Cagdas Denizel Onal

Computer Science and Artificial Intelligence Lab Massachusetts Institute of Technology 32 Vassar St. 32-375 Cambridge, MA 02139

Phone: (412) 320-5178 Email: cagdas@mit.edu http://people.csail.mit.edu/cagdas/

Academic Background	
Postdoctoral Associate 2009 - Present	 Massachusetts Institute of Technology, Cambridge, MA, USA Computer Science and Artificial Intelligence Laboratory Research: <i>Flexible robotic systems</i>. Supervisor: Professor Daniela Rus Highlights: Soft robotics, printable robotics, fluidic elastomer actuators, chemical pressure generation, electropermanent magnet valves, bio-inspiration, iterative learning control, shape memory alloy actuators, characterization, image processing.
Ph.D. January 2009	 Carnegie Mellon University, Pittsburgh, PA, USA Department of Mechanical Engineering - Nanorobotics Laboratory GPA: 4.00 / 4.00 Dissertation: Atomic Force Microscope based Automated and Teleoperated Mechanical Micro/ Nano-manipulation. Advisor: Professor Metin Sitti Highlights: Atomic force microscopy, micro/nano-robotics, automation, bilateral control, adaptive control, passivity control, observer design, characterization, micro/nano-mechanics, image processing, visual servoing.
M.Sc. June 2005	 Sabanci University, Istanbul, Turkey Electrical Engineering and Computer Science - Mechatronics Program GPA : 3.78 / 4.00 Thesis: Bilateral Control - A Sliding Mode Control Approach. Advisor: Professor Asif Sabanovic Highlights: Bilateral control, sliding mode control, force control, constrained/free motion control, hybrid force/position control, decentralized control, model reference control, piezoelectric actuators.
B.Sc. June 2003	 Sabanci University, Istanbul, Turkey Electrical Engineering and Computer Science - Mechatronics Program GPA: 3.67 / 4.00 Graduation Project: Vision Based Control and Obstacle Avoidance of a Mobile Robot. Advisor: Professor Asif Sabanovic Highlights: Engineering electrical/mechanical design, embedded control, mobile robotics, image processing, visual servoing.
Awards	
January 2007 February 2004	Best Mechanical Engineering Ph.D. Qualifying Examination Performance Dean's Letter of Appreciation for T.A. Performance

June 2003Second rank, Class of 2003. Mechatronics Engineering Program, Sabanci University1999 - 2003Merit Scholarship

Research Interests	
Robotics	Soft robotics • Printable robotics • Novel actuators, sensors, and mechanisms • Energy a eration • Bio-inspired robotics • Image processing • Machine vision Nonlinear control • Embedded control • Teleoperation (bilateral control) • Sliding mode of trol • Iterative learning control
Control Theory	
Nano-Robotics	Scanning probe microscopy \bullet Micro/nano-scale physics \bullet Micro/nano-fabrication and assembly
Research Experience	
Postdoctoral Associate 2009 - Present	 Massachusetts Institute of Technology, Cambridge, MA, USA Soft Robotics Inherent safety and adaptability of a soft material, human interaction, rough terrain negotiation. Fluidic actuation of embedded channels to directly induce stresses in the elastomer. Pneumatic battery: on-board pressure generation using chemistry, self-regulated gas generation, silent operation, no electrical energy. Electropermanent magnet ball valves: Energy-efficient compact valves, embeddable in an elastomer. A family of fluidic robots: Modular composition, embedded sensors, actuators, valves, and control electronics. Printable Robotics Planar fabrication techniques to make functional 3-D devices. High speed, low cost using laser engraving or microfabrication techniques. Origami crease patterns to transform into 3-D by folding. A set of functional folds, as components of a robotic body. Shape memory coil actuation. Compact, high energy density, distributed actuation. Printable electronics.
Ph.D. 2005 - 2009	 Carnegie Mellon University, Pittsburgh, PA, USA <u>Stick-Slip Fibrillar Linear Actuator</u> Utilizing asymmetrical frictional properties of angled Gecko micro-fiber arrays. High force, high displacement range from an oscillating high-force, low-displacement piezoelectric actuator. <u>Automated 2-D Micro/Nano-Particle Manipulation and Assembly</u> An atomic force microscope (AFM) tip as the end-effector. Visual feedback for microparticles, force feedback for nanoparticles. First closed-loop manipulation of nanoparticles. Teleoperated 3-D Force Feedback from the Micro/Nano-Scale A scaled bilateral controller. Transparency, impedance reflection and stability issues taken into account.

Igmented virtual reality interface to compliment force feedback. First general experimental 3-D force feedback from the nanoscale.

M.Sc.	Sabanci University, Istanbul, Turkey
2003 - 2005	Bilateral Control - A Sliding Mode Control Approach
	• A reflex mechanism on the remote side.
	Inspired by the human nervous system, to react to forces quickly before they are fed back to operator.
	A force/position hybrid controller to seamlessly switch between constrained/free motions
	• A decentralized architecture as another approach.
	Applicable to cooperation/coordination of multiple sub-systems.
TEACHING	
EXPERIENCE	
Teaching Staff	Massachusetts Institute of Technology, Cambridge, MA, USA
Spring 2011	Robotics: Science and Systems
	 Sophomore level (50 students) Prepared and held lectures
Teaching	Carnegie Mellon University, Pittsburgh, PA, USA
Assistant	Stress Analysis
Spring 2007	• Sophomore level (100 students)
	• Held weekly office hours, conducted weekly recitation sessions, and proctored exams.
Spring 2006	Computer Aided Engineering
	• Graduate level (35 students)
	• Prepared weekly homework solutions. Held weekly office hours and homework problem
	solving sessions. Froctored exams.
Honors	
2003 - 2005	Officer – Sabanci University Graduate Student Association (SUMED)
2003 - 2005	Argentinean Tango Performer
2001 - 2002	Volunteer Teacher – Education Volunteers of Turkey (TEGV)
Technical	Founding Member of Sabanci University IEEE Student Branch
Reviewer	Journal of Micromechanics & Microeng • IEEE Transactions on Mechatronics • Journal of
	Micro-Nano Mechatronics • IEEE Transactions on Industrial Electronics • ASME Dynamic
	Systems Meas. & Control • IEEE Transactions on Control Systems Tech. • IEEE Int. Conf.
	on Robotics & Automation \bullet IEEE/RSJ Int. Conf. on Intel. Rob. and Sys. \bullet IEEE Conf.
	on Automation Sci. and Eng. \bullet IEEE/ASME Conf. on Adv. Intel. Mechat.
Skills &	
ABILITIES	
Programming	$C/C^{++} \bullet OpenGL \bullet OpenCV \bullet PERL \bullet AutoIt$
Software and	MATLAB • Simulink • Solidworks • ANSYS • Microsoft Visual Studio • Altium Designer •
Tools	AVR Studio • Arduino Windows 05 (08 /2000 / XD / 7 • (DTAI) Linux • Linis
Systems	windows $93/98/2000/AF/(\bullet (RIAI) Linux \bullet Unix$
Languages	Advanced English \bullet Basic German \bullet Native speaker of Turkish

PUBLICATIONS

.

Books		
	[1]	H. Xie, C. D. Onal, S. Regnier, and M. Sitti, <i>Atomic Force Microscopy based Nanorobotics</i> , Springer Tracts in Advanced Robotics (STAR) series, 71, 2011.
Book Chapte	ers	
-	[2]	C. D. Onal , O. Ozcan, and M. Sitti, "Automated Tip based 2-D Mechanical Assembly of Micro/Nanoparticles," <i>In Feedback Control of MEMS to Atoms</i> , 2011.
	[3]	C. D. Onal , O. Ozcan, and M. Sitti, "Atomic Force Microscopy based Nanomanipulation Systems" In Handbook of Nanophysics 2010
	[4]	A. Sabanovic, K. Abidi, and C. D. Onal, "Sliding Mode Control Application to Nano Positioners," In Advances in Variable Structure and Sliding Mode Control Series: Lecture Notes in Control and Information Sciences, 334, 2006.
Journal Arti	cles	
	[5]	C. D. Onal , R. J. Wood, and D. Rus, "An Origami-Inspired Approach to Worm Robots", <i>IEEE/ASME Transactions on Mechatronics</i> , 2011, Submitted.
	[6]	S. Seok, C. D. Onal, R. J. Wood, D. Rus, and S. Kim, "Meshworm: A Peristaltic Soft Robot with Antagonistic Nickel Titanium Coil Actuators," <i>IEEE/ASME Transactions on</i> <i>Mechatronics</i> 2011 Submitted
	[7]	C. D. Onal , O. Ozcan, and M. Sitti, "Automated 2-D Nanoparticle Manipulation using Atomic Force Microscopy," <i>IEEE Transactions on Nanotechnology</i> , 2011.
	[8]	C. D. Onal and M. Sitti, "Teleoperated 3-D Force Feedback from the Nanoscale with an Atomic Force Microscope," <i>IEEE Transactions on Nanotechnology</i> , Vol. 9, No. 1, pp. 46–54, Jan 2010
	[9]	B. Sumer, C. D. Onal, B. Aksak, and M. Sitti, "An Experimental Analysis of Elliptical Adhesive Contact," <i>Journal of Applied Physics</i> , Vol. 107, p. 113512, June 2010.
	[10]	F. Krohs, C. D. Onal, M. Sitti, and S. Fatikow, "Towards Automated Nanoassembly with the Atomic Force Microscope: A Versatile Drift Compensation Procedure," ASME Journal of Dunamic Systems, Measurement, and Control, Vol. 131, No. 6, p. 061106, November 2009.
	[11]	C. D. Onal and M. Sitti, "A Scaled Bilateral Control System for Experimental One- Dimensional Teleoperated Nanomanipulation," <i>International Journal of Robotics Research</i> , Vol. 28, No. 4, pp. 484–497, 2009.
	[12]	C. D. Onal, B. Sumer, and M. Sitti, "Cross-talk Compensation in Atomic Force Microscopy," <i>Review of Scientific Instruments</i> , Vol. 79, No. 10 p. 103706, October 2008.
	[13]	N. A. Lynch, C. D. Onal, E. Schuster, and M. Sitti, "Vision-based feedback strategy for controlled pushing of microparticles," <i>Journal of Micro/Nano-Mechatronics</i> , Vol. 4, No. 1-2, pp. 73–83, 2008.
	[14]	C. D. Onal and M. Sitti, "Visual Servoing Based Autonomous 2D Manipulation of Micropar- ticles using a Nanoprobe," <i>IEEE Transactions on Control Systems Technology</i> , Vol. 15, No. 5, pp. 842–852, 2007.
	[15]	A. Sabanovic, N. Sabanovic, and C. D. Onal, "Sliding Modes in Motion Control Systems," Automatika, Vol. 46, No. 1-2, pp. 17–27, 2005.
Conference		
Proceedings		
5	[16]	C. D. Onal and D. Rus, "A Modular Approach to Soft Robots," <i>IEEE International Con-</i> <i>ference on Robotics and Automation</i> , 2012. Submitted.
	[17]	A. D. Marchese, C. D. Onal, and D. Rus, "Soft Robot Actuators using Energy-Efficient Valves Controlled by Electropermanent Magnets," in <i>IEEE/RSJ International Conference on Intelligent Robots and Systems</i> , Sept 2011.

C. D. Onal, X. Chen, G. M. Whitesides, and D. Rus, "Soft Mobile Robots with On-Board [18]Chemical Pressure Generation," in International Symposium on Robotics Research, Aug 2011.

- [19] C. D. Onal, R. J. Wood, and D. Rus, "Towards Printable Robotics: Origami-Inspired Planar Fabrication of Three-Dimensional Mechanisms," in *IEEE International Conference on Robotics and Automation*, Shanghai, China, May 2011.
- [20] C. D. Onal, B. Sumer, O. Ozcan, A. Nain, and M. Sitti, "Tip based robotic precision micro/nanomanipulation systems," in Proc. of SPIE Vol. 8058 80580M-1, April 2011.
- [21] N. Corell, C. D. Onal, H. Liang, E. Schoenfeld, and D. Rus, "Soft Autonomous Materials

 Using Programmed Elasticity and Embedded Distributed Computation," in International Symposium on Experimental Robotics (ISER), New Delhi, India, December 2010.
- [22] S. Seok, C. D. Onal, R. J. Wood, D. Rus, and S. Kim, "Peristaltic locomotion with antagonistic actuators in soft robotics," *Proc. IEEE International Conference on Robotics and Automation*, pp. 1228–1233, Anchorage, AK, May 2010.
- [23] C. D. Onal, O. Ozcan, and M. Sitti, "Automated 2-D Nanoparticle Manipulation with an Atomic Force Microscope," Proc. IEEE International Conference on Robotics and Automation, pp. 1814–1819, Kobe, Japan, May 2009.
- [24] C. D. Onal, C. Pawashe, and M. Sitti, "A Scaled Bilateral Control System for Experimental 1-D Teleoperated Nanomanipulation Applications," Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 483–488, San Diego, CA, October 2007.
- [25] N. A. Lynch, C. D. Onal, E. Schuster, and M. Sitti, "A Strategy for Vision-Based Controlled Pushing of Microparticles," Proc. IEEE International Conference on Robotics and Automation, pp. 1413–1418, Roma, Italy, 2007.
- [26] C. D. Onal and M. Sitti, "Autonomous 2D Microparticle Manipulation based on Visual Feedback," Proc. IEEE/ASME International Conf. on Advanced Intelligent Mechatronics, pp. 1–6, Zurich, Switzerland, 2007.
- [27] C. D. Onal and A. Sabanovic, "Plant Behaviour Dictation using a Sliding Mode Model Reference Controller," *Proc. International Workshop on Advanced Motion Control (AMC'06)*, pp. 243–248, Istanbul, Turkey, March 2006.
- [28] C. D. Onal and A. Sabanovic, "Bilateral Control with a Reflex Mechanism on the Slave Side," Proc. Conference of the IEEE Industrial Electronics Society (IECON'05), pp. 195– 200, Raleigh, North Carolina, 2005.
- [29] C. D. Onal, K. Abidi and A. Sabanovic, "A Cascaded Sliding Mode Hybrid Force/Position Controller", Proc. IEEE Int. Symp. on Industrial Electronics (ISIE'05), pp. 183–188, Dubrovnik, Croatia, June 2005.
- [30] A. Sabanovic, S. Khan, and C. D. Onal, "Hybrid Motion Controller SMC Point of View", Proc. IEEE International Symposium on Industrial Electronics (ISIE'05), pp. 1483–1488, Dubrovnik, Croatia, June 2005.
- [31] A. Sabanovic and C. D. Onal, "Hybrid Control SMC Point of View", Proc. International Power Electronics Conference (IPEC'05), pp. 1815–1822, Singapore, 2005.

Theses

- [32] C. D. Onal, Atomic Force Microscope based Automated and Teleoperated Mechanical Micro/Nanomanipulation, PhD Thesis, Mechanical Engineering, Carnegie Mellon University, January 2009.
- [33] C. D. Onal, Bilateral Control: A Sliding Mode Control Approach, MSc Thesis, Electrical Engineering and Computer Science, Sabanci University, Turkey, July 2005.

Patents

[34] C. D. Onal, X. Chen, G. M. Whitesides, and D. Rus, "Self-Regulating Pressure Source", U.S. Patent App. No. 61479529.