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Abstract

Storage Area Networks (SAN) are based on direct inter-
action between clients and storage servers. This unmedi-
ated access exposes the storage server to network attacks,
necessitating a verification, by the server, that the client re-
quests conform with the system protection policy. Solutions
today can only enforce access control at the granularity of
entire storage servers. This is an outcome of the way stor-
age servers abstract storage: an array of fixed size blocks.
Providing access control at the granularity of blocks is in-
feasible – there are too many active blocks in the server.
Thus, the coarse granularity of entire servers is used. Ob-
ject stores (e.g., the NASD system [10]) on the other hand
provide means to address these issues. An object store con-
trol unit presents an abstraction of a dynamic collection of
objects, each can be seen as a different array of blocks, thus
providing the basis for protection at the object level.

In this paper we present a security model for the ob-
ject store which leverages on existing security infrastruc-
ture. We give a simple generic mechanism capable of en-
forcing an arbitrary access control policy at object granu-
larity. This mechanism is specifically designed to achieve
low overhead by minimizing the cost of validating an oper-
ation along the critical data path, and lends itself for op-
timizations such as caching. The key idea of the model is
to separate the mechanisms for transport security from the
one used for access control and to maximize the use stan-
dard security protocols when possible. We utilize a standard
industry protocol for authentication, integrity and privacy
on the communication channel (IPSec for IP networks) and
define a proprietary protocol for authorization on top of the
secure communication layer.
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1. Introduction

1.1. Security in Storage Area Networks

Storage area networks (SANs) place the storage servers
on the clients network and enable direct access to the stor-
age servers. This design aims at improving I/O performance
and system scalability of distributed file systems1 as it re-
moves the file-server from the critical data path. Further-
more, the file-server is no longer responsible for delivering
data; it mainly functions as a meta-data server that man-
ages, among other tasks, the system’s access control pol-
icy [10, 11, 12].

Letting clients interact directly with the storage servers
raises new security concerns: since it is the client who initi-
ates I/O requests, and not the file-server, the storage server
can no longer trust that every request received was autho-
rized by the file-server. In addition, placing the storage
servers as first class network entities exposes them to sim-
ilar types of attacks that only the file server faced before:
malicious parties forging messages or tampering with mes-
sage contents, replaying or recording messages, spoofing
user’s identity or denying service of valid requests. In order
to achieve a security level comparable to this of traditional
systems, the storage server has to take an active role in the
security mechanism of the system. The storage server has
to protect the integrity of the data it stores, specifically it
should verify that the meta data server (the file server in
its new role, sometimes called filemanager) has authorized
each request and that no adversary has tampered with any
request. Privacy, on the other hand, is optional, as it may be
achieved at the application layer (e.g., file-system) [2, 10].

SAN Security essentially does not exist today. The only
partial solutions use ’work arounds’ such as Zoning and
Fencing that are provided by the physical level in Fibre-
Channel SANs. At best, such solutions can enforce Logical
Unit (LU) access controls, at the granularity of ’all or noth-
ing’ for a particular LU.

1In this paper, we use only distributed file-systems for examples, but
our work equally applies to distributed database systems.
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1.2. Object Stores

The Object Store (ObS) [1, 10, 16] is a storage control
unit (a storage server) that exposes an ”object based” inter-
face. Unlike traditional storage control units that provide
interface to unrelated blocks of data, the object store virtu-
ally groups together data that is considered to be related by
the client2. The ObS keeps an internal mapping between
an object and its data disk blocks. The client can create
(and delete) object, and read or write data from arbitrary
offsets in the objects while being completely unaware of
the object actual layout on the disk. This abstraction al-
lows to provide protection at the granularity of objects, an
intermediate granularity between the “all or nothing LU ac-
cess”, which is too “coarse”, and the block level, which is
too “fine” (merely the number of blocks in the system pro-
hibits an effective definition of an access/protection policy
at the block level.)

An object based storage network is comprised of many
clients (e.g., hundreds) and many storage server (e.g., a few
dozen). In principal, every client can communicate with
every server in the network. In most realistic scenarios, the
network also contains a centralizedmeta data server. The
“critical data path” is the path between a client and storage
server on which most of the communication is done, both in
terms of volume and frequency.

1.3. Security Objectives

A viable security mechanism for object store networks
has to address the following issues:

• Enforcement of (arbitrary) application-specific access
control policies at object granularity3.

• Protection against network attacks.

• Maintain good performance and resource manage-
ment, primarily to minimize the performance penalty
in the critical path (client-server). Resources include
computational resources as well as message band-
width.

• Simple administration.

1.4. Proposed Solution

Our security model builds on the aforementioned system
topology. It assumes three types of functional entities: (i)
theAdminis an authorization server and its role is to set the

2An object can be thought of as a file while the ObS can be seen as a
flat-file system.

3We specifically exclude tasks that are related to the access control pol-
icy itself (such as the definition of such policy, consistency checking and
expressibility).

system access control policy and authorize client requests;
(ii) the ObSis a storage server and it is responsible for stor-
ing the data and allowing clients to manipulate it (via the ob-
ject interface); (iii) theclient, the “consumer” of the stored
data. As mentioned before, the system may contain many
ObS’es and many clients but only one logical Admin.

In our trust model, we assume that the Admin and the
ObS’es are trusted entities, but the clients are not. (Specifi-
cally, the Admin is trusted to authorize only valid requests,
the ObS is trusted not to tamper with the data it stores).
The network on which the system operates is not trusted,
namely threats like eavesdropping to the transmitted data,
actively tampering with the transmitted data, replaying mes-
sages and causing a denial of service should be considered.
Exact definition of the trust model and threats is given in
Section 2.1.

Our security mechanism iscredential based[10, 17]: to
access an object, a client needs to get a suitable credential
from the Admin. The Admin decides whether the client is
permitted to perform the requested operation (according to
the system protection policy), and if so it generates a cre-
dential that certifies these rights for the client. To perform
an action, the client sends the request and the credential to
the ObS. The ObS verifies the validity of the credential, and
allows the client to perform (only) the operations that the
credential certifies. This scheme is depicted in Figure 1.

The security mechanism is cryptographically hardened
against malicious clients: clients can neither forge valid cre-
dentials nor modify valid ones to gain unauthorized access.
Our solution requires that the underlying transport layer be
capable of authenticating (and in some cases encrypting)
communication lines. We then implement our authorization
protocol on top of the communication layer, taking advan-
tage of the authenticated links. In our implementation, the
transport layer is IP and we use IPSec to secure the links.
(Some of the modes of IPSec were proven to provide secure
channels in a standard communication model, e.g. [5, 6].
It should be possible to combine these proofs with ours to
show that the combination of our protocol over IPSec is
secure in a standard communication model.) A key idea
of our proposed solution is to separate the mechanisms for
transport security (which are relatively well understood, ac-
cepted and standardized) from the proprietary mechanism
used for access control. Separating the two mechanisms
provides opportunities to reduce the security performance
overhead by utilizing schemes as credential caches and ac-
celeration hardware (e.g., IPSec hardware), opportunities
which cannot be used if the two mechanisms are coalesced.
In addition the separation enables us to provide a unified
model for IP networks and other non-IP networks such as
Fibre-Channels. An important observation is that in our so-
lution, the server does not need to authenticate the client.
Furthermore, the fact that we rely on an authenticated chan-
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nel between the server and client is not relevant to the en-
forcement of access-control; it is only used to ensure mes-
sage integrity.

We stress that the system that we describe here isnot
a complete solutionin and of itself. For example, we do
not handle users authentication, or specify how the access-
control policy is managed. Rather, we focus on providing
the system with a flexible and powerful, yet simple, mecha-
nism for enforcing any access-control policy.

1.5. Related Work

The problem of protecting SANs in an untrusted envi-
ronment has received much attention lately. [15] provides
an excellent survey as well as a framework for this topic.
SAN security has been identified as a critical factor in the
success of such systems in the future. Two objectives are
typically sought: authentication and encryption of the data.

The earliest comprehensive discussion of security for
storage systems is the Cryptographic File System (CFS)
suggested by Matt Blaze [2]. This work is concerned with
protecting the data stored on an untrusted server via encryp-
tion on the server where the encryption is done by the file
system. Other system such as TCFS [7] have further ex-
tended this idea. Key management issues become critical in
such systems, mainly to allow data sharing; SFS [13] pro-
poses self-certifying pathnames to handle this problem.

Distributed file systems like AFS provide access con-
trol to their files through a Kerberos-based system which
requires a third trusted party to issue ’tickets’. H. Gobioff
[10] in his thesis and the Network Attached Secure Disk
architecture (NASD) system [11] base their access control
mechanism on basic capability cryptographic primitives,
which allow synchronous enforcement of security policy
with asynchronous involvement of the server. In this solu-
tion, client requests target directly the storage device which
can efficiently decide on the validity of the request, without
connecting to the file manager on every request. The ca-
pability primitive is composed of a private and public cre-
dential and uses MAC (Message authentication Code) com-
putation to prove authenticity rather than PKI-based signa-
tures. A comparison between the NASD solution and our
proposed solution is given in Section 3.2.5.

The Authenticated network-attached storage [17] pro-
vides an architecture which mutually authenticates the net-
work disks and clients. It is based on cryptographic one-
way hash functions, mainly for performance reasons, and
does not require additional key management schemes be-
sides existing authentication mechanisms within the system.
It is mainly concerned with determining the client’s access
rights.

We note that [10, 11], [17] as well as the solution pro-
posed in this paper address the question of how to control

access of clients to storage devices in an efficient way, while
involving the storage device in a minimal way. They do not
address, however, the question of data protection on the disk
which seems to be orthogonal.

In [14], a security system for network-attached storage
called SNAD is developed which stores and transfers en-
crypted data, and decrypts it only at the client. Despite the
extensive use of encryption, this system reports on a reason-
able overhead.

1.6. Outline of the Paper

Section 2 formally describes the network and trust model
and defines the security goal. Section 3 presents our solu-
tion for the object store based network security problem,
and outlines the proposed protocols; and Section 4 for-
mally proves the security of these protocols within our trust
model. In Section 5 we give a high level review of the sys-
tem design as well as some initial performance measure-
ments. Section 6 concludes.

2. Formal Model

At the heart of the system are two types of entities: many
clientsthat contact manyserversand request access to the
data stored on the servers in object form. The main goal is
to enforce the access control policy over the stored data, so
that only permissible requests are granted. The access con-
trol policy is specified and maintained elsewhere and is be-
yond the scope of this work. We assume that a central entity,
denoted by ’Admin’, either sets the access control policy or
has other means to find out whether a certain request is per-
missible. We envision the system in an environment which
is vulnerable to some types of network attacks, defined be-
low, and therefore need to design mechanisms against such
attacks.

More formally, letA be the Admin,c1, . . . , cn be the
set of clients ands1, . . . , sm the set of servers, where all
these entities communicate over some transport layer, IP
in particular. The clients initiate various requests, that are
sent to the servers for processing. We assume that the
ObS is “session-based” server, in the sense that a client
establishes a session with the ObS and sends its requests
within the session context. A typical request isR =
[ci, sj , IDobj , op, data(optional)] whereIDobj is the ob-
ject ID stored on thejth server andop is one of the al-
lowed operations. (In our case, one of{ Create, Delete,
Read, Write, Append, Truncate, GetMetaData, Format,
GetServerInfo}.)

The server’s response consists of a return code for the
operation and possibly some bytes of data. We assume that
the Admin can compute, on a given pair of client and object

3



Figure 1. A simplified look of the security model

(ci, IDobj), a vectorPerm(ci, IDobj) =
−→
P representing

the permissions of clientci on objectIDobj
4.

2.1. Threats and assumptions

We specify our trust model by explicitly stating what
an adversary can and cannot do. Roughly, the things that
the adversary can do correspond to threats that we need to
address, and the things that it cannot do correspond to as-
sumptions that we make on the environment in which our
solution is used. We view the network model as a point-to-
point communication network, connecting the various enti-
ties. We have three types of entities in our network model
(other than the adversary): Severs, clients and the Admin.

Serversare envisioned as trusted entities in the sense that
(1) data integrity on the servers is preserved (2) servers be-
have according to the specified protocol (3) upon validating
an authorized request the server properly performs the oper-
ation and, when applicable, sends the right data back to the
client. To model this assumption, we explicitly do not allow
the adversary to gain control of any of the servers (nor do
we allow it to introduce its own servers in the system).

Clients, on the other hand, are not trusted. Some of these
clients may in fact be written by the adversary, and others
may run on machines that were compromised. We model
this by letting the adversary gain control over clients at
wish: At any point in the attack, the adversary may “point
its finger” at a clientci, thereby gaining a complete control
over this client. This includes the ability to read the current
state ofci, as well as the ability to replace its code with a
code written by the adversary. We note that once the adver-
sary gains control over some client, it can inherently access
all the objects that this client can access. Our solution is
therefore geared towards preventing the adversary to access

4Similarly, the Admin is capable of determining the client permissions
for theFormatandGetServerInfooperations on a given server.

objects that are not available toany of the clients under its
control.

The Admin is a highly trusted application, runs on a se-
cured machine that is capable of storing long-lived keys;
it truthfully determines the access rights by computing
Perm(ci, IDobj). Again, we formalize this by not allowing
the adversary in our model to compromise the Admin.

Communication links. Since we build our solution over
IPSec, we assume that each pair of entities are connected
via anauthenticated channel. Namely, the adversary can-
not inject, duplicate, or modify the traffic on the links. All
the adversary can do is observe traffic on the network, and
use in an arbitrary way the links that are available to clients
under its control.5

For our solution, we also require that the links between
the Admin and the other entities aresecure channels, that
use IPSecwith encryption. In our model, we therefore de-
prive the adversary of the ability to read traffic that is sent
to and from the Admin. The adversary can only do traffic
analysis on these links (and potentially also block messages
on them). Of course, the adversary can still read messages
that are sent between the Admin and clients under the ad-
versary’s control.

Clients, machines, and links. In reality, the clients in our
system reside on various machines in some domain, and it
may happen that several clients reside on the same machine.
On the other hand, the IPSec protocol, which we use to im-
plement the authenticated/secure channels, can only estab-
lish channels between two machines. We therefore rely on
the operating system of the client machines to effectively
separate the different clients from each other, thereby mul-

5The adversary can potentially also block messages that are sent on
the links, thereby causing a denial-of-service situation. However, we will
make sure that blocking messages cannot help the adversary in getting ex-
tra permissions for objects.
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tiplexing the single machine-to-machine channel into sepa-
rate machine-to-client channels.

If a rogue client is able to compromise the separation
mechanism of the OS, we then must view the machine as
compromised and all the clients on this machine must be
viewed as if they are controlled by the adversary. In other
words, if an un-trusted code is run on a machine with weak
sandboxing capabilities, one must assume that everything
that happens on that machine is controlled by an attacker.
We comment that this issue does not arise for servers. For
one thing, we assume that the servers are trusted. Moreover,
all the applications that we foresee have each server run on
a separate machine.

Finally, we note that in our solution, we assume that the
Admin can authenticate the clients (and servers) in the sys-
tem6, but the servers do not need to authenticate the clients
(or even know who the clients are). In principle, we could
therefore weaken the model, assuming that the links be-
tween clients and servers areauthenticated but anonymous
(from the server’s point of view). Such links provide guar-
antee that all the messages arriving on the channel were sent
by the same party and arrive without modifications, but they
do not disclose the identity of that party. (In particular, this
party could be the adversary.)

Security goal. Our notion of security is defined by means
of a game that the adversary tries to win. An attack on the
protocol is a run of the system, in the presence of an ad-
versary, as described above. The adversary “wins” if at any
time during this run, one of the clients under its control was
granted access to an object, but of all the clients that the ad-
versary controlled at that point in the run, none of them had
permission for this access of that object.

Put in other words, at any point during an attack, the
adversary can trivially get the union of permission of all the
clients that it controls. It wins the game if at any point it
manages to get a permission that is not in that union. We
say that a protocol is secure is any feasible adversary has
only a negligible probability of winning.

Note that our analysis (and, in particular, the security
goal stated above) is aimed only towards guaranteeing the
security of the access granting mechanism. The analysis
does not explicitly address the integrity of the data on the
disk against malicious modifications, nor does it address the
authenticity of the data received over the link from the disk
server. This restriction is made in order to simplify and fo-
cus the analysis. Indeed, guaranteeing data integrity and
authentication, given a secure access-granting mechanism
as described here, is straightforward. (In our solution it is

6Namely, the Admin is capable of mutually authenticating every client
c ∈ {c1, . . . , cn} and servers ∈ {s1, . . . , sm} by some external mech-
anism, e.g. login/password or PKI certificates. The authentication mecha-
nism itself is outside the scope of this work.

done using IPSec.)

Two comments. Before concluding this section, we point
out that a somewhat stronger requirement from the proto-
col may be possible in principle. Namely, we can extend
the notion of a “win” for the adversary to include an event
in which one of the clients under its control was granted ac-
cess to an object, butthis clientdoes not have permission for
this access of that object. (Even if other clients that are con-
trolled by the adversary have this permission.) A more strin-
gent notion of security would require that even the probabil-
ity of such a “win” is still negligible. However, any protocol
that satisfies this more stringent definition would necessar-
ily disallow delegation of permissions: If clients are allowed
to delegate permissions to other clients, then a client that is
controlled by the adversary can delegate its permissions to
any other adversary-controlled client, thereby violating this
“more stringent” condition. By design, our protocol allows
delegation, so it does not meet the “more stringent” notion.
This choice also let us avoid the need for servers to authen-
ticate (or even recognize) the clients.

Finally, we comment that it is also possible to use a
simulation-based definition of security. In that approach,
one defines an “ideal world” that has an ideal access-control
functionality, and shows that anything that the adversary
can do in a run of the real protocol can also be done in this
“ideal world”. We suspect that in our case these two notions
coincide, but we did not check it.

3. Proposed Solution

3.1. Overview

Our system uses a credential based access control mech-
anism (see [10, 17]) to enforce the access control policy.
To access an object, the client must provide a credential is-
sued by the Admin. The credential serves as a capability,
in that it stores a list of operations that the client is allowed
to perform on a given object. The server can verify that the
credential was generated by the Admin, and that it has not
been altered.

However, if the credential was only a token expressing
capabilities, then anyone seeing the token could gain access
to the object. In particular, if the adversary could see the
token sent on the network, it could later use the same token
to access the same object. To prevent this, the Admin gen-
erates some additional secret information that is associated
with the token. The credential that the client receives from
the Admin (over a secure channel) contains both the token
and the associated secret information. The client sends only
the token to the server, and uses the secret information to
validate this token.
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Specifically, the token contains an “encryption” of a se-
cret keyK ′, under a keyKE that the server shares with the
Admin. The keyK ′ is the “additional secret information”
that is sent to the client over a secure channel. The client
forwards the token to the server, and appends to it a tag,
computed asMACK′(channel-name).7 The server can re-
coverK ′ from the public token and check that this token
indeed arrived on the right channel. This way, we ensure
that this token cannot be re-sent over other channels, unless
the sender knows the correspondingK ′ value.

There are three points worth noting about this solution.
First, the server does not need to authenticate the client, or
even to have any notion of “client identity”. It is sufficient
for the server to verify that whoever sits on the other side
of the channel has a valid token, and it is able to use theK ′

value hidden in that token to tie it to the channel.
Second, delegation is very easy to achieve here. To del-

egate a permission, all a client needs to do is to forward
both the token andK ′ to the intended recipient over a se-
cure channel. (To delegate just part of its permissions for an
object, the client must go to the Admin and ask for a token
containing only these permissions.)

Third, notice the way in which the authenticated channel
between the client and server is used. In fact, the reason that
the server-to-client direction is authenticated has nothing to
do with access-control. We just want to ensure that when
the server sends some data (e.g., in case of aread request),
this data is received unmodified by the client. The authenti-
cation in the client-to-server direction is essentially an anti-
replay mechanism. The protocol itself prevents copying the
token from one channel to another, and the authenticated
channel prevents the adversary from re-sending the token
of a good clienton the same channel. It also enables an
additional performance optimization, as we describe next.

Caches and credential expiration. To improve perfor-
mance, our solution utilizes two cache mechanisms: a client
cache and an ObS cache. On the ObS side, we use caching
to save some work on the server side. Once a token is val-
idated, the sever may cache the token and associate it with
the channel on which it arrived. Future requests that ar-
rive on this channel can be compared against the permis-
sions in this token, without having to re-validate it every
time. As the channel is authenticated, the server can trust
that the party on the other end remains the same through-
out, and there is no need to check its permissions again.
Of course, credentials may be removed from the cache at
any time (e.g., because of cache size limitations), so a client
must send the token and validation tag with every request.

On the client side, caching valid credentials reduces con-
nections to the Admin. Once a client receives a creden-

7The channel name is just a unique identifier that was chosen by the
server when this channel was created.

tial for some object(s), it can use this credential to perform
many operations on the object(s) without having to contact
the Admin. In order to reduce the computational load at the
client side, we utilize the fact that the channel-name does
not change throughout the session. Thus the client is re-
quired to re-authenticate (computes its tag) only once and
cache the tag along with the token that the Admin sent.

As we explained above, credentials are constructed using
shared keys between the Admin and the ObS. These keys
are refreshed periodically (e.g., once an hour), thereby caus-
ing all the credentials that depend on them to become in-
valid. Such credentials are then flushed from the ObS cache
and a client that tries to use an expired credential will get
a ”bad credential” error, forcing it to go to re-acquire the
credential from the Admin. (We remark that a client can-
not delegate the ability to get a credential from the Admin.
Therefore, when the credential expires, the client has to get
a new one from the Admin and re-delegate it.)

3.2. Detailed description

In the description below, we letEK(·) be an “encryp-
tion function”8andMACK(·) be a keyed message authen-
tication code. See Section 5 for some comments about the
implementations of these primitives.

3.2.1 Credential structure

The credentials are based on a set of keys that are shared
between the ObS servers and the Admin. For each server
sj , let KEj be an encryption key shared betweensj and
Admin, andKAj

be an authentication key shared between
them. When there is no ambiguity, we will omit the sub-
script and use the notation simplifiedKE andKA.

Let ci be a client, requesting the credential to operate on
an object with IDIDobj , which resides on serversj . Recall

that the vectorPerm(ci, IDobj) =
−→
P represents the per-

missions ofci on objectIDobj
9. As explained above, the

credentialC that the Admin issues for a client is comprised
of two components, a “public token”Cpub and a “secret ex-
tra information”Cpriv. When issuing a credential with per-

missions
−→
P to clientci for access of objectIDobj on server

sj , the Admin first picks anl-bits random stringK ′ (in our

8We put “encryption” in quotes, since in our implementationEK is a
deterministic function, and therefore cannot be seen as a secure encryption
by itself. Formally, this is a pseudorandom permutation. Nonetheless, we
will keep calling it “encryption”, as it gives better intuition for the role that
it plays in the protocol.

9For simplicity, we assume that object IDs are globally unique, other-
wisesj should be taken as an argument when calculating the permissions.
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Figure 2. Credential Structure: (a) Capability structure; (b) The credential the Admin sends to the
client. EKE

(K ′) is the credential secret ( K ′) encrypted with KE - the encryption key that the server
shares with the Admin; (c) the credential sent by the client to the ObS. The public token is accompa-
nied with a MAC tag, computed on the channel name ( ChID) using key K ′.

implementationl = 128). The Admin sets

Cpriv ← K ′

T ← [IDobj ,
−→
P , V er#, EKEj

(K ′)],
Cpub← [T, MACKAj

(T )]

and sends the credentialC = [Cpriv, Cpub] to clientci over a
secure channel.

(The fieldV er# is the version number of the keysKAj

andKEj
. This field is not essential for the correctness of

the credential, but makes the verification procedure at the
server more efficient.)

Notice that an “encryption” ofK ′ (under the shared key
between the server and Admin) is included in the public
part of the credential. It is the knowledge ofK ′ that lets the
server and client compute and test the tag value to validate
the credential. Figure 2 depicts the credential structure.

3.2.2 The Client – Admin Protocol

The protocol between the client and the Admin, depicted in
Figure 3(a), is rather straightforward:

1. The client asks for a capability (i.e. anIDobj and a
request)

2. The Admin verifies the clients permissions, generates
a credentialC as above, and sends it to the client.

Note that the credential contains the keyK ′, hence it must
be sent to the client over a secure channel. To establish
this channel (and also to let the Admin identify the client),
the client and the Admin should authenticate each other in
a preliminary step. This authentication is not part of the
protocol.

3.2.3 The Client – ObS Protocol

The protocol between the client and the ObS is depicted in
Figure 3(c). It consists of a handshake stage that established
aSecurity Window; once established, many requests/replies
are exchanged spanning multiple objects and credentials; fi-
nally the window closes. The scope of the security window
is related to the lifetime of the keysKE andKA - namely,
a window expires once new keys have been exchanged be-
tween the ObS and the Admin. The security window is also
confined to a single connection (IPSec connection for ex-
ample). The three parts are:

Part 1 - Open Security Window.

1. The client requests an ’open security window’ with the
ObS.

2. The ObS responds with a randomly chosenl-bit chan-
nel nameChID.

Part 2 - Request/Reply.

3. The client sends a request to the ObS along with
a public credentialCpub and a validation tagV =
MACK′(ChID).

4. Upon receiving a requestR, tokenCpub, and validation
tag V on channelChID, the ObS first verifies that
the permission vector

−→
P in the tokenCpub matches the

request. If not, the request is denied. If the permission
vector matches the request the ObS looks forCpub in
its cache, associated with this channel. IfCpub is found
in the cache, it grants the request.

If Cpub is not found in the cache, the server parses it

asCpub = [T,A], with T = [IDobj ,
−→
P , V er#, C]. It

then checks the following:
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Figure 3. Security protocols: (a) Client-Admin; (b) Admin-ObS protocol; (c) Client-ObS.

(a) The version numberV er# matches the authenti-
cation and encryption keys that it shares with the
Admin.

(b) The authentication tagA equalsMACKA
(T ).

(c) The validation tagV equalsMACK′(ChID),
whereK ′ is obtained asK ′ ← E−1

KE
(C).

If any of the checks fails, the request is denied. If all
of them pass, the servermaycache the tokenCpub, as-
sociated with channelChID.

Part 3 - Close Security Window

5. The client closes the security window with the ObS.

6. The ObS clears the security window cache and ac-
knowledges the request.

3.2.4 The ObS – Admin Protocol

This is the exchange protocol of the pair of keysKE and
KA over a secure (authenticated and secret) channel. The
protocol is depicted in Figure 3(b).

1. The Admin sends a new pair of keys to the ObS along
with their version number.

2. The ObS stores the new keys, and removes permissions
with the lowest key version.

In case no network communication between the Admin
and the Server is provided (Fiber Channel, for example),
it is possible to piggyback these keys, encrypted with a
shared key between the Admin and the server (or any other
method), on the credential itself. The client is then respon-
sible for sending a credential, along with the new version of
keysKE andKA, in an encrypted form.

3.2.5 Comparison with NASD and other credential-
based solutions

Our solution diverges from previously suggested credential-
based approaches such as [10] mainly in the fact that it
separates the transport layer security from the access con-
trol. In contrast, [10] utilizes the cryptographic creden-
tial granted by Admin to protect the transport layer via a
proprietary protocol to ensure message authentication and
no-replays, guarantees that are provided already if a se-
cure transport is used. Specifically, an exact comparison
of the two solutions shows that our solution can often avoid
any cryptographic (MAC) computation for credential vali-
dation, whereas in [10] at least one (for the request), some-
times two, MAC computations are required. In terms of
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communication complexity, our solution maintains a ’secu-
rity window’ which requires a handshake (two messages)
to establish; however, this window is long-lived so most re-
quests do not require to open a new window and therefore
result in a request/reply exchange similarly to [10]. Another
difference is that we rely on the transport layer mechanism
to provide the basic key management upon which keys for
credential generation and validation are generated; in con-
trast, key management is an integral component of a solu-
tion like [10] that is defined ’from scratch’.

4. Security of Protocol

To prove the security of our solution, we need to argue
that an adversary in our model cannot access objects other
than those that are permissible to clients under its control.
For that, we describe a reduction to the security of the un-
derlying primitives (EK and MACK). In this proof we
ignore the key-distribution mechanism between the Admin
and the other entities, and simply model these keys as ran-
dom and secret. We prove the following:

Lemma 1 Assume that there exists an adversary that
“wins” the security game (as described in Section 2) with
probability ε. Then at least one of the following two things
must hold.
(a) There exists an attacker that breaks the MAC algorithm
with probability at least min(ε/3M, ε/3N), whereM is the
total number of authentication keys that where exchanged
between the Admin and the servers, andN is the total num-
ber of credentials that the Admin generates in the run.
(b) There exists an attacker that distinguishes the “encryp-
tion” function from a random permutation with advantage
of at leastε/3N .

Proof: Recall that an adversary “wins” in a particular run
of the protocol, if at some point it is granted access to an
object, but this access is not in the union of permissions of
all the clients under the adversary’s control at this point in
the run.

Denote the set of clients that the adversary controlled at
the point when the “win” access was granted byCL∗, let
ChID∗ be the name of the channel on which the “win”
request arrived, and letsj∗ be the server that granted it. De-
note the token that was sent to the server along with the
“win” request by

C∗pub = [T ∗, A∗], where T ∗ = [ID∗
obj ,
−→
P ∗, V er#∗, C∗]

and denoteK∗ = DKE
(C∗) (whereKE is the shared en-

cryption key between the ObSsj∗ and the Admin, corre-
sponding to the version numberV er#∗).

By inspecting the Client–ObS protocol, we see that the
server would only grant a request on channelChID∗ if the

permission vector
−→
P ∗ matches the request, and the token

C∗pub has passed all the tests in Step 4, either at this request,
or at an earlier request on the same channel (whenC∗pub was
entered into the cache). Denote the validation tag that was
sent withC∗pub when it passed the test 4(c) byV ∗.

Looking at the history of the run up to this point, we
distinguish between two possible scenarios. We say that
this run is awin of type 1if a tokenCpub = [T ∗, A] with the
exact same valueT ∗ as inC∗pub was sent at an earlier point
in the run by some clientci /∈ CL∗ to sj∗. Otherwise, it is
awin of type 2. Since the probability of a win isε, we know
that either wins of type 1 happen with probability at least
2ε/3, or else wins of type 2 happen with probability at least
ε/3. The next two lemmas complete the proof.

Lemma 2 If wins of type 1 happen with probabilityδ, then
either there exists an attacker that breaks the MAC algo-
rithm with probability at leastδ/2N , or there exists an at-
tacker that distinguishes the “encryption” function from a
random permutation with advantage of at leastsδ/2N .

Lemma 3 If wins of type 2 happen with probabilityδ, then
there exists an attacker that breaks the MAC algorithm with
probability δ/M .

Lemma 3 is a bit easier to prove, so we start with it, and
then prove Lemma 2.
Proof sketch for Lemma 3: The intuition here is as fol-
lows: consider a run of the protocol in which the adversary
has a win of type 2. On one hand, since

−→
P ∗ matches the

“win” request, then it means that it includes some permis-
sion that none of the clients under the control of the adver-
sary has. Therefore, we know that the Admin never sent to
any of these clients the tokenC∗pub = [T ∗, A∗] (or any other
valid token with the sameT ∗ value), destined to serversj∗.
On the other hand, the adversary never saw any token with
the sameT ∗ value sent by any of the honest players tosj∗.
Thus, the adversary never saw a valid authentication tag for
T ∗ with respect to the appropriate authentication keyKAj∗ ,
and yet it was able to produce the valid tagA∗. This violates
the security of the MAC algorithm.

Translating this intuition into a formal proof is straight-
forward. The factor ofM in the lemma statement is due to
the fact that there are total ofM authentication keys, and
the adversary can win by breaking any of them.

Proof sketch for Lemma 2: Here the intuition is as fol-
lows: We know thatT ∗ appeared in a token that was sent
by an honest clientci to sj∗, so the admin must gaveT ∗ to
that client. Note that the Admin chooses all theK ′ values
in the tokens independently at random, and the adversary
never gets to see the internal memory ofci (or anything on
the channel betweenci and the Admin). Therefore, the only
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information that the adversary has aboutK∗ (which is “the
K ′ value insideT ∗”) was obtained by observing the chan-
nel betweenci andsj∗. And the only things on that chan-
nel that are related toK∗ are its “encryption”C∗, and the
validation tagV = MACK∗(ChID) (whereChID is the
name of the channel betweenci andsj∗).

Yet, from the fact thatT ∗ was used in a “win request”,
we learn that the validation tagV ∗ passed the test in step
4(c), namely,V ∗ = MACK∗(ChID∗). Now,ChID∗ and
ChID are the names of two different channels of server
sj∗, so ChID∗ 6= ChID, but still, the adversary could
come up with the valueV ∗. Thus, there are two options:
either the “encryption”C∗ leaks some information about
K∗ that is not leaked by a truly random permutation, or the
MAC function is broken, and the adversary can generate an
authentication tag forChID∗ from an authentication tag
for ChID.

Translating this intuition into a formal proof is not as
easy as for the other lemma. This can be done as follows:
We consider an “imaginary game” in which we run the ad-
versary against the following modified protocol: when the
Admin gets a request from clientci to serversj , it prepares
the credential in the same way, but instead of putting in the
tokenEKEj

(K ′), it puts thereEKEj
(K ′′), for some inde-

pendently chosenl-bit key K ′′. The Admin now sendsK ′

andCpub to both the clientand the server(over secret chan-
nels). When the server receives the tokenCpub from the
client, it ignores theK ′′ in that token, and instead uses the
key K ′ that it received directly from the Admin in order to
check the validation tagV .

We now ask what is the probability of a “type-1 win”
in this new game. If it is still more thanδ/2, we can
break the MAC algorithm, since now the adversary com-
putesMACK∗(ChID∗) from MACK∗(ChID) without
any other information aboutK∗. If, on the other hand, the
probability of “type 1 win” in the new game is less thanδ/2,
we could use theδ/2 difference between the win probabil-
ities in both games to distinguish the “encryption function”
EK(·) from a random permutation. The factorN in both
cases comes from the fact that there are total ofN creden-
tials that the Admin sends to honest clients, and the adver-
sary can win by breaking any of them.

5. Prototype Implementation

We implemented our proposed security mechanism for
Antara, IBM’s implementation of an ObS [1].Antara is a
“session-based” object store, in the sense that a client can
send its requests only within a context of a session that it
establishes with the server. Admissible requests areCreate,
Delete, Read, Write, Append, Truncate, andGetObjectInfo.
Antara provides the basic object store functionalities and

has a virtue that it is easily extensible. Utilizing the last
property, we extendedAntara’s basic client and server to
provide security according to our model. In addition, we
implemented a prototype of the Admin. Thus, the imple-
mentation is comprised of four different modules: the Ad-
min, the client security extension and the server security
extension, all using a core module the provides common
functionalities.

Our implementation is multi-platform and cryptographic
library independent: all modules can be used in Windows
and Linux user space. The client extension, can also be
used as a Linux kernel loadable module. In addition, any
cryptographic library that provides the required primitives
– AES block encryption [8] and HMAC-SHA1 [4] – can be
used.

Sections 5.1-5.4 describe the (high level) design of each
of the modules and discuss some implementation issues.
Section 5.5 provides preliminary experimental results.

5.1. The Admin

The Admin has two roles: (i) authenticating clients, au-
thorizing their requests according to the system protection
policy, and generating suitable credentials; (ii) refreshing
the ObS’s keys periodically (e.g., on an hourly basis). Since
the system protection policy and user authentication is out-
side the scope of this work we implemented only the cre-
dential generation facility and key refresh mechanism. We
implemented the Admin as a library that provides the afore-
mentioned functionalities, and which can be linked with any
conforming meta-data server.

5.1.1 Credential Generation

The Admin keeps a table that contains the current encryp-
tion key, authentication key and key version of each of the
ObSs in the system (see Section 3.2). Given an object ID, a
server id, and the permissible operation, the Admin gener-
ates the credential as follows:

1. Locate the server keys in the keys table.

2. Generate a capability in an host independent format.

3. Create a random stringK ′ of length 128 bits.

4. EncryptK ′ with the ObS encryption key.

5. Calculate a keyed MAC (using HMAC-SHA1) on the
concatenation of the capability and the encryption of
K ′ with the ObS authentication key.

6. Concatenate the capability, the encrypted secret, the
first 96 bits of the calculated MAC value, and the secret
itself, thus generating the credential.
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One implementation detail worth mentioning is the gen-
eration of the random stringK ′. This is done by defining
a random number generator from an AES function as fol-
lows: letKG be an AES key. The Admin generatesK ′ by
encryptingAESKG

(cnt++) wherecnt is a counter. Since
the Admin may generate a very large number of credentials
during its lifetime and each credential needs a unique string
K ′, a newKG is generated periodically (possibly at boot
time) whereKG is derived from a master secret AES key
KR, that isKG = AESKR

(time), where time is the num-
ber of seconds since Unix epoch.

5.1.2 Key exchange

The Admin provides key generation functionality (for both
encryption and authentication keys). It is the meta-data
server responsibility to send the new keys to the ObS. The
encryption key (128 bits long) is generated in the same way
a secret is generated, the HMAC-SHA1 key (160 bits long)
is generated by creating two secretes, concatenating them
and taking the first 160 bits.

The ObS accepts the sent keys only if they are accompa-
nied with a special key-exchange credential (not described
before in order to simplify the presentation). This credential
is cryptographically hardened using the ObS current keys.
The Admin also keeps a long lived set of authentication and
authorization keys with every ObS that are used for boot-
strapping: the first key-exchange request the ObS receives
is hardened with these long lived keys; this is the only use
of these long-lived keys.

We are currently considering a replacement for this
scheme which does not require the Admin to explicitly send
the keys to the ObS. Instead, the Admin and the ObS share a
secret that is used to calculate the new keys based on a seed
sent by the Admin10. The new scheme does not affect the
overall security of the system. However, it relaxes the re-
quirement on the channel between the Admin and the ObS
from an encrypted channel to an authenticated one.

5.2. The Client Security Extension

The client security extension is built on top of the “ba-
sic” ObS client. When a session is established with the ObS
it negotiates a “channel name” (see Section 3.1), thus open-
ing a security window. From this point on, the client pig-
gybacks on every message a public credential and a vali-
dation tag (see Section 3.1) that authorizes the request. In
order to reduce the computational overhead at the client, we
calculate the validation tag only once and cache it. Since
neither the “channel name” nor the credential secret change
throughout the session, the same validation tag can be used

10The calculation can be done in the same way the Admin generates
secrets using the seed instead of a counter

until the credential itself expires. Note that the same chan-
nel name is used for all the credentials that are transferred
on that channel. In this paper we do not distinguish the se-
curity window from the ObS session, Therefore we use the
terms ’security session’ and ’security window’ interchange-
ably.

5.2.1 Validating the Credential

To simplify the presentation above, we described the gener-
ation of the validation tag by applying the same MAC func-
tion as for the authentication tag (i.e., HMAC [4]). How-
ever, in the implementation we instead compute it as

V ← AESK′(ChID)

We note that since AES is assumed to be a pseudorandom
permutation, it is in particular a good MAC (for fixed-size
messages). The reason that we use AES rather than HMAC-
SHA1 is to save on key-size: AES keys are only 128 bits
keys, whereas HMAC-SHA1 keys are 160-bit long. Since
the public credential contains an “encryption” ofK ′ us-
ing AES, we need the size ofK ′ to be exactly one block.
Since the client calculates the validation tag only once for
every credential, the added cost of performing an AES block
encryption rather than HMAC calculation is practically in-
significant.

5.3. The ObS Security Extension

The ObS security extension is used by the ObS basic
server as a “request filter”. Before honoring any client re-
quest (except of opening or closing a session) the security
extension is asked to approve the request. The request is
performed only if the security extension approves it. Other-
wise, a ”request rejected” error response is sent back to the
client.

In order to authorize the client requests the security ex-
tension manipulates several tables:

Key table The extension stores the last 255 pairs of keys
sent by the Admin, however only the last two pairs received
are effective. The extension associates each pair with a key
version which is a cyclic 8 bits counter set by the Admin
(key version 0 is used for the bootstrapping keys - see Sec-
tion 5.1). Whenever a new pair of keys is received it over-
writes the previous content of the table and become, with
the last received pair, the new active keys. The server ac-
cepts credentials that were generated with the current key
and its predecessor. This is done in order to prevent conges-
tion at the Admin, as suggested in [10].
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Session table The security extension keeps a map be-
tween sessions and ”channel names”. When a client re-
quests to open a new session, the security extension gen-
erates a new name for this session and store it in the table.
The “channel name” (see Section 3.1) is generated by con-
catenating a 4 bytes counter with the last time the counter
had value 0 (happens when the system boots and every time
the counter cycles) and sends it to the client.

5.3.1 Credential Verification

A credential is verified in the following manner:

1. Verify that the credential contains enough permissions
for the requested operation.

2. Verify that the credential’s key version is active.

3. Perform cache lookup to find if a credential containing
the required permissions was already verified.

4. Find the keys that were used to generate the credential
according to the credential key version.

5. Compute the HMAC-SHA1 value of the public creden-
tial (without the MAC field) using the found authenti-
cation key and compare the first 96 bits with the public
credential MAC value.

6. locate the session’s “channel name” in the session ta-
ble.

7. Decrypt the credential secret using the found encryp-
tion key; encrypt “channel name” with the credential
secret and comparing the result with the validation tag.

In case of failure in any of the phases (except phase 3)
the request is rejected. If the lookup in phase 3 succeeds,
the request is authorized, and the verification process termi-
nates. Note that the cache lookup is done after the extension
verifies that the credential permits the requested operation
and that the credential is still valid. This is done in order to
provide protection against erroneous requests (the client is
expected to send a valid credential with each request).

5.3.2 Credential Cache

The credential cache is used to speed up the verification pro-
cess by caching verified credential for each session. The
cache is implemented as two separate caches - one for each
active key version. Each table contains a subset of the cre-
dentials that were successfully verified using its associated
key version. When keys are replaced, the table associated
with the key version that becomes obsolete is cleared, and
then associated with the new key version.

Each of the two “key version” caches is comprised of an
ObS credential cache and object credential cache:

The ObS credential cache. The ObS credential cache
contains for each session the operations it is authorized
to perform on the entire ObS or on every object (in other
words, the permissions incorporated in credential of type
“entire server credential” that the client presented, see Sec-
tions 3.1 and 5.4).

The object credential cache. The object credential cache
contains for each session the operations it was authorized
to perform on specific objects. It is implemented based
on the marker algorithm [9]. Every cache line contains a
(bounded) map of sessions to permissions pertaining to sin-
gle object ID. The “map” is organized in a LRU manner.
Thus, when it overflows, the session that did not use the
object for the longest time is ejected from the cache. In or-
der to find the cache line with the request object ID in an
efficient way, we keep a map of object IDs to cache lines
implemented by a hash table.

5.4. Miscellaneous

Wildcard Credentials. So far we defined credentials to
contain a permission for an object specific operation. Our
system actually allows a more general type of credentials,
thewildcard credentials. These credentials provide permis-
sions for an entire Object Server e.g.,Format. Also sup-
ported are ”super-user” credentials, that provide a permis-
sion on an entire ObS and effectively authorizes its owner to
perform the operation, e.g., read, on any object in the ObS.
To distinguish between “regular” credentials and credential
containing “wildcards” we use add a ”type” field for each
credential.

Security Windows. Our implementation utilizes the
session-based nature of our object store, namely that the
client has to establish a session with the ObS in order to
send requests. Hence, the security window is build upon the
object-store session and adds the necessary cryptographic
parameters to the already existing messages.

Cryptographic Primitives. Our implementation utilizes
two main cryptographic primitives, the AES and SHA1.
For that, we use the RSA BSafe-C6.0 cryptographic li-
brary [18].

5.5. Experimental Results

In order to estimate the performance overhead of the se-
curity mechanism we ran some initial tests to measure the
cost of generating and verifying a credential. We intention-
ally do not measure the costs of IPSec in our experiments
since we expect that in the near future IPSec stack process-
ing would be offloaded to hardware. Running our prototype
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implementation on a Pentium-4 2.0Ghz with 1GB memory
running Linux RedHat with kernel version 2.4.18, we were
able to:

• Generate 21,000 credentials in a second.

• Verify 20,000 credentials in a second (without a
cache).

Our experimentation shows that the credential cache im-
prove the performance by up to a factor of 50, depending on
the cache hit ratio.

6. Conclusions

We have described our design and implementation of a
security mechanism for an object store. Our security mech-
anism, which separates the security of the transport from the
access control enforcement, can be applied to both Fibre-
Channel and IP networks and as such is novel.

We are currently conducting performance tests of our
implementation. Preliminary performance measurements
demonstrate that while work is still required, the security
overhead is reasonable and does not degrade the I/O per-
formance substantially. Further optimization is needed in
caching strategies, key refresh strategies (to avoid conges-
tion at the Admin) and possibly richer credentials.

The use of object stores instead of traditional block-
based storage devices is a paradigm shift. We believe we
are now at the point where the ability to leverage the bene-
fits of an object store justifies the cost of the shift. Security
and its performance is a key aspect in that sense.
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