
representing objects using holistic models and body parts. In
Proc. CVPR, 2014.

[6] U. o. I. a. U.-C. Computer Vision Group. Cross-category ob-
ject recognition. In http://vision.cs.uiuc.edu/CORE/, 2009.

[7] M. Cordts, M. Omran, S. Ramos, T. Scharwächter, M. En-
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