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Overview
 POMDPs and their solutions
 Fixing memory with controllers
 Previous approaches
 Representing the optimal controller
 Some experimental results

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST  MHERST  ••   Department of Computer Science Department of Computer Science 3

POMDPs

 Partially observable Markov decision process
(POMDP)

 Agent interacts with the environment
 Sequential decision making under uncertainty
 At each stage receives:

 an observation rather than the actual state
 Receives an immediate reward

Environment
a

o,r
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POMDP definition
 A POMDP can be defined with the

following tuple: M = 〈S, A, P, R, Ω, O〉
 S, a finite set of states with designated

initial state distribution b0

 A, a finite set of actions
 P, the state transition model: P(s'| s, a)
 R, the reward model: R(s, a)
 Ω, a finite set of observations
 O, the observation model: O(o|s',a)
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POMDP solutions
 A policy is a mapping δ : Ω* → A
 Goal is to maximize expected

discounted reward over an infinite
horizon

 Use a discount factor, γ, to calculate this
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Example POMDP: Hallway

   Minimize number of
steps to the starred
square for a given
start state
distribution

States: grid cells with
orientation

Actions: turn    ,   ,    ,
move forward, stay

Transitions: noisy

Observations: red lines

Goal: starred square
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Previous work
 Optimal algorithms

 Large space requirement
 Can only solve small problems

 Approximation algorithms
 provide weak optimality guarantees, if any
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Policies as controllers
 Fixed memory
 Randomness used to offset memory

limitations
 Action selection, ψ : Q → ΔA
 Transitions, η : Q × A × O → ΔQ
 Value given by Bellman equation:
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a1

a1

a2

o1

Controller example
 Stochastic controller

 2 nodes, 2 actions, 2 obs
 Parameters

 P(a|q)
 P(q’|q,a,o)

1 2

o20.5
0.5

0.750.25

o1

1.0

o2

1.0

1.0

o2

1.0

1.0
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Optimal controllers
 How do we set the parameters of the

controller?

 Deterministic controllers - traditional
methods such as branch and bound
(Meuleau et al. 99)

 Stochastic controllers - continuous
optimization
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Gradient ascent
 Gradient ascent (GA)- Meuleau et al. 99

 Create cross-product MDP from
POMDP and controller

 Matrix operations then allow a gradient
to be calculated
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Problems with GA
 Incomplete gradient calculation
 Computationally challenging
 Locally optimal
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BPI
 Bounded Policy Iteration (BPI) - Poupart & Boutilier

03

 Alternates between improvement and
evaluation until convergence

 Improvement: For each node, find a probability
distribution over one-step lookahead values
that is greater than the current node’s value for
all states

 Evaluation: Finds values of all nodes in all
states
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BPI - Linear program
For a given node, q
Variables: x(a)= P(a|q), x(q’,a,o)=P(q’,a|q,o)
Objective:  Maximize ε
Improvement Constraints: ∀s ∈ S

Probability constraints: a ∈ A

Also, all probabilities must sum to 1 and be
greater than 0
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Problems with BPI
 Difficult to improve value for all states
 May require more nodes for a given

start state
 Linear program (one step lookahead)

results in local optimality
 Must add nodes when stuck
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QCLP optimization
 Quadratically constrained linear

program (QCLP)
 Consider node value as a variable
 Improvement and evaluation all in one

step
 Add constraints to maintain valid values
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QCLP intuition
 Value variable allows improvement and

evaluation at the same time (infinite
lookahead)

 While iterative process of BPI can “get
stuck” the QCLP provides the globally
optimal solution

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST  MHERST  ••   Department of Computer Science Department of Computer Science 18

Variables: x(q’,a,q,o) = P(q’,a|q,o), y(q,s)= V(q,s)
Objective:  Maximize
Value Constraints: ∀s ∈ S, q ∈ Q

Probability constraints: ∀q ∈ Q, a ∈ A, o ∈ Ω

Also, all probabilities must sum to 1 and be
greater than 0

QCLP representation
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Optimality

Theorem: An optimal solution of the
QCLP results in an optimal stochastic
controller for the given size and initial
state distribution.

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST  MHERST  ••   Department of Computer Science Department of Computer Science 20

Pros and cons of QCLP
 Pros

 Retains fixed memory and efficient policy
representation

 Represents optimal policy for given size
 Takes advantage of known start state

 Cons
 Difficult to solve optimally
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Experiments
 Nonlinear programming algorithm

(snopt) - sequential quadratic
programming (SQP)

 Guarantees locally optimal solution
 NEOS server
 10 random initial controllers for a range

of sizes
 Compare the QCLP with BPI
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Results

(a) best and (b) mean results of the QCLP
and BPI on the hallway domain (57 states,
21 obs, 5 acts)

(a) (b)
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Results

(a) (b)

(a) best and (b) mean results of the QCLP
and BPI on the machine maintenance
domain (256 states, 16 obs, 4 acts)

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST  MHERST  ••   Department of Computer Science Department of Computer Science 24

Results
 Computation time is comparable to BPI
 Increase as controller size grows offset

by better performance

Hallway                                Machine
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Conclusion
 Introduced new fixed-size optimal

representation
 Showed consistent improvement over

BPI with a locally optimal solver
 In general, the QCLP may allow small

optimal controllers to be found
 Also, may provide concise near-optimal

approximations of large controllers
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Future Work
 Investigate more specialized solution

techniques for QCLP formulation
 Greater experimentation and

comparison with other methods
 Extension to the multiagent case


