

Optimal Fixed-Size Controllers for Decentralized POMDPs

Christopher Amato Daniel S. Bernstein Shlomo Zilberstein University of Massachusetts Amherst May 9, 2006

Overview

- DEC-POMDPs and their solutions
- Fixing memory with controllers
- Previous approaches
- Representing the optimal controller
- Some experimental results

DEC-POMDPs

- Decentralized partially observable Markov decision process (DEC-POMDP)
- Multiagent sequential decision making under uncertainty
 - At each stage, each agent receives:
 - A local observation rather than the actual state

DEC-POMDP definition

- A two agent DEC-POMDP can be defined with the tuple: $M = \langle S, A_1, A_2, P, R, \Omega_1, \Omega_2, O \rangle$
 - S, a finite set of states with designated initial state distribution b₀
 - A_1 and A_2 , each agent's finite set of actions
 - P, the state transition model: $P(s' | s, a_1, a_2)$
 - R, the reward model: $R(s, a_1, a_2)$
 - Ω_1 and Ω_2 , each agent's finite set of observations
 - O, the observation model: $O(o_1, o_2 | s', a_1, a_2)$

DEC-POMDP solutions

- A policy for each agent is a mapping from their observation sequences to actions, $\Omega^* \rightarrow A$, allowing distributed execution
- A joint policy is a policy for each agent
- Goal is to maximize expected discounted reward over an infinite horizon
- Use a discount factor, γ, to calculate this

Example: Grid World

States: grid cell pairs

Actions: move $\hat{1}, \mathbb{Q}, \Box, \Box$, stay

Transitions: noisy

Observations: red lines

Goal: share same square

Previous work

- Optimal algorithms
 - Very large space and time requirements
 - Can only solve small problems
- Approximation algorithms
 - provide weak optimality guarantees, if any

Policies as controllers

- Finite state controller for each agent i
 - Fixed memory
 - Randomness used to offset memory limitations
 - Action selection, $\psi : Q_i \rightarrow \Delta A_i$
 - Transitions, $\eta : Q_i \times A_i \times O_i \rightarrow \Delta Q_i$
- Value for a pair is given by the Bellman equation: $V(q_1,q_2,s) = \sum P(a_1 | q_1)P(a_2 | q_2)[R(s,a_1,a_2) +$

 $\gamma \sum_{s'} P(s'|s, a_1, a_2) \sum_{o_1, o_2} O(o_1, o_2 | s', a_1, a_2) \sum_{q_1', q_2'} P(q_1'|q_1, a_1, o_1) P(q_2'|q_2, a_2, o_2) V(q_1', q_2', s') \bigg]$

Where the subscript denotes the agent and lowercase values are elements of the uppercase sets above

Controller example

- Stochastic controller for a single agent
 - 2 nodes, 2 actions, 2 obs
 - Parameters P(a|q) P(q'|q,a,o)

Optimal controllers

How do we set the parameters of the controllers?

 Deterministic controllers - traditional methods such as best-first search (Szer and Charpillet 05)

 Stochastic controllers - continuous optimization

Decentralized BPI

- Decentralized Bounded Policy Iteration (DEC-BPI) - (Bernstein, Hansen and Zilberstein 05)
- Alternates between improvement and evaluation until convergence
- Improvement: For each node of each agent's controller, find a probability distribution over one-step lookahead values that is greater than the current node's value for all states and controllers for the other agents
- Evaluation: Finds values of all nodes in all states

DEC-BPI - Linear program

NEED TO FIX THIS SLIDE IF I WANT TO USE IT!

For a given node, q Variables: ε , $P(a_i, q_i'|q_i, o_i)$ Objective: Maximize ε $V(s, \bar{q}) + \varepsilon \leq \sum_{\substack{P(\vec{a} \mid \vec{a}) \ R(s, \bar{a}) + \gamma}} \sum_{\substack{P(\vec{q} \mid \vec{q}, \vec{a}, \vec{o}) P(s', |s, \vec{a}) P(\vec{o} \mid s', \vec{a}) V(s', \vec{q}') \ Improvement Constraints: <math>\forall s \in S, q_{-i} \in Q_{-i}$ $\sum_{i} x(q', a, o) = x(a)$

Probability constraints: $\forall a \in A$

Also, all probabilities must sum to 1 and be greater than 0

Problems with DEC-BPI

- Difficult to improve value for all states and other agents' controllers
- May require more nodes for a given start state
- Linear program (one step lookahead) results in local optimality
- Correlation device can somewhat improve performance

Optimal controllers

- Use nonlinear programming (NLP)
- Consider node value as a variable
- Improvement and evaluation all in one step
- Add constraints to maintain valid values

NLP intuition

- Value variable allows improvement and evaluation at the same time (infinite lookahead)
- While iterative process of DEC-BPI can "get stuck" the NLP does define the globally optimal solution

NLP representation

Variables:

 $x(\vec{q},\vec{a}) = P(\vec{a} \mid \vec{q}), \ y(\vec{q},\vec{a},\vec{o},\vec{q}') = P(\vec{q}' \mid \vec{q},\vec{a},\vec{o}), \ z(\vec{q},s) = V(\vec{q},s)$ Objective: Maximize $\sum b_0(s)z(\vec{q}_0,s)$

Value Constraints: $\forall s \in S, \ \vec{q} \in Q$ $z(\vec{q},s) = \sum_{\vec{a}} x(\vec{q}',\vec{a}) \left[R(s,\vec{a}) + \gamma \sum_{s'} P(s'|s,\vec{a}) \sum_{\vec{o}} O(\vec{o}|s',\vec{a}) \sum_{\vec{q}'} y(\vec{q},\vec{a},\vec{o},\vec{q}') z(\vec{q}',s') \right]$

Linear constraints are needed to ensure controllers are independent

Also, all probabilities must sum to 1 and be greater than 0

Optimality

Theorem: An optimal solution of the NLP results in optimal stochastic controllers for the given size and initial state distribution.

Pros and cons of the NLP

Pros

- Retains fixed memory and efficient policy representation
- Represents optimal policy for given size
- Takes advantage of known start state
- Cons
 - Difficult to solve optimally

Experiments

- Nonlinear programming algorithms (snopt and filter) sequential quadratic programming (SQP)
- Guarantees locally optimal solution
- NEOS server
- 10 random initial controllers for a range of sizes
- Compared the NLP with DEC-BPI
 - With and without a small correlation device

Results: Broadcast Channel

- Two agents share a broadcast channel (4 states, 5 obs , 2 acts)
- Very simple near-optimal policy

# nodes	BPI ind	BPI cor	NLP algs
1	4.687	6.290	9.1
2	4.068	7.749	9.1
3	8.637	7.781	9.1
4	7.857	8.165	9.1

mean quality of the NLP and DEC-BPI implementations

Results: Recycling Robots

mean quality of the NLP and DEC-BPI implementations on the recycling robot domain (4 states, 2 obs, 3 acts)

Results: Grid World

mean quality of the NLP and DEC-BPI implementations on the meeting in a grid (16 states, 2 obs, 5 acts)

Results: Running time

- Running time mostly comparable to DEC-BPI corr
- The increase as controller size grows offset by better performance

	# nodes	snopt	filter	DEC-BPI	DEC-BPI corr
Broadcast	1	1s	1s	< 1s	< 1s
	2	2s	3s	< 1s	2s
	3	14s	764s	2s	7s
	4	188s	4061s	5s	24s
	# nodes	snopt	filter	DEC-BPI	DEC-BPI corr
Recycle	1	1s	1s	< 1s	< 1s
	2	2s	4s	< 1s	1s
	3	26s	64s	1s	3s
	4	523s	635s	3s	10s
Grid	# nodes	snopt	filter	DEC-BPI	DEC-BPI corr
	1	3s	2s	1s	2s
	2	4s	5s	8s	31s
	3	54s	110s	39s	151s
	4	873s	2098s	118s	638s

Conclusion

- Defined the optimal fixed-size stochastic controller using NLP
- Showed consistent improvement over DEC-BPI with locally optimal solvers
- In general, the NLP may allow small optimal controllers to be found
- Also, may provide concise near-optimal approximations of large controllers

Future Work

- Explore more efficient NLP formulations
- Investigate more specialized solution techniques for NLP formulation
- Greater experimentation and comparison with other methods

