

Overview

- POMDPs and their solutions
- Fixing memory with controllers
- Previous approaches
- Representing the optimal controller
- Some experimental results

POMDP definition

- A POMDP can be defined with the following tuple: $\mathrm{M}=\langle S, A, P, R, \Omega, O\rangle$
- S, a finite set of states with designated initial state distribution b_{0}
- A, a finite set of actions
- P, the state transition model: $P\left(s^{\prime} \mid s, a\right)$
- R, the reward model: $R(s, a)$
$-\Omega$, a finite set of observations
- O, the observation model: $O\left(o \mid s^{\prime}, a\right)$
(1)

UNIVERSITY OF MASSACHUSETTS, AMHERST - Department of Computer Science ${ }_{4}$

POMDP solutions

- A policy is a mapping $\delta: \Omega^{*} \rightarrow A$
- Goal is to maximize expected discounted reward over an infinite horizon
- Use a discount factor, γ, to calculate this
(1)

UNIERSITY OF MASSACHUSETTS, AMHERST • Department of Computer Science

Previous work

- Optimal algorithms
- Large space requirement
- Can only solve small problems
- Approximation algorithms
- provide weak optimality guarantees, if any

Example POMDP: Hallway

Policies as controllers

- Fixed memory
- Randomness used to offset memory limitations
- Action selection, $\Psi: Q \rightarrow \Delta A$
- Transitions, $\eta: Q \times A \times O \rightarrow \Delta Q$
- Value given by Bellman equation:
$V(q, s)=\sum_{a} P(a \mid q)\left[R(s, a)+\gamma \sum_{s} P\left(s^{\prime} \mid s, a\right) \sum_{o} O\left(o \mid s^{\prime}, a\right) \sum_{q} P\left(q^{\prime} q, a, a\right) V\left(q^{\prime}, s^{\prime}\right)\right]$

Controller example

- Stochastic controller
- 2 nodes, 2 actions, 2 obs
- Parameters
- $P(a \mid q)$
- P(q'|q,a,o)

Optimal controllers

- How do we set the parameters of the controller?
- Deterministic controllers - traditional methods such as branch and bound (Meuleau et al. 99)
- Stochastic controllers - continuous optimization

IVERSITY OF MASSACHUSETTS, AMHERST - Department of Computer Science

Gradient ascent

- Gradient ascent (GA)- Meuleau et al. 99
- Create cross-product MDP from POMDP and controller
- Matrix operations then allow a gradient to be calculated

Problems with GA

- Incomplete gradient calculation
- Computationally challenging
- Locally optimal

UNIVERSITY OF MASSACHUSETTS, AMHERST - Department of Computer Science
UNIVERSITY OF MASSACHUSETTS, AMHERST - Department of Computer Science

BPI

- Bounded Policy Iteration (BPI) - Poupart \& Boutilier 03
- Alternates between improvement and evaluation until convergence
- Improvement: For each node, find a probability distribution over one-step lookahead values that is greater than the current node's value for all states
- Evaluation: Finds values of all nodes in all states

BPI - Linear procram

For a given node, q
Variables: $x(a)=\mathrm{P}(\mathrm{a} \mid \mathrm{q}), x\left(q^{\prime}, a, o\right)=\mathrm{P}\left(\mathrm{q}^{\prime}, \mathrm{a} \mid \mathrm{q}, \mathrm{o}\right)$
Objective: Maximize ε
Improvement Constraints: $\forall s \in S$
$V(q, s)+\varepsilon \leq \sum_{a}\left[x(a) R(s, a)+\gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) \sum_{o} O\left(o \mid s^{\prime}, a\right) \sum_{q^{\prime}} x\left(q^{\prime}, a, o\right) V\left(q^{\prime}, s^{\prime}\right)\right]$
Probability constraints: $a \in A \quad \sum_{q} x\left(q^{\prime}, a, o\right)=x(a)$
Also, all probabilities must sum to 1 and be greater than 0
(1)

UNIVERSITY OF MASSACHUSETTS, AMHERST - Department of Computer Science

Problems with BPI

- Difficult to improve value for all states
- May require more nodes for a given start state
- Linear program (one step lookahead) results in local optimality
- Must add nodes when stuck

QCLP optimization

- Quadratically constrained linear program (QCLP)
- Consider node value as a variable
- Improvement and evaluation all in one step
- Add constraints to maintain valid values

QCLP intuition

- Value variable allows improvement and evaluation at the same time (infinite lookahead)
- While iterative process of BPI can "get stuck" the QCLP provides the globally optimal solution

UNIERSITY OF MASSACHUSETTS, AMHERST - Department of Computer Science

Optimality

Theorem: An optimal solution of the QCLP results in an optimal stochastic controller for the given size and initial state distribution.

QCLP representation

Variables: $x\left(q^{\prime}, a, q, o\right)=\mathrm{P}\left(\mathrm{q}^{\prime}, \mathrm{a} \mid \mathrm{q}, \mathrm{o}\right), y(q, s)=\mathrm{V}(\mathrm{q}, \mathrm{s})$
Objective: Maximize $\sum b_{0}(s) y\left(q_{0}, s\right)$
Value Constraints: $\forall s \in S, q \in Q$
$y(q, s)=\sum_{a}\left[\left(\sum_{q^{\prime}} x\left(q^{\prime}, a, q, o_{k}\right)\right) R(s, a)+\gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) \sum_{o} O\left(o \mid s^{\prime}, a\right) \sum_{q^{\prime}} x\left(q^{\prime}, a, q, o\right) y\left(q^{\prime}, s^{\prime}\right)\right]$
Probability constraints: $\forall q \in Q, a \in A, o \in \Omega$

$$
\sum_{q^{\prime}} x\left(q^{\prime}, a, q, o\right)=\sum_{q^{\prime}} x\left(q^{\prime}, a, q, o_{k}\right)
$$

Also, all probabilities must sum to 1 and be greater than 0

UNIVERSITY OF MASSACHUSETTS, AMHERST - Department of Computer Science

Pros and cons of QCLP

- Pros
- Retains fixed memory and efficient policy representation
- Represents optimal policy for given size
- Takes advantage of known start state
- Cons
- Difficult to solve optimally

Experiments

- Nonlinear programming algorithm (snopt) - sequential quadratic programming (SQP)
- Guarantees locally optimal solution
- NEOS server
- 10 random initial controllers for a range of sizes
- Compare the QCLP with BPI

UNIVERSITY OF MASSACHUSETTS, AMHERST - Department of Computer Science

Results

- Computation time is comparable to BPI
- Increase as controller size grows offset by better performance

Machine

\# nodes	QCLP	BPI
1	$<1 \mathrm{~min}$	1.3 mins
2	$<1 \mathrm{~min}$	4.6 mins
4	7.9 mins	14.1 mins
6	42.4 mins	25.5 mins
8	57.5 mins	42.9 mins
10	130.8 mins	62.8 mins

UNIVERSITY OF MASSACHUSETTS, AMHERST - Department of Computer Science

Conclusion

- Introduced new fixed-size optimal representation
- Showed consistent improvement over BPI with a locally optimal solver
- In general, the QCLP may allow small optimal controllers to be found
- Also, may provide concise near-optimal approximations of large controllers

Future Work

- Investigate more specialized solution techniques for QCLP formulation
- Greater experimentation and comparison with other methods
- Extension to the multiagent case

UNIVERSITY OF MASSACHUSETTS, AMHERST - Department of Computer Science
UNIVERSITY OF MASSACHUSETTS, AMHERST - Department of Computer Science

