
Bandwidth Allocation with Preemption�

Amotz Bar-Noyy Ran Canettiz Shay Kuttenx Yishay Mansour{ Baruch Schieberk

April 13, 1997

Abstract

Bandwidth allocation is a fundamental problem in the design of networks where

bandwidth has to be reserved for connections in advance. The problem is intensi�ed

when the overall requested bandwidth exceeds the capacity and not all requests can

be served. Furthermore, acceptance/rejection decisions regarding connections have to

be made online, without knowledge of future requests. We show that the ability to

preempt (i.e., abort) connections while in service in order to schedule \more valuable"

connections substantially improves the throughput of some networks. We present band-

width allocation strategies that use preemption and show that they achieve constant

competitiveness with respect to the throughput, given that any single call requests at

most a constant fraction of the bandwidth. Our results should be contrasted with re-

cent works showing that non-preemptive strategies have at most inverse logarithmic

competitiveness.

�An extended summary of this work appears in the proceedings of the 27th ACM Symp. on Theory of

Computing, pages 616{625, 1995.
yElectrical Engineering Department, Tel Aviv University, Tel Aviv, Israel. Email: amotz@eng.tau.ac.il.

Research of this author was supported in part by a grant of the Israeli Ministry of Science and Technology.

Part of this work was done while the author was at IBM Research Division, T.J. Watson Research Center.
zIBM Research Division, T.J. Watson Research Center, Yorktown Heights, NY.

Email: canetti@watson.ibm.com. Part of this work was done while the author was at Laboratory of Com-

puter Science, MIT, and supported by the American-Israeli Binational Science Foundation grant 92-00226.
xDept. of Industrial Engineering, Technion, Haifa, Israel. Email: kutten@ie.technion.ac.il. Part of

this work was done while the author was at IBM Research Division, T.J. Watson Research Center.
{Computer Science Department, Tel Aviv University, Israel. Email: mansour@cs.tau.ac.il. Research

of this author was supported in part by The Israel Science Foundation administered by The Israel Academy

of Science and Humanities and by a grant of the Israeli Ministry of Science and Technology.
kIBM Research Division, T.J. Watson Research Center, Yorktown Heights, NY

Email: sbar@watson.ibm.com.

1 Introduction

Bandwidth allocation is one of the most important problems in the management of networks

that have guaranteed bandwidth policy (e.g., ATM [5], PARIS [9], IBM BBNS [10]). In such

networks the application has to reserve in advance su�cient bandwidth for its communi-

cation. The guaranteed bandwidth policy is contrasted with the more traditional policy

(e.g., TCP/IP), where information packets are routed as they come to the network with-

out prior knowledge about the connections. The advantages of the guaranteed bandwidth

policy are many. For instance: (i) Bounded latency for real-time tasks. (ii) Fairness, e.g.,

one user cannot overtake the entire network resources. (iii) Simple pricing; the application

can be charged for the bandwidth it allocated. The major drawback of the guaranteed

bandwidth policy is ine�ciency: the communication links may be under-utilized. Thus, a

\good" bandwidth allocation strategy is crucial for such networks.

The bandwidth allocation problem becomes more di�cult in view of the large variety

of di�erent applications that use the network simultaneously. These applications have very

di�erent requirements in terms of bandwidth, duration, delay, information loss, etc. Fur-

thermore, since the communication volume may be much larger than bu�er space, decisions

regarding current requests cannot be delayed and have to be made without knowledge of

future requests. The problem is further intensi�ed when the available bandwidth cannot

accommodate all requests for bandwidth, and some have to be rejected.

In this context it is natural to consider the possibility of \softening" the rigidity of

the guaranteed bandwidth policy by allowing preemption (i.e., abortion) of connections in

service, in order to schedule \more valuable" connections that would otherwise be rejected.

Preempting a connection has obvious disadvantages: all the work that was done so far

may be lost, and the transmission, in some applications, has to start again later. However,

the ability to preempt certain types of connections as a policy may greatly improve the

performance of the network. Understanding the power of preemption in this context may

shed new light on the value of the guaranteed bandwidth policy.

Indeed, some types of connections should never be preempted (e.g., phone calls). How-

ever, there exist other scenarios where preemption is acceptable, and even essential. For

instance, a high priority (say, real-time) connection should be allowed to preempt a low pri-

ority connection. (See [18] for an implementation of a channel where this type of preemption

is used.) Another case is preempting other connections of the same user [19] or of di�erent

users based on a pricing model [21]. The willingness of users to communicate over pre-

emptable, low priority, connections would depend on the price discount they would receive,

compared to a non-preemptable connection. Our work shows that preemptable connections

1

allow far better utilization of the network, and thus may be charged at a considerably lower

rate.

In this work, we concentrate on preemption as a tool for enhancing the throughput,

or the utilization, of the network. We develop various preemption strategies (specifying

when and which connections to preempt) for maximizing the throughput of connections

that eventually complete. Our strategies perform provably and signi�cantly better (in terms

of throughput) than any non-preemptive strategy for bandwidth allocation.

We study two models for bandwidth allocation. The �rst one is a single link, where

requests for connections (or calls) arrive one by one as time proceeds; each call has dura-

tion and bandwidth requirements (speci�ed in advance). Requests have to be either served

immediately or rejected (for example, due to limited bu�er space). This model is an abstrac-

tion of a single virtual path in an ATM network that has a single entry and exit. A virtual

path in an ATM network serves as a \highway" that is used by many virtual circuits (i.e.,

connections) simultaneously. The bandwidth of the virtual path has to be divided among

the various virtual circuits. The second model is a line of processors where each connection

has source, destination and required bandwidth. Here we assume that all requests are for

permanent connections (or, alternatively, that all calls arrive at the same time, in some

arbitrary order, and have the same duration). This model can be viewed as an abstraction

of a virtual path with multiple entries and exits.

As suggested by the online nature of the problem (decisions on current requests are

made without knowledge of future requests), we use competitive analysis to measure the

performance of bandwidth allocation algorithms. We de�ne the performance of a bandwidth

allocation algorithm on a sequence of requests as the throughput of completed calls (i.e.,

calls that are neither rejected or preempted). This throughput can be measured as the sum,

over completed calls, of the duration times the bandwidth requirement; or equivalently

as the integral over time of the bandwidth used by calls that eventually complete. The

competitiveness of an algorithm is the in�mum over all request sequences of the ratio of

the performance of the algorithm to the performance of the best (o�ine) schedule for this

sequence.

The competitiveness of our algorithms depends only on �, the ratio between the largest

bandwidth requested by a single call and the capacity of the line. We note that whereas the

capacity of the network can be arbitrarily large, the ratio � is typically a constant smaller

than one. In both models we achieve constant competitiveness if � is a constant smaller

than one. We contrast our results with the fact that non-preemptive bandwidth allocation

strategies have logarithmic competitiveness. (We elaborate on this point in the sequel.)

Our algorithms are simple and e�cient, however surprising and non-intuitive at �rst.

2

They suggest the following approach to bandwidth allocation: in deciding which calls to

reject or preempt, the algorithms consider only the duration of a call and the time which

a call in service has been already running, completely ignoring the throughput of calls. In

particular, a call with very large throughput may be preempted in order to make room

for a call with longer duration and much smaller throughput. Still, our algorithms achieve

constant competitiveness (if � is bounded away from one), where more straightforward

strategies fail.

We show that our algorithms have optimal competitiveness, up to a small constant, for

all values of �. Furthermore, we show that: (i) Deterministic algorithms have very poor

competitive ratio if a single call may request the entire bandwidth (that is, if � = 1). (ii)

In the line model, if we let calls have arbitrary duration, and let � be more than half, then

constant competitiveness cannot be achieved by any deterministic algorithm. (Bounds on

the competitiveness of randomized preemptive bandwidth allocation algorithms in this and

related models are shown in [8].)

We also consider a special case of the single link model where all calls have identical

bandwidth, which is 1=k of the capacity of the link for some integer k. This model can be

visualized as k parallel links, each of unit capacity. Even for this restricted model, called

the parallel links model, we show that any deterministic online algorithm has a competitive

ratio of at most 0.66 (the bound holds for all k). The parallel links model is closely related

to online preemptive task scheduling under overload [7, 6, 14, 15, 22, 20]. Our impossibility

result applies to this problem as well.

Our work extends previous work of Garay and Gopal [12], and Garay et al. [13]. These

papers also consider online bandwidth allocation with preemption on networks with line

topology. However, they greatly simplify the model by assuming that the bandwidth re-

quirement of each call is equal to the bandwidth of the links (and thus, in particular, only

one call can be served at a time).

Considerable work has been recently done on non-preemptive online bandwidth alloca-

tion (also referred to as call control); we mention here only some of this work. In [2] (and

also [1]) the problem of non-preemptive online bandwidth allocation and virtual circuit rout-

ing on an arbitrary network was considered. Under the assumption that no call may request

more than a logarithmic fraction of the bandwidth, Awerbuch, Azar and Plotkin [2] and

Awerbuch et al. [1] presented a strategy with competitiveness inversely proportional to the

logarithm of the size of the network times the ratio between the largest and smallest value of

a call, and proved that no online strategy has better performance. Randomized algorithms

for non-preemptive call control on tree-like networks are given in [3], where competitiveness

inversely logarithmic in similar parameters is shown with matching impossibility results.

3

Other topologies are considered in [4] with similar results. Lipton and Tomkins [16] consid-

ered non-preemptive online \interval scheduling" in a model similar to our line model. They

achieved slightly worse than logarithmic competitive ratio and showed that no online algo-

rithm can achieve a logarithmic competitive ratio. In summary, whenever preemption is not

allowed the \logarithmic barrier" seems to be unbreakable, even by randomized algorithms.

Finally, we remark that Faigle and Nawijn [11] also showed that preemption is a useful

tool. They considered the special case in which all calls have identical bandwidth. However,

their goal was to minimize the number of rejected calls (while our goal is to maximize the

utilization). They described an optimal deterministic online algorithm (competitiveness

1) when preemption is allowed whereas it was known before that without preemption no

algorithm with constant competitiveness exists .

Organization. In Section 2 we introduce the single link model and de�ne bandwidth

allocation algorithms in this model. In Section 3 we describe our algorithms for the single

link model. In Section 4 we introduce the line model and show how our algorithms can be

adapted to this model. In Section 5 we demonstrate the optimality of our algorithms.

2 The single link model

Consider a communication link with bandwidth capacity B (where B may be very large).

A call is a connection established between the two endpoints of the link. Each call c is

characterized by the bandwidth required bc, the request issue time tc, and the duration dc

(known in advance). Let ec
def
= tc + dc be the ending time of a call c. For simplicity we

assume that the time is discrete. Our convention is that the minimum bandwidth requested

by a call is 1. Let � denote the maximum fraction of the capacity used by a single call. We

have 1
B � � � 1.

The requests arrive one by one in an online fashion. A request for a call c can be

either served immediately or rejected. The algorithm may preempt (i.e., stop, or abort)

calls during service. The operation of the algorithm run by the control center can thus be

described as follows. Upon a request for a call c, if serving c does not violate the bandwidth

capacity of the link, then serve c. Otherwise, either reject the request, or preempt some

calls that are currently being served so that call c can be served within the capacity of the

link.

Let the throughput of a call c, denoted by vc, be its bandwidth times its duration, i.e.

vc = bc � dc. Once a call is completed, a value equal to the throughput of the call is gained.

No gain is accrued for preempted calls. Note that the throughput of a completed call is a

4

measure for the amount of information contained in it.

We use competitive analysis to measure the performance of our bandwidth allocation

algorithms. The competitive ratio of an algorithm is the in�mum over all possible request

sequences, of the total throughput of the algorithm on a sequence divided by the total

throughput of the best (o�ine) algorithm on this sequence. More formally, for a sequence

S = c1; : : : ; cn of call requests, let the bandwidth requested by S at time t be

~BS(t)
def
=

X
fc2Sjt2[tc:::tc+dc]g

bc:

We say that S is feasible if ~BS(t) � B for all times t. Let the cover of a sequence S be

V (S)
def
=
P

tBS(t), where BS(t)
def
= minfB; ~BS(t)g. If S is feasible then we say that V (S)

is the throughput of S (that is, the cover equals the throughput). Note that if S is feasible,

then V (S) =
P

c2S vc.

For an algorithm A and sequence S, let A(S) � S be the sequence of calls completed

by A on input S. (We use S0 � S to denote that S0 is a subsequence of S). Algorithm A
is a valid bandwidth allocation algorithm if for any sequence of requests S, A(S) is feasible.

Algorithm A is �-competitive if

� � inf
S

min
fS0�SjS0 feasibleg

V (A(S))

V (S0)
:

Note that 0 � � � 1, and the closer � is to one the better the algorithm performs.

Remark: Say that algorithm A is strongly �-competitive if

� � inf
S

V (A(S))

V (S)
:

Since the link cannot serve more than B bandwidth at any given time, the cover is an upper

bound on the throughput of any feasible subsequence of S. Thus, any strongly �-competitive

algorithm is also �-competitive. We show that our algorithms are strongly competitive.

3 Bandwidth allocation on a single link

We present two algorithms for bandwidth allocation on a single link. The �rst algorithm,

called the \left-right" (LR) algorithm is 1�2�
2 -competitive for � < 1

2 . The second algo-

rithm, called the \e�ective time" (EFT) algorithm, is 1��
4 -competitive for all � < 1. For

� > 1
3 algorithm EFT has better competitiveness, whereas for � < 1

3 algorithm LR has

better competitiveness. In particular, for very small values of �, the LR algorithm is about
1
2 -competitive. (In Section 5 it is shown that for small � no algorithm can have a bet-

ter competitive ratio than 0.66.) We stress that although B can be arbitrarily large, the

5

Bandwidth

Time
c

t c t + dc c

bc

B

Figure 1: A geometric representation of calls on a single link.

fraction � is typically a constant smaller than one. Thus our algorithms typically have con-

stant competitiveness. Furthermore, our algorithms do not depend on �. Therefore, their

performance on any request sequence depends on the � fraction of this particular sequence.

Our algorithms, however simple, may seem surprising and non-intuitive at �rst. In

particular, they consider only the duration of a call, and the time \invested" in a call so

far (i.e., the time for which a call in service has been running). The algorithms completely

ignore the throughput of a call, even though the gain accrued is the sum of the throughputs

of completed calls; thus, a call with very large throughput may be preempted in order to

make room for a longer duration call with much smaller throughput. In Subsection 3.1 we

briey and informally explain why some straightforward strategies for bandwidth allocation

fail. We present our algorithms in the two subsections that follow.

The following geometric representation of the scenario may be helpful (see Figure 1).

Let the x axis represent time and the y axis represent bandwidth. Each call c is a rectangle

of length dc and height bc. We have to �t the rectangles above the x axis, and below the

line y = B, under the constraint that the rectangle of call c has to start at x = tc. Note,

however, that a call need not use the same \bandwidth pieces" for all its duration. Thus we

are allowed to \break" the rectangles vertically, as long as enough bandwidth is allocated

at all times. (This distinguishes our problem from many other problems, e.g., memory

allocation.)

3.1 First tries

We �rst show that basing a bandwidth allocation strategy on the throughput of the calls

is a bad idea, even though we want to maximize the total throughput of completed calls.

This applies both to a greedy strategy (e.g., always prefer calls with larger throughput),

and to a \double the gain" strategy (e.g., serve an incoming call if enough bandwidth

6

can be freed by only preempting calls whose combined throughput is at most half of the

throughput of the incoming call). Consider the following request sequence. First,
pB calls

are requested at time 0, each of bandwidth
pB and duration

pB. Next, still at time 0, B
calls, each of bandwidth 1 and duration B

2 are requested. Serving any of the last B calls

requires preempting one of the �rst
pB calls. However, each of the last calls has smaller

throughput than each of the �rst calls. Thus, both the greedy and the \double the gain"

algorithms serve only the �rst
pB calls, gaining B3=2. The best schedule is the last B calls

with throughput B2
2 , thus the competitiveness is at most 2pB . The \moral" is that calls with

longer duration are preferable even if the longer calls have smaller throughput, as there may

be many similar calls coming in the future.

An alternative strategy may thus be to consider the duration of calls (say, use a \double

the duration" algorithm). It turns out that considering only the duration is also not good

enough (we omit further counter-examples). An additional parameter should be considered,

namely the amount of time a call in service has been running (or, alternatively, the amount

of time it will run in the future). Each of our algorithms considers a di�erent combination

of these parameters.

3.2 The \left-right" algorithm

The \left-right" algorithm implements a compromise between the need to hold on to jobs

that have been running for the longest time (thus capitalizing on work done) and the need

to hold on to jobs that will run for the longest time in the future (thus guaranteeing future

work). The compromise is simple: half of the capacity is dedicated to each of these two

classes of jobs. Surprisingly, this simple compromise yields a good competitive ratio. The

algorithm, denoted LR, is described in Figure 2.

Theorem 1 For � < 1
2 , algorithm LR is (1�2�

2)-competitive.

Proof: First, note that the total bandwidth required by the calls in L [R at any time t

is at most BL(t) + BR(t) � B
2 + B

2 = B. Thus the algorithm is valid. Next we show its

competitiveness.

Consider an input sequence S = c1; : : : ; cn of call requests and assume that �
def
=

maxif bciB g is at most 1
2 (otherwise the competitive claim in the theorem is vacuous). Let

E
def
=LR(S) be the set of calls completed by LR on input S. Let Si be the pre�x of S

composed of the �rst i calls in S, and let Ei be the set of calls completed by the algorithm

assuming that the input sequence is only Si. Note that Ei is the union of two sets: (i)

the set of calls completed up to time tci (that is, up to the time call ci is requested), and

(ii) the set of calls being served at time tci . Below we show, by induction on i, that for

7

Let F be the set of calls currently in service. Upon the request of a call c do:

1. Add c to F .

2. Find the following two sets of calls, L and R:

(a) Sort the calls by increasing order of starting time, and let L be the maximal

set of calls at the top of the list (i.e., earliest starting times) such that the

total bandwidth required by the calls in L is at most B

2
.

(b) Sort the calls by decreasing order of ending time, and let R be the maximal

set of calls at the top of the list (i.e., latest ending times) such that the total

bandwidth required by the calls in L is at most B

2
.

3. Preempt/reject calls that are neither in L nor in R to �t in the link capacity.

Figure 2: Algorithm LR

all i and for all times t, BEi
(t) � minfBSi(t); (

1
2 � �)Bg. Since S = Sn and E = En, we

have BE(t) � (12 � �)BS(t) for all t. (The worst case is when BS(t) = B.) Thus the total

throughput of the LR algorithm, V (E), is at least (12 � �)V (S), and the theorem follows.

The inductive claim trivially holds for i = 0. Let i > 0, and �x some t0 � 0. We

distinguish two cases.

Case 1: No call p that requested bandwidth for time t0 was rejected or preempted in the ith

step (that is, when processing the ith request). In this case, if the ith request, ci, requests

bandwidth for time t0 then BEi
(t0) � BEi�1(t

0) = bc � BSi(t
0) � BSi�1(t

0). If ci does not

request bandwidth for time t0 then BSi(t
0)�BSi�1(t

0) = 0 = BEi
(t0)�BEi�1(t

0). Thus the

inductive claim holds.

Case 2: There exist calls that requested bandwidth for time t0 and were rejected or pre-

empted in the ith step. We show that in this case, BEi
(t0) � (12 � �)B. Let p be a call that

was rejected or preempted in the ith step, for which t0 2 [tp : : : ep]. (Otherwise, BEi
(t0) is

not a�ected by call p.) Since the bandwidth requested by p is at most �B, both BL(tci) and

BR(tci) must be at least (
1
2 � �)B (otherwise, p would be in either L or R). Furthermore,

p =2 L, thus we must have BL(t) � (12 � �)B for all times t 2 [tp : : : tci] (in other words all

the calls in L started before tp, and are still running at tci). Similarly, since p =2 R, we have

BR(t) � (12 � �)B for all times t 2 [tci : : : ep]. (in other words all the calls in R end after ep,

and started running before tci). Thus, BEi
(t0) = BL[R(t0) � (12 � �)B. 2

8

3.3 The \e�ective time" algorithm

The \e�ective time" (EFT) algorithm implements a di�erent compromise between banking

on past pro�t and insuring future pro�t. Rather than dividing the bandwidth between the

two classes, this algorithm attaches a time-value, called the e�ective time, to each single

call. Calls with later e�ective times are preempted �rst. The e�ective time �c of a call c

is its arrival time minus its duration, i.e. �c
def
= tc � dc. This strategy reects (in a way

described below) the idea that work that is done is worth twice as much as work to be done.

Algorithm EFT is described in Figure 3.

Let the e�ective time of a call c be �c
def
= tc � dc.

Maintain a list F of the calls in service, sorted by increasing order of e�ective time.

Upon the request of a call c, do:

1. Add c to F in place.

2. Reject/preempt calls from the end of the list (i.e., \latest" e�ective times), to �t in

the link capacity.

Figure 3: Algorithm EFT

The e�ective time strategy may be viewed as a variant of a \doubling strategy" as

follows. Let r be a requested call and c be a call in service. By preempting c and serving r,

we \gain" the time interval [ec : : : er], and \lose" the time interval [tc : : : tr]. We will preempt

c to make room for r if the time-gain is more than twice the loss, that is if er�ec > 2(tr�tc).
This condition is equivalent to tr � dr < tc � dc, or �r < �c.

Theorem 2 For � < 1, algorithm EFT is (1��4)-competitive.

Proof: The validity of algorithm EFT is immediate from the description. We show its

competitiveness. Unlike algorithm LR, here there may be times where the optimal schedule

has the link used to capacity while algorithm EFT has almost no bandwidth allocated to

calls that eventually complete. Therefore, we use a di�erent \book-keeping" method for

proving the competitiveness of EFT.

Consider some input sequence S = c1; : : : ; cn of call requests, and let �
def
= maxf bciB g.

Let E
def
=EFT(S) be the set of calls completed by algorithm EFT on input S. We introduce

a sequence, E0, of \virtual calls", and show that (i) V (E) � 1��
4 � V (E0), and (ii) V (E0) �

V (S). Therefore, the total throughput of the algorithm (i.e., V (E)) is at least 1��
4 � V (S).

We de�ne virtual calls as follows. For each call c, let the virtual call c0 have arrival time

tc0 = �c = tc � dc, ending time ec0 = ec + 2dc, and bandwidth bc0 =
1

1�� bc. For a set A of

9

ta’ ta

t bt
b’

t
b’ t b

ea

eb

ea’

eb’

eb’

eb

Figure 4: The proof of the technical claim.

calls, let A0 def
= fc0 : c 2 Ag. Note that the throughput of each virtual call c0 is 4

1�� times

the throughput of the corresponding real call c. Thus, V (E) � 1��
4 � V (E0). In Lemma 4

below we show that BE0(t) � BS(t) for all t. Thus, V (E
0) � V (S), and the theorem follows.

2

Let us �rst prove a technical claim. (See Figure 4.)

Claim 3 Let a and b be two calls scheduled by the algorithm at time t.

(1) If ta0 � tb0 and ta � tb, then ea0 � eb0 .

(2) If ta0 � tb0, then ea0 � eb.

Proof:

Part (1). If ta � tb and ta0 � tb0 , then it must be that da � db. Thus,

ea0 = ta + 3da � tb + 3db = eb0 :

Part (2). Consider the case not covered in Part (1), i.e, ta < tb and ta0 � tb0 . Call a has not

ended by time tb, thus da � tb � ta. Also, it follows from ta0 � tb0 that da � db � (tb � ta).

Thus,

ea0 = ta + da + 2da

� ta + db � (tb � ta) + 2(tb � ta)

= tb + db = eb :

2

Lemma 4 For any request sequence S and for all times t we have BE0(t) � BS(t).

Proof: Say that a time t is i-quiet if, up to and including the ith request, all the calls that

requested bandwidth for time t (that is, calls c such that t 2 [tc : : : ec]) were completed by

the algorithm. Note that if time t is i-quiet, it is also j-quiet for all 1 � j � i. A time t

is quiet if it is i-quiet for all i. If a time t is quiet then certainly BE0(t) > BE(t) = BS(t).

10

It remains to deal with times that are not quiet (i.e, times that are not i-quiet for some

request i). De�ne Si and Ei as in the proof of Theorem 1. (That is, Si is the pre�x of

S composed of the �rst i calls in S, and Ei is the set of calls completed by the algorithm

assuming that the input sequence is only Si.) We show, by induction on i, that BE0
i
(t) = B,

for all times t that are not i-quiet. Since E = En and S = Sn we get BE0(t) � BS(t) for all

times t.

The inductive claim holds vacuously for i = 0. For i > 0 we distinguish three cases.

Case 1: The ith request, ci, was served without preempting other calls. In this case, any

time that is not i-quiet is also not (i� 1)-quiet, and BE0
i
(t) � BE0

i�1
(t) for all times t. Thus

the claim follows from the induction hypothesis.

Case 2: The ith request was rejected without preempting other calls. In this case, the

inductive hypothesis holds for any time t that is not (i � 1)-quiet. Also, all times that are

(i� 1)-quiet and are not i-quiet are in the time range [tci : : : eci]. Thus it is enough to show

that BE0
i
(t) = B for all t 2 [tci : : : eci]. Let F be the set of calls being served at time tci .

Since ci is rejected, and bci � �B, the total bandwidth of the calls in F is at least (1� �)B.
We have tf 0 � tc0i for all f 2 F , thus by Claim 3 Part (2) we have eci � ef 0 . It follows

that BE0
i
(t) � BF 0(t) � B for all times t 2 [tci : : : eci]. (In fact this holds for all times

t 2 [tc0i : : : eci].)

Case 3: Calls were preempted while processing request i. Let Pi be the set of calls that

were preempted (or rejected) while processing request i.1 For a set A of calls let tA (resp.,

eA) denote the earliest starting time (resp., latest ending time) of a call in A. Here we have

to consider the time range [tP 0
i
: : : eP 0

i
] (rather than only [tPi : : : ePi]) since calls in Pk that

contributed to BE0
i�1

(t) are now preempted.

It can be seen, similarly to the proof of Case 2, that BE0
i
(t) � B for all times t 2

[tP 0
i
: : : ePi]. It is left to show that BE0

i
(t) � B for all times in [ePi : : : eP 0

i
] that are not

i-quiet.

Let t be a time in [ePi : : : eP 0
i
] that is not i-quiet. Thus there exists a request j � i that

caused either rejection or preemption of a call that requested bandwidth at time t. We

complete the proof by showing, for each request j � k � i, a set Gk � Ek of calls such

that BG0
k
(t) � B. These sets are de�ned inductively, as follows. Let Fk denote the set of

calls in service immediately after request k was processed. Let Gj
def
= Fj . For k > j, if ck

is rejected, or if the e�ective time of ck is greater than the e�ective times of all the calls

in Gk�1, then Gk = Gk�1 � Pk. Else, Gk = Gk�1 [fckg � Pk. Certainly, Gk � Ek. We

1It is possible that calls are preempted and also the incoming call is rejected. For simplicity we include

the rejected call with the preempted calls.

11

show by induction on k that the following three properties hold for all j � k � i. (We are

interested in Property 3.)

Property 1: All calls in Gk \ Fk have earlier e�ective times than all calls in Fk �Gk.

Property 2: For all calls g 2 Gk, t 2 [tg0 : : : eg0].

Property 3: BG0
k
(t) = B.

Consider the case k = j. Property 1 holds since Gj = Fj . When request j was processed

a call asking bandwidth for time t was rejected or preempted, therefore by Claim 3 all calls

in Fj = Gj have Property 2. Furthermore, the total bandwidth of all calls in Gj must be

at least (1 � �)B, otherwise one of the calls that was either rejected or preempted while

processing request j would have been kept by the algorithm. Property 3 now follows from

Property 2.

Now �x some k > j, and assume that all three properties hold for Gk�1. Note that ck

is added to Gk if and only if it is in Fk and �g > �ck for some g 2 Gk�1. Thus Property 1

holds for Gk. To show Properties 2 and 3 we distinguish three subcases:

Case 3.1: Call ck is rejected. In this case Gk = Gk�1 � Pk. Property 2 holds since

Gk � Gk�1. Property 3 is shown as in the base case k = j.

Case 3.2: Call ck is served and �g � �ck for all g 2 Gk�1. Also here Gk = Gk�1 � Pk.

Property 2 holds since Gk � Gk�1. Property 3 holds since no call in Gk�1 is preempted

(i.e., Gk = Gk�1).

Case 3.3: Call ck is served and �g > �ck for some g 2 Gk�1. Here, Gk = Gk�1 [fckg�Pk.

We �rst show Property 2. From the induction hypothesis, Property 2 holds with respect to

all calls in Gk other than ck. Note that tg � tck . By our assumption also �ck � �g, and thus

it follows from Claim 3 Part (1) that tc0
k
� tg0 and eg0 � ec0

k
. Since t 2 [tg0 : : : eg0], we have

t 2 [tc0
k
: : : ec0

k
], which proves Property 2 for call ck.

Next we show that Gk satis�es Property 3. If Pk \ Gk�1 = ; then Gk�1 � Gk and

Property 3 holds. Otherwise, a call in Gk�1 was preempted while processing request k.

From Property 1 (for k � 1) it follows that all calls not in Gk�1 that were in service

upon the arrival of request k must have been preempted as well. Consequently, Fk = Gk.

However, the total bandwidth of calls in Fk must be at least (1� �)B, otherwise one of the
calls that was either rejected or preempted while request k was processed would have been

kept by the algorithm. Thus, the total bandwidth of calls in Gk must be at least (1� �)B.
By Property 2, all calls in Gk request bandwidth for time t. Property 3 follows. 2

12

4 Bandwidth allocation on a line within a single time slot

In this section we consider bandwidth allocation in the line model, de�ned as follows. A

sequence of stations are connected on a line by communication links. For simplicity we

assume that all links have unit length and the same bandwidth capacity, B. Our results

generalize to networks with individual capacities and lengths of the links. A call is a

connection between two stations on the line. We consider the case where all calls arrive

at the same time unit (in some arbitrary order), and have the same duration. In the next

section we show that if we let calls have arbitrary duration, and if � is more than half, then

constant competitiveness cannot be achieved by any deterministic algorithm. (We note that

this holds even if randomization is allowed [8].)

More formally, the line model is de�ned as follows. Assume the stations are labeled

by consecutive integers increasing from left to right. A call c is characterized by its left

endpoint lc, its right endpoint rc and its bandwidth requirement bc. Let the length of call

c be hc
def
= rc � lc. The throughput of c is now vc = hc � bc. Again, bearing in mind that

our goal is to maximize the throughput of the network, we de�ne the additive throughput

accrued from serving a completed call c to be its throughput vc. Here the throughput can

also be regarded as the amount of network resources allocated for the call. The de�nitions

of the cover, feasibility and throughput of a request sequence, as well as the competitiveness

and validity of bandwidth allocation algorithms are similar to those of the single link model

(Section 2), where time t is replaced, in the natural way, by location (link) e on the line, and

earlier times are translated to locations with smaller label. This model is a generalization

of the single link model, in the sense that any algorithm for the line model is valid, and has

the same performance, in the single link model (when \location" is translated to \time").

The converse is not true, due to reasons described in the sequel.

We adapt our algorithms to this more general scenario. The adapted LR algorithm,

called ALR, is still 1�2�
2 -competitive, for � < 1

2 . The adapted EFT algorithm, called

AEFT, is 1��
2�+1 -competitive for all � < 1, where � = 1 + 1

� = 1+
p
5

2 � 1:6 is the golden

ratio. The �rst di�culty in adapting our algorithms to this model is as follows. In the

single link model there is a \current time" at which all calls in service require bandwidth

and where the new call must start; thus all bandwidth conicts are at the current time. In

the line model bandwidth conicts upon the arrival of a new call are not limited to a single

location; at some locations, it may seem bene�cial to accept the incoming call, where at

other locations it may seem bene�cial to reject. It turns out that the following technique

provides a su�cient solution for this di�culty in both adapted algorithms. Upon the arrival

of a request, we �rst add the requested call to the list of calls in service. Next, we go over

13

the links one by one, in an arbitrary order, and resolve remaining conicts on each link by

rejecting/preempting calls according to a scheme similar to the original one (where \time" is

replaced by \location"). The adapted left-right algorithm requires no further modi�cations.

The adapted e�ective time algorithm encounters an additional di�culty, described in the

sequel.

4.1 The adapted left-right algorithm

The adapted left-right algorithm is described in Figure 5.

Let LR� be the same algorithm as LR, where time is translated to location.

Let F be the set of calls currently in service. Upon the request of a call c do:

1. Add c to F .

2. While there are links e with a conict (i.e., ~BF (e) > B) do:

Let e be a link with a conict, and let Fe � F be the set of calls using e. Run

algorithm LR� on Fe and reject/preempt calls as instructed.

Figure 5: Algorithm ALR

Theorem 5 For � < 1
2 , algorithm ALR is (1�2�

2)-competitive.

Proof: The proof is similar to the proof of Theorem 1. Consider a link e with a conict.

Let Le � Fe and Re � Fe be the two sets of calls computed by LR� when run on Fe. First,

note that the total bandwidth required by the calls in Le [Re is at most B
2 +

B
2 = B. Thus

the algorithm is valid. Next we show competitiveness.

Consider an input sequence S = c1; : : : ; cn of call requests and assume that � =

maxif bciB g is at most 1
2 . Let E

def
=LR�(S) be the set of calls completed by LR�. Let Si

be the pre�x of S composed of the �rst i calls in S, and let Ei be the set of calls completed

by the algorithm assuming that the input sequence is only Si. Below we show, by induction

on i, that for all i and for all links e, BEi
(e) � minfBSi(e); (

1
2 � �)Bg. Since S = Sn and

E = En, we have BE(e) � (12 � �)BS(e) for all e. Thus the total throughput of the ALR

algorithm, V (E), is at least (12 � �)V (S). The theorem follows.

The inductive claim trivially holds for i = 0. For i > 0 we distinguish two cases. Fix

some link e.

Case 1: (Identical to the proof of Theorem 1.) No call p that requested bandwidth for link

e (i.e., e 2 [lp : : : rp]) was rejected or preempted in the ith step (that is, when processing

the ith request). In this case, if the ith request, ci, requests bandwidth for link e then

14

BEi
(e) � BEi�1(e) = bc � BSi(e) � BSi�1(e). If ci does not request bandwidth for link e

then BSi(e) �BSi�1(e) = 0 = BEi
(e) �BEi�1(e). Thus the inductive claim holds.

Case 2: There exist calls that requested bandwidth for link e and were rejected or pre-

empted in the ith step. We show that in this case, BEi
(e) � (12 � �)B. Let p1; : : : ; pa be

the calls that were rejected or preempted in the ith step, sequenced by the order of their

rejection/preemption. We prove, by induction on 1 � j � a, that when pj is either rejected

or preempted, the total bandwidth of the calls in service on e is at least (12 � �)B. Suppose
that this was the case before the rejection or preemption of pj. If e =2 [lpj : : : rpj], then this

is clearly the case also after the rejection or preemption of pj. Otherwise, let e
0 be the link

such that pj was rejected/preempted while LR� was run on Fe0 , and let Le0 (resp., Re0) be

the set L (resp., R) found by LR� when operating on e0. Assume e is to the left of e0 (i.e.,
e 2 [lpj : : : e

0]). Since pj =2 Le0 , and the bandwidth requested by pj is at most �B, then
BL(e) must be no less than (12 � �)B. Similarly, if e is to the right of e0 (i.e., e 2 [e0 : : : rpj]),
then BR(e) must be no less than (12 � �)B. 2

4.2 The adapted e�ective-time algorithm

The following di�culty is encountered in adapting the e�ective time method to the line

model. The original e�ective time algorithm weighed di�erently past work and future

work, relying on the fact that time is directional (i.e., the starting time of a new call is

no earlier than the starting time of the calls in service). In the line model past and future

lose their meaning: the left endpoint of a new call is not necessarily \more to the right"

than the left endpoints of the calls in service. Instead, the adapted algorithm will use

\e�ective endpoints" both to the left and to the right, as follows. For a call c with left

endpoint lc, right endpoint rc, and length hc = lc � rc, let the e�ective span be the range

sc = [lc � g � hc : : : rc + g � hc], where g is some constant to be computed in the sequel. We

de�ne a complete order, denote �, on the calls. For calls a and b, a � b either if the e�ective

span of a contains the e�ective span of b (i.e., sb � sa), or if the e�ective spans of a and b

are not contained in each other and a is requested before b. Algorithm AEFT is described

in Figure 6.

Theorem 6 For � < 1, algorithm AEFT is (1��
2m+1)-competitive, where m = maxfg; 1+ 1

gg,
and g is the constant used for determining e�ective spans.

Corollary 7 Let g = � be the golden ratio (that is, � = 1 + 1
� and � = 1+

p
5

2 � 1:6). For

� < 1, algorithm AEFT is 1��
2�+1 -competitive.

Proof of Theorem 6: We follow the outline of the proof of Theorem 2. (We also use

the notation of Theorem 2.) Let m = maxfg; 1 + 1
gg. De�ne virtual calls as follows.

15

Let F be the list of calls currently in service. Upon the request of a call c do:

1. Add c to F .

2. While there are links e with a conict (i.e., ~BF (e) > B) do:

Let e be a link with a conict, and let Fe � F be the list of calls using e, sorted so

that if a � b then a is ahead of b in the list.

Reject/preempt calls from the end of Fe to �t in the link capacity.

Figure 6: Algorithm AEFT

The virtual call c0 that corresponds to a call c has left endpoint lc0 = lc � m � hc, right
endpoint rc0 = rc +m � hc and requires bandwidth bc0 =

1
1�� bc. Consider a sequence S of

incoming requests and let E
def
= AEFT (S). Clearly, V (E) � 1��

2m+1V (E
0). We show below

that BE0(e) � BS(e) for all links e. Consequently V (E0) � V (S), and the algorithm is
1��
2m+1 -competitive.

We show, by induction on the number of calls in the input sequence, that BE0(e) � B
for each link e where a call requested bandwidth and was rejected or preempted. Similarly

to the proof of theorem 2, the inductive claim is shown by proving that: (1) Whenever a

call c is rejected (when considering a link e), its span is contained in the spans of all the

virtual calls that correspond to the calls that remain in service and use link e. (The span

of a call c is the range [lc : : : rc].) (2) Whenever a call c is preempted (when considering a

link e), the span of the virtual call c0 is contained in the spans of all the virtual calls that

correspond to the calls that remain in service and use link e.

Case 1: Suppose that an incoming call c is rejected while considering some link e in Step 2

of algorithm AEFT (given in Figure 6). Here it su�ces to show that lf 0 � lc and rc � rf 0

for all remaining calls f 2 Fe. This clearly holds for all calls in Fe whose e�ective span

contains the e�ective span of c. Consider a call f that remained in Fe whose e�ective span

does not contain the e�ective span of c. Without loss of generality assume that f is to the

right of c (that is, lc < lf < rc < rf). Since c was rejected, we have f � c, thus the e�ective

span of c does not contain the e�ective span of call f . Observe that lc + ghc < lf + ghf

(otherwise rf + ghf � rc + ghc, implying that the e�ective span of f contains the e�ective

span of c). This implies that rc + ghc � rf + ghf , or

ghc � rf � rc + ghf : (1)

16

By our assumption that lf < rc, we have rf � rc < hf . Substituting this inequality in (1)

we get ghc < (1 + g)hf , or equivalently

hc <

�
1 +

1

g

�
hf �mhf :

Therefore, lf 0 = lf �mhf � lf � hc � lc, and rf 0 = rf +mhf � rf + hc � rc.

Case 2: Suppose that a call p is preempted when a call c is requested (and call c is

accepted). We show that in this case lc0 � lp0 and rp0 � rc0 . The proof that the spans of

the virtual calls that correspond to the rest of the calls that remain in service contain the

span of call c0 is the same as in Case 1. We have c � p, since call c is accepted. Since call c

was requested after call p the only way for the relation c � p to hold is if the e�ective span

of c contains the e�ective span of p; that is, lc � ghc � lp � ghp and rc + ghc � rp + ghp

(and at least one of these inequalities is strict). Since m � g then lc0 � lp0 and rp0 � rc0 . 2

5 Optimality of the algorithms

We prove impossibility results for the competitive ratio of any deterministic online band-

width allocation algorithm on a single link, demonstrating that our algorithms have optimal

competitiveness for all values of �, up to a small multiplicative constant. First, we show

that if a single call may require the entire bandwidth (i.e., � = 1), then no algorithm can

be more than 1
B -competitive. (Note that B may be unboundedly large.) Next we show that

if � � 1
2 then no algorithm can be more than minf18 ; (1 � �)g-competitive. In particular, if

� = 1
2 then no algorithm can be more than 1

8 -competitive. Recall that algorithm EFT is
1��
4 -competitive, therefore for � = 1

2 EFT is optimal, for 1
2 < � � 7

8 it is at most a factor of
1

2(1��) from optimality, and for 7
8 � � < 1 it is at most a factor of 4 from optimality. For

1
3 < � < 1

2 the competitiveness of any algorithm is shown to be at most 1
2 , therefore our

algorithm is at most a factor of 2
1�� from optimality. Finally, for 0 < � � 1

3 the compet-

itiveness of any algorithm is shown to be at most 2
3 , therefore our algorithm is at most a

factor of 4
3(1�2�) from optimality. We summarize our results for the di�erent ranges in the

table in Figure 7 and the graph in Figure 8.

We show the impossibility results by demonstrating, for any algorithm, an input se-

quence of call requests which forces any algorithm to perform poorly comparing to the best

(o�ine) schedule. We describe input sequences as if they may change \on the y", depend-

ing on the choices of the algorithm so far. Such a description is valid since the behavior of

a deterministic algorithm on any pre�x of the input sequence can be thought of as known

beforehand. We sometimes call the sequence creator the adversary.

17

Range Lower Bound Upper Bound Optimality Ratio

(Algorithm) (Impossibility Result)

�
Upper Bound
Lower Bound

�

� = 1 1
B

1
B 1

7
8 � � < 1 1��

4 1� � 4
1
2 � � � 4

5
1��
4

1
8

1
2(1��) � 2:5

1
3 � � � 1

2
1��
4

1
2

2
1�� � 4

0 < � � 1
3

1�2�
2

2
3

4
3(1�2�) � 4

� ! 0 1
2

2
3

4
3

Figure 7: Table of all bounds in the di�erent ranges of 0 < � � 1.

1/3 1/2 4/5 7/8 10

0

1/8

1/2

2/3

1

1/6

Lower Bound (algorithm)

Upper Bound (impossibility result)

Figure 8: Graph of bounds in the di�erent ranges of 0 < � � 1.

18

This section is organized as follows. First, we describe the known impossibility results for

the case in which calls always request the whole bandwidth. Next we prove our impossibility

result for the case � = 1. Using the techniques of these two bounds we show the 1
8 bound

for the case 1
2 � � < 1. Next we prove the 1� � bound for the case 1

2 < � < 1. We proceed

for the case 0 � � < 1
2 and prove our bounds using the more restricted parallel links model

(to be de�ned there). At the end of the section, we consider the more general case of calls

with arbitrary durations on a general linear network. We show that any deterministic online

algorithm for this case is at most 1
B -competitive, if � > 1

2 .

The whole bandwidth case:

The sequence S is an adaptation of a sequence demonstrated in [13] to show that no al-

gorithm can be more than 1
4 -competitive for the case where all calls require bandwidth

exactly B. (The sequence in [13] is an adaptation of a bound for scheduling algorithms in

the presence of overload, shown in [6].) Let us shortly review their construction. For any

� > 1
4 , construct a sequence C = c1; : : : ; cn of calls where each call ci arrives \just before

call ci�1 ends" (i.e., tci = eci�1 � 1, where eci
def
= tci + dci is the ending time of ci), and: (a)

dci�1 < �eci for all i, (b) dcn � dcn�1 . The o�ine algorithm is able to schedule calls that

cover the entire duration 0 � t � ei, in a way described below. Since dci�1 < �eci for all

i, the online algorithm is always forced to preempt the single call in service (that is, ci�1)

when a new call arrives, otherwise it is not �-competitive. Thus the algorithm completes

either only cn or only cn�1 with value at most dcn�1 whereas the o�ine can cover the entire

duration 0 � t � ecn . Consequently, once the call cn is requested the online algorithm can

no longer be �-competitive. To complete the construction set dc1 = B and interleave the

ci calls with many additional service calls, each of duration 1. The service calls cannot be

served by the online algorithm since once a service call is served the sequence stops and the

algorithm is no longer competitive. The o�ine algorithm serves all service calls and accrues

throughput ecn .

The case � = 1:

We show that if � = 1 then for any online algorithm A there exists an input sequence S

such that the throughput V (A(S)) = B2, whereas some feasible subsequence S0 � S has a

gain V (S0) = B3. Consequently, the competitiveness of A is at most 1
B .

The sequence S consists of two types of calls: squares and slices. A square call has

duration B time units and bandwidth B. A slice call has duration B2 time units and

bandwidth 1. Both have throughput B2. Observe that no algorithm can serve both a

19

a1 a2 a3a0
b

1,0

b
1,1

b1,2

b1,3
B

B 2B 3B B
2 time

Figure 9: The impossibility result for the case � = 1.

square and a slice call that intersect (that is, require bandwidth for the same time). The

sequence S starts with a square call at time 0. The algorithm A must serve this call,

otherwise it is 0-competitive. Next, the following procedure is repeated until S contains

either B squares calls or B slice calls:

(a) As long as A serves a square call then at each time unit a slice call is requested.

(b) As long as A serves a slice call, then every B time units a square call is requested.

(See Figure 9.)

Analysis: At the end of the process A has completed at most one call, hence V (A(S)) � B2.

On the other hand, a feasible S0 � S may contain B calls of the same type (either squares

or slices) and be of value V (S0) = B � B2 = B3.

The case � = 1
2 :

Consider the sequence C = c1; : : : ; cn as described above for a given � > 1
4 . In the sequel

we will omit references to �, and think of the sequence which is associated with � = 1
4 + "

where " is negligible. Rigorous proof follows in a straightforward way. Although we present

the bound only for � = 1
2 , it will be clear from the presentation that the bound holds for

any � > 1
2 .

The basic idea behind our proof is to force the algorithm to serve ci with bandwidth

B=2 while the o�ine can serve calls that cover the whole bandwidth until ei+1. This will

add an extra factor of 2 and therefore the 1=8 bound.

In the sequence C, let the length of call ci be i and let its beginning time and ending

time be �i and �i respectively. De�ne a new call cn+1 with parameters �n+1 = �n, n+1 = n

and �n+1 = �n, and choose B � n � �n. We construct a sequence S that contains three types

of calls. First, for each i there are two calls fi with bandwidth 1
2B, arrival time ti = B3�i,

ending time ei = B3�i and duration di = B3i. Next, many service calls of type ai with

duration B3(2�i+1) and bandwidth 1, and many service calls of type b with duration B and

bandwidth 1
2B. The starting time of the service call, would depend on the behavior of the

algorithm, as explained later.

20

Recall that vc is the throughput of call c. We get that, vb = B2
2 , vai = B3(2�i+1) =

o(B4), and vfi =
1
2Bdi = B4

2 i = O(B4). Note also that since �n � n � B it follows thatPn
j=1 vaj = o(B4). These equations and the fact that

di
ei+1

=
i
�i+1

! 1

4
;

imply the following proposition.

Proposition 1
vb +

Pi
j=1 vaj

vfi
� 1

8
: (1)

vb + vfi +
Pi

j=1 vaj
Bvai

� 2vfi +
Pi

j=1 vaj
Bvai

=
i

2�i+1
+

Pi
j=1 vaj
B4�i+1

! 1

8
: (2)

vfi +
Pi+1

j=1 vaj
Bei+1

=
i

2�i+1
+

Pi+1
j=1 vaj
B4�i+1

! 1

8
: (3)

Say that we are in the ith phase if the following three conditions hold.

Condition 1. The algorithm has not completed any calls of type b or fj for 1 � j < i

before time ti.

Condition 2. The algorithm serves one call of type fi and maybe also one call of type aj

for 1 � j � i.

Condition 3. There exists a feasible subsequence S0 � S, consisting only of calls of type b,

that covers the entire bandwidth for times in [0 : : : ti].

The sequence S starts by requesting an f1 call and an a1 call, both at time 0. The

algorithm must serve the f1 call in order to be competitive. Hence, we are now in the �rst

phase. We show below how to force the algorithm to reach the (i+1)st phase from the ith

phase. The bound will follow once the nth phase is reached. At that stage, the gain of the

online algorithm is at most vfn +
Pn+1

j=1 vaj = vfn�1 +
Pn+1

j=1 vaj while the gain of the o�ine

is Ben. Equation (3) of Proposition 1 proves the 1
8 bound.

Once in the ith phase, the (i+ 1)st phase is reached as follows.

1. At each time t, ti � t � ei � B, request two calls of type b. In order to serve any of

these calls, the algorithm has to preempt either the fi call or the ai call currently in

service.

(a) Suppose that the call fi is preempted. In this case we stop. The algorithm serves

a call of type b and calls of type aj for 1 � j � i, whereas the o�ine can serve

an fi call. The bound is yielded by Equation (1) of Proposition 1.

21

(b) Suppose that the call ai is preempted. Request calls of type ai at times t+1; t+

2; : : : until either the algorithm preempts the fi call, or preempts the b type call,

or rejects B calls of type ai. The �rst case is the same as the previous case (a).

In the second case we are back in the ith phase and we continue o�ering the calls

of type b. In the third case we stop. The algorithm serves a call of type b, a call

of type fi, and some calls of type aj for 1 � j < i, whereas the o�ine can serve

B calls of type ai. The bound is yielded by Equation (2) of Proposition 1.

We thus assume that none of these b calls are served. Note that now there exists

a feasible subsequence S0 � S, consisting only of b calls, which covers the entire

bandwidth for times in [0 : : : ei].

2. At time ei �B, when the fi call is about to end, request two calls of type fi+1. Now,

the algorithm has several options:

(a) The algorithm rejects both calls. In this case we stop. The o�ine can serve

b type calls to cover the whole bandwidth up to ti+1 and the two fi+1 calls to

cover the whole bandwidth up to ei+1, whereas the algorithm can serve one fi

call and some aj type calls for 1 � j � i. The bound follows from Equation (3)

of Proposition 1.

(b) The algorithm serves one of the fi+1 calls and preempts the fi call. In this case

we reached the (i+ 1)st phase.

(c) The algorithm serves one of the fi+1 calls and preempts the ai call. This means

that at this stage, the algorithm serves a call of type fi, and a call of type fi+1.

In this case, request calls of type ai+1 at times ei �B; ei �B + 1; : : : until either

the algorithm preempts the fi call, or preempts the fi+1 call, or rejects B calls of

type ai+1. In the �rst case we reach the (i+ 1)st phase. The second case is the

same as the previous case (a) in which the algorithm rejects the two fi+1 calls.

In the third case we stop. Since vfi < vfi+1 it follows that the throughput of the

algorithm is at most 2vfi+1 +
Pi

j=1 vaj , whereas the throughput of the o�ine can

be Bvai+1 . The bound is yielded by Equation (2) of Proposition 1.

(d) The algorithm serves both fi+1 calls. Again we request calls of type ai+1 at times

ei �B; ei�B+1; : : : until either the algorithm preempts one of the fi+1 calls or

rejects B calls of type ai+1. Both cases appeared in the previous case (c).

22

a

cb1b2b3

B

B

1

(1−δ)B+1

Figure 10: The impossibility result for the case 1
2 < � < 1. Here, B = 12 and � = 3

4 .

The case 1
2 < � < 1

We show that in this case any online algorithm is at most (1� � + o(1))-competitive. Note

that for 1
2 � � � 7

8 the previous bound (of 1
8) is better. Consider the following request

sequence to an online algorithm. (See Figure 10.)

1. Request a call a at time 0, with duration B time units and bandwidth (1 � �)B + 1.

If the algorithm does not serve this call, then end the sequence.

2. At each time 0 � i < B request a call bi of duration one and bandwidth �B. No bi

call can be served together with a. If the algorithm preempts a to serve one of the bi

calls, then end the sequence.

3. Request a call c at time B � 1 with duration 1 + 1��
� B and bandwidth �B.

Analysis: Note that the value of a is (1� �)B2+B, the value of c is (1� �)B2+ �B, and the

value of any bi is �B. Assume call a is served (otherwise the algorithm is 0-competitive). If

the algorithm preempts a to serve some bi then the algorithm is at most �B
(1��)B2+B = O

�
1
B
�
-

competitive. Therefore, we can assume that all the bi calls are rejected. Calls a and c cannot

be both served. Thus, the value gained by the algorithm (by serving either a or c) is at

most (1 � �)B2 + B. The subsequence S0 = fb0; : : : ; bB�2; cg is feasible with V (S0) = B2.

Hence, the competitive ratio of the algorithm is at most (1��)B2+B
B2 = (1� �) + o(1).

The case � < 1
2 :

We show that for 1
3 < � < 1

2 no algorithm can be more than 1=2-competitive, and that

for 0 < � � 1
3 no algorithm can be more than 2=3-competitive. This impossibility result

23

is shown for a model called the parallel links model. In this model, the bandwidth of all

calls is exactly B
k for some integer k > 1. This can be viewed as if the two stations are

connected via k parallel links, and each call occupies exactly one link for its duration. (For

convenience we assume that calls can transferred between lines during service at no cost.)

Clearly, this model is a special case of our model to which we refer as the single link model.

Let rk be an upper bound on the competitiveness of any online algorithm in the parallel

links model. We show that in the single link model no online algorithm can be more than rk

competitive, in case a call may request at most �B bandwidth, for � > 1
k+1 . Consider any

online algorithm A for the single link model. Let A0 be the algorithm for the k parallel links

model that corresponds to algorithm A. Let c1; c2; : : : be a sequence of calls that causes A0

to be at most rk competitive in the k parallel links model. We claim that this sequence

in which the bandwidth of each ci is �B also causes A to be at most rk competitive in the

single link model. To see that note that since � > 1
k+1 , it follows that there cannot be k+1

calls that are served concurrently. Therefore, at any point of time, the calls in service can

be viewed as arranged on k parallel links such that the width of each link is �B.
It remains to bound rk. We remark that there exist algorithms for the parallel links

model that have slightly better competitiveness than our algorithms for the single link

model. Algorithms for k = 1 and k = 2 were previously known [13, 6]. A simple extension

of them yields algorithms for even k with a competitive ratio of 1
2 and for odd k with

competitive ratio 1
2 � 1

4k .

We �rst describe a simple impossibility result for k = 2 (the case k = 1 was dealt with

in [13], as outlined above). At time 0, request two calls of length x. If the algorithm serves

only one call then we are done. At every time unit 0 � i � x� 1, request two service calls

of length 1. If the algorithm takes one of these service calls it must preempt one of the

original calls. In this case, the sequence ends and the algorithm achieves competitiveness

of x+1
2x = 1

2 + o(1). Otherwise, at time x� 1 request two new requests of length x. In this

case the competitiveness is 2x
4x�2 = 1

2 + o(1). For the cases k = 3 and k = 4 we have an

impossibility result of 1=2 and 11=20 respectively. However, the proofs are tedious and are

omitted.

We now describe the impossibility result for the competitiveness of any bandwidth

allocation algorithm in this model for all k > 1. We show by induction on k that the

competitive ratio for k links is at most r where r satis�es er = r
1�r , in particular, r � 2

3 .

The basic strategy is an extension of the strategy for the two lines case. At time 0,

request k calls of length x and at time x � 1 request another set of k calls of length x.

We refer to these calls as long calls. During the times [0 : : : x� 1] many service calls (short

calls) will be o�ered in a way that the o�ine algorithm will be able to cover this range and

24

therefore will have a throughput of (2x� 1)k. We will choose x� 1 and therefore without

loss of generality assume that the throughput of the o�ine is 2xk. We do not know how to

prevent the algorithm from serving all of the service calls and thus to achieve a 1=2 bound.

In what follows we describe how to prevent the algorithm from serving some of the service

calls to achieve the 2=3 bound.

A general scenario of the execution of the online algorithm can be described as follows.

The online algorithm starts by serving w � k out of the k long calls requested at time 0

(and all the short calls that can be served). In case the adversary does not stop the request

sequence, then after t1 units of time the online algorithm preempts one of the w calls to

serve a service call. Again, in case the adversary does not stop the request sequence, then

after an additional t2 units of time it preempts another long call and so on, for z�w times.

Note that by de�nition of t1; : : : ; tz�w we must have that
Pw�z

j=1 tj � x.

At time x � 1 the online algorithm remains with z long calls. In case the adversary

does not stop the request sequence, k long calls are requested at this time. In this case the

throughput of the online algorithm will be xk plus the sum of the lengths of all the service

calls it served before time x� 1.

Assume �rst a very simple strategy for the adversary. The sequence will have only two

types of calls: long calls of length x and short calls of unit length. Assume further that the

algorithm is r-competitive. Then the following inequalities must hold:

xw

xk
� r (0)

t1(k � w) + x(w � 1)

xk
� r (1)

t1(k � w) + t2(k � w + 1) + x(w � 2)

xk
� r (2)

:

:

:Pi
j=1 tj(k � w + j � 1) + x(w � i)

xk
� r (i)

:

:

:Pw�z
j=1 tj(k �w + j � 1) + xz

xk
� r (w � z)

Pw�z
j=1 tj(k � w + j � 1) + xk

2xk
� r (k)

Inequality (0) is true since otherwise the adversary could stop immediately after presenting

25

the k long calls and thus preventing the algorithm from being r competitive. The rest of

the inequalities are true since otherwise the adversary could stop after the jth preemption

of a long call by the algorithm.

The value of r is maximized when all the inequalities become equalities. By comparing

the (j � 1)th equality with the jth equality we get that for 1 � j � w � z

tj(k � w + j � 1) = x :

Thus Equality (k) is equivalent to

w � z + k

2k
= r :

The above equality together with Equality (0) implies that

w + z = k :

In addition, plugging the value of tj in the equality
Pw�z

j=1 tj = x we have

w�zX
j=1

x

k �w + j � 1
= x :

This is equivalent to

1

k � w
+

1

k � w + 1
+ � � � + 1

k � z � 1
= 1 :

Using the estimation
Pn

j=1
1
j = lnn+ O(1), we get that

Pn
j=m

1
j >

Pn+1
j=m+1

1
j � ln

�
n+1
m

�
.

Substituting n = k � z � 1 and m = k � w, it follows that

ln

�
k � z

k � w

�
< 1 :

This implies that k�z
k�w < e. since w = k � z we get that w

k�w < e and since w = kr we get

that r
1�r < e which is equivalent to

r <
e

1 + e
� 0:731059 <

3

4
:

Now, assume a more complicated strategy for the adversary. Note that in the simple

strategy the adversary does not try to minimize the number of service calls served by the

online algorithm; that is, whenever the online algorithm has a \free" line it can use it to

serve service calls. In the more complicated strategy the adversary tries also to minimize the

number of service calls served by the online algorithm. This is done by using the strategy

\recursively". Whenever the algorithm is serving j long calls and has k � j free lines (for

26

w � j � z), the adversary o�ers service calls according to the strategy for k � j parallel

links. Namely, instead of o�ering service calls of a �xed size, the service calls become the

long calls for k � j parallel links, while scaling down the length of the service calls for the

k � j lines accordingly. Furthermore, we assume by induction that the bound r can be

achieved for any number of lines less than k. We have already seen that the inductive claim

holds for k = 2.

The analysis is almost the same as the one for the simpler adversary. Here, we add a

factor of r in the inequalities as follows:

Pi
j=1 tj(k � w + j � 1)r + x(w � i)

xk
� r :

Again, the value of r is maximized when all the inequalities become equalities. This implies

that

tj(k � w + j � 1)r = x

which yields as before the equality

w + z = k :

In addition, we get that

1

k � w
+

1

k � w + 1
+ � � �+ 1

k � z � 1
= r

and therefore

ln

�
k � z

k � w

�
< r :

Using similar arguments as before, we get that

r <
er

1 + er
:

This inequality does not hold for r > 0:66. Hence, we proved that

r <
2

3
:

Line networks with arbitrary durations:

Finally, we consider networks with a line topology in which the calls have arbitrary duration

(rather than unit time duration). In this case the throughput of a call is the product of its

length, bandwidth and duration. Suppose that the line consists of n + 1 stations, all the

links have the same bandwidth B, and that the maximum allowed bandwidth of a single call

is �B, for � > 1
2 . We show that any deterministic online algorithm for this model is at most

1=n-competitive. The sequence and the analysis is as in the case of the single link model

27

with � = 1, where instead of bandwidth B we consider a line of nodes 0; : : : ; n. Speci�cally,

we simulate the procedure of the adversary presented in the impossibility result for the

single link model with � = 1. In the simulation, whenever a square call ai is requested in

the procedure for the single link model with � = 1, the adversary here requests a square

call of bandwidth �B at time in that connects nodes 0 and n, for n time units. Note that

the throughput of this call is n2�B. Similarly, instead of requesting the j-th slice call b that

intersects the square call ai as described in the impossibility result for the single link model

with � = 1, the request made here is for a call at time in+j that connects nodes j and j+1

for n2 time units. Again, the throughput of this call is also n2�B. Since � > 1
2 , a square

call and a slice call that intersect cannot both be served. Thus, following the analysis for

the single link case with � = 1 we get the 1=n upper bound.

Acknowledgments

We are indebted to Hugo Krawczyk for very helpful discussions at the early stages of this

work.

References

[1] B. Awerbuch, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts. Online load balancing with

applications to machine scheduling and virtual circuit routing. In Proc. of the 25th

ACM Symp. on Theory of Computing, pages pages 623{631, 1993.

[2] B. Awerbuch, Y. Azar, and S. Plotkin. Throughput-competitive of online routing. In

Proc. 34th IEEE Symp. on Foundations of Computer Science, pages 32{40, 1993.

[3] B. Awerbuch, Y. Bartal, A. Fiat, and A. Ros�en. Competitive non-preemptive call

control. In Proc. of the 5th ACM-SIAM Symp. on Discrete Algorithms, pages 312{320,

1994.

[4] B. Awerbuch, R. Gawlick, T. Leighton and Y. Rabani. Online Admission Control and

Circuit Routing for High Performance Computing and Communication. In Proc. 35th

IEEE Symp. on Foundations of Computer Science, pages 412{423, 1994.

[5] Special Issue on Asynchronous Transfer Mode. Int. Journal of Digital and Analog

Cabled Systems, 1(4), 1988.

28

[6] S. Baruah, G. Koren, D. Mao, B. Mishra, A. Raghunathan, L. Rosier, D. Shasha, and

F. Wang. On the competitiveness of online real-time task scheduling. In Proc. 32nd

IEEE Symp. on Real Time Systems, pages 106{115, 1991.

[7] S. Baruah, G. Koren, B. Mishra, A. Raghunathan, L. Rosier, and D. Shasha. Online

scheduling in the presence of overload. In Proc. 32nd IEEE Symp. on Foundations of

Computer Science, pages 101{110, 1991.

[8] R. Canetti and S. Irani. On the Power of Preemption in Randomized Scheduling.

In Proc. of the 27th ACM Symp. on Theory of Computing, pages 606{615, 1995. To

appear in SIAM Journal on Computing.

[9] I. Cidon and I. Gopal. PARIS: An approach to integrated high-speed private networks.

Int. Journal of Digital and Analog Cabled Systems, 1(2):77{86, 1988.

[10] P. F. Chimento, J. E. Drake, L. Gum, W. A. Hervatic, C. P. Immanuel, G. A. Marin,

R. O. Onvural, S. A. Owen and T. E. Tedijanto. Broadband Network Services for High

Speed Multimedia Networks. IBM Publication, IBM { Networking Systems Architec-

ture, P.O. Box 12195, Triangle Research Park, NC 27709.

[11] U. Faigle and W. M. Nawijn, Note on scheduling intervals online. Discrete Applied

Mathematics, Vol. 58, pages 13{17, 1995.

[12] J. A. Garay and I. S. Gopal. Call preemption in communication networks. In Proc.

INFOCOM 92, pages 1043{1050, 1992.

[13] J. A. Garay, I. S. Gopal, S. Kutten, Y. Mansour, and M. Yung. E�cient online call

control algorithms. In Proc. 2nd Israel Conf. on Theory of Computing and Systems,

pages 285{293, 1993.

[14] G. Koren and D. Shasha. D-over: An Optimal On-line Scheduling Algorithm for

Overloaded Real-Time Systems. SIAM Journal on Computing, Vol. 24, pages 318{339,

1995.

[15] G. Koren and D. Shasha. MOCA: A Multiprocessor On-line Competitive Algorithm

for Real-Time System Scheduling. Theoretical Computer Science, Special Issue on

Dependable Parallel Computing, No. 128, pages 75{97, 1994.

[16] R. J. Lipton and A. Tomkins. On-line Interval Scheduling. In Proc. of the 5th ACM-

SIAM Symp. on Discrete Algorithms, pages 302{311, 1994.

29

[17] C. Lund, S. Phillips and N. Reingold. IP Over Connection-Oriented Networks and

Distributional Paging. In Proc. 35th IEEE Symp. on Foundations of Computer Science,

pages 424{434, 1994.

[18] K.K. Ramakrishnan, L. Vaitzblit, C. Gray, U. Vahalia, D. Ting, P. Tzelnic, S. Glaser,

W. Duso. Operating System Support for a Video-On-Demand File Service. In D. Shep-

herd, G .Blair, G. Coulson, N. Davies, F. Garcia (eds.), Proc. Network and Operating

System Support for Digital Audio and Video: 4th International Workshop, Springer-

Verlag, Lecture Notes in Computer Science 846, pages 216{227, 1994.

[19] N. Shacham Preemption based admission control in multi media multi party commu-

nications. In Proc. INFOCOM 95, pages 827{834, 1995.

[20] D.B. Shmoys, J. Wein, and D. P. Williamson. Scheduling parallel machines on-line.

SIAM Journal on Computing, Vol. 24, pages 1313{1331, 1995.

[21] F. Toutain and O. Huber A general Preemption-based admission control policy using

smart market approach. In Proc. INFOCOM 96, pages 794{801, 1996.

[22] F. Wang and D. Mao. Worst case analysis for on-line scheduling in real-time systems.

TR 91-54, Dept. and Computer and Information Science, University of Massachusetts

at Amherst, 1991.

30

