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Abstract. We study obfuscation of point functions with multibit output and other
related functions. A point function with multibit output returns a string on a single
input point and zero everywhere else. We provide a construction that obfuscates
these functions. The construction is generic in the sense that it can use any per-
fectly one-way (POW) function or obfuscator for point functions.
Analyzing this construction reveals gaps in the definition of obfuscation, specifi-
cally, that it does not guarantee security even under self-composition, a property
needed in our analysis. Thus, we use obfuscation secure under composition. In
particular, we show that composable obfuscation of multibit point functions ex-
ists if and only if composable obfuscation of point functions exists. Moreover, we
show that this construction is secure based on statistically indistinguishable POW
functions. However, if we relax the assumption to computational indistinguisha-
bility, then the construction satisfies a weaker notion of obfuscation. Finally, the
same technique can be used to obfuscate set-membership predicates and func-
tions, for polynomial-size sets.

Keywords.obfuscation, composable obfuscation, multibit point function obfusca-
tion, digital locker, point function obfuscation.

1 Introduction

One of the major problems in cryptography is obfuscation [2]. Informally, an obfusca-
tor is a compiler that converts a program into another one, called the obfuscated pro-
gram or code, that has a similar functionality but satisfies certain secrecy requirements.
Informally, the secrecy requirement stipulates that whatever “useful” information the
obfuscated code reveals is learnable from the program’s input/output behavior. In other
words, an obfuscated program should not reveal anything useful beyond executing it.
This requirement is formalized by Baraket al. [2] through a simulation-based defini-
tion called the virtual-blackbox property. The virtual-blackbox property says that every
adversary has a corresponding simulator that emulates the output of the adversary given
oracle (i.e., blackbox) access to the same functionality being obfuscated.

In the same work, Baraket al. provide impossibility results regarding general ob-
fuscation, even when the output of the adversary is restricted to predicates. In other
words, it is shown that there are certain functionalities and corresponding predicates
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where these predicates are learnable from any program implementing the functionali-
ties but not so given blackbox access to them. In light of this general negative result,
we are forced to study obfuscation of restricted classes of functions if we wish to adopt
the definition of [2]. Here, we follow this line of work. In particular, we build on the
previous work on point function obfuscation [4, 5, 12, 11] towards obfuscating slightly
more complex functions, namely point functions with multibit output. Moreover, we
show that obfuscation of point functions are not necessarily secure under composition,
a property needed in our analysis. We next go into a more detailed exposition of our
work.

Obfuscation of point functions with multibit output.A point function returns1 on a
single input and0 everywhere else. Formally,Fx(y) = 1 if y = x and0 otherwise. A
point function with multibit output generalizes point functions in that it outputs on a
single input a long string instead of1. Formally,Fx,y(z) = y if z = x, and0 otherwise.
Obfuscation of such functions has a useful application as adigital locker . A digital
locker is a strong form of symmetric encryption where secrecy holds even when the
secret key isnot uniformbut has high entropy. Real life applications include password-
based encryption where the human-generated password may be relatively strong but
nonuniform. For instance, Firefox has a password manager that acts as a digital locker
[1]. The password manager locks website credentials using a master password chosen
by the user. Then, the user has to provide this password in order to unlock the content.
Obfuscation of point functions with multibit output can be used to realize digital lock-
ers as follows: to encrypt a messagem using a keyk, simply output the obfuscation
of Fk,m. The virtual-blackbox property guarantees the secrecy of the message if the
key has superlogarithmic min-entropy because the simulator has a negligible chance in
guessing the key and consequently, compromisingm.

Even though obfuscation of point functions with multibit output is known in the
Random Oracle Model [11], it is not known in the standard model except when the func-
tion is drawn from a uniform distribution (specifically, whenx in Fx,y is uniform) [7]
or when the output length of the function is short (specifically, when|y| = O(log|x|))
[12]. Moreover, even though we provide in Section 3.2 a construction similar to the
one in [11] that works forwell-spreaddistributions on this class of functions, it is not
clear how to make the RO construction in [11] work in the standard model for any
distribution.

We provide a transformation from point function obfuscators to obfuscators of point
functions with multibit output. The idea is simple. The obfuscation of multibit point
functions consists of some number of copies of obfuscated point functions. These copies
have the property that the first and theith copy correspond to an obfuscation of the same
point function if and only if theith bit in the multibit output is1. In more detail, letFa,b

be the multibit point function to be obfuscated,t = |b|, andO(Fa, r) be the obfuscation
of the point function,Fa, using randomnessr. Then, the obfuscation ofFa,b consists
of O(Fa, r0), O(x1, r1), ..., O(xt, rt), wherexi is Fa if bi = 1 andxi is a uniformly
chosen point function otherwise. To recoverb given the correcta and this obfuscation,
first verify thatO(Fa, r0)(a) = 1, thenb = O(x1, r1)(a), ..., O(xt, rt)(a).



On composing obfuscation.The construction described above is very simple and mod-
ular, and one expects that its proof be likewise. However, it turns out that this is not the
case. To prove the security of the above transformation, we face an issue. Observe that
our construction is composed of a concatenation oft + 1 obfuscated point functions.
Thus, in order for our construction to be secure, the original obfuscationhasto remain
secure under composition. However, we show that the current definition of obfusca-
tion does not guarantee composition. This is also the case even for composing multiple
obfuscated copies of thesamefunction. Interestingly, the statement still holds even if
we consider obfuscation secure in the presence of auxiliary information. We emphasize
that this is a fundamental point about the definition of obfuscation that is of independent
interest.

In more detail, we show that there exists an obfuscation of point functions that
reveals the input when it is self-composed. Specifically, we show an obfuscator,O, such
that for anyx, it is possible to recoverx from O(Fx, r1), ..., O(Fx, rnlog(n)), where
n = |x|.

Moreover, similar results holds for POW functions and POW functions secure with
auxiliary information [4, 5]. At a high level, a POW function can be thought of as an
obfuscation of point function. However, POW definitions vary depending on the secrecy
requirement. There are two types of secrecy requirement: semantic perfect one-wayness
which closely resembles point function obfuscation, and indistinguishable perfect one-
wayness, which is stronger than obfuscation. Informally, indistinguishable perfect one-
wayness says that hashes of the same input are indistinguishable from hashes of random
inputs. We refer the reader to Appendix A for more detail.

In light of these negative results, we analyze the above construction using, as the
underlying primitive, three different forms of composable obfuscation of point func-
tions. First, if the underlying primitive is a composable obfuscation of point functions
(as in simply-composable obfuscation of [11]), then this construction is a composable
obfuscation of multibit point functions. This is actually a characterization: composable
obfuscation of point functions exists if and only if that of point functions with multibit
output exists. Second, we show that our construction is an obfuscation of multibit point
functions if the underlying primitive is a statistically indistinguishable POW function.3

Third, if the primitive is a computationally indistinguishable POW function, then the
construction is an obfuscation provided thaty in Fx,y, is “independent” ofx.

Finally, we show how to generalize this construction to obfuscate set-membership
predicates and functions for polynomial-sized sets. A set-membership predicate out-
puts1 if the input belongs to the set and0 otherwise, while a set-membership function
outputs a string,yi, if the input matches a set member,xi, and0 otherwise.

1.1 Related Work

Obfuscating Point Functions in the Random Oracle Model.Lynn et al. [11], inspired
by the password-hiding scheme in Unix that stores a hash of the password instead of the

3 To be accurate, the second construction satisfies approximate functionality only computation-
ally, i.e, efficiently finding an input point on which the obfuscated function differs from the
original one is hard.



password itself, propose a similar obfuscation of point functions in the random oracle
model. In this model, an obfuscator,O, has oracle access to a truly random function,
R. In order to construct an obfuscation of a point function,Fx, O queriesR on x to
get z = R(x) and then storesz in the obfuscated code,O(Fx). O(Fx) also contains
preprocessing code which on inputy returns1 if and only if R(y) = z.

It is easy to see thatO(Fx) andFx have approximate functionality (they have the
same functionality almost always). Intuitively,O(Fx) is an obfuscation ofFx because
R’s answers on queries are completely independent and random. So, storingR(x) does
not reveal any information aboutx, but it allows verification of a guess, which is also
achievable via oracle access toFx.

Also, Lynn et al. [11] generalize this construction to obfuscate multibit output
point functions and set-membership predicates and functions in the random oracle
model. To obfuscate a multibit point function,Fx,y, choose a randomr, and output
r, R1(x, r), R2(x, r)⊕ y, whereR1 andR2 denote the first and second half of the bits
of R(.). This construction is secure under composition (as in Definition 2 or the simply-
composable definition of [11]).

Obfuscating Point Functions in the standard model.Perfectly one-way (POW) func-
tions [4] can be used to obfuscate a point functionFx by replacing the random oracle
in [11] with a POW function,H. Here, instead of storingR(x), we storeH(x) in the
obfuscated code and use the verifier forH to determine ifH(x) is a valid hash of the
input.

Canetti [4] constructs a POW hash function based on a strong version of the Diffie-
Hellman assumption. In particular, it assumes that the Diffie-Hellman assumption holds
not only against uniform distributions but also with respect to any well-spread distribu-
tion. Moreover, Wee [12] shows how to obfuscate point functions and point functions
with logarithmic output based on a strong one-way permutation assumption. Specifi-
cally, the assumption is that any polynomial-time machine can invert the permutation
on at most a polynomial number of points. The two constructions mentioned so far use
a weaker notion of obfuscation than the one in [2]. Specifically, the simulator in [4,
12] depends on the simulation-error gap between the adversary and the simulator. (see
Definition 1 for more detail).

Canettiet al. [5] provide two constructions of POW functions based on standard
computational assumptions (in particular, based on either claw-free permutations or
one-way permutations). The simulator for these constructions does not depend on the
gap. However, the input distribution is assumed to have high min-entropy (nε). More-
over, Futoranskyet al. [7] show how to obfuscate point functions and point functions
with multibit output based on standard assumption. However, the input distribution
is assumed to be uniform. Finally, Hofheinzet al. [10] obfuscate point functionsde-
terministically. However, the secrecy requirement does not guarantee no information
leakage, rather that it is hard to recover the input in its entirety. This obfuscation is
self-composable because the obfuscator is deterministic. However, it is not composable
according to our notion. In particular, different obfuscated point functions can not be
securely composed.



2 Preliminaries

Let Xn denote a probability distribution on{0, 1}n andUn the uniform distribution
on {0, 1}n. Then,X = {Xn}n∈N is called a distribution ensemble (distribution for
short). A distribution is calledwell-spread if it has superlogarithmic min-entropy, i.e.,
maxkPr[Xn = k] is a negligible function inn. Moreover,a ← Dn means thata is
chosen from{0, 1}n according to distributionDn. Finally, denote by∆(Xn, Yn) the
statistical difference between the two distributionsXn andYn over{0, 1}n. Formally,
∆(Xn, Yn) = 1

2Σa∈{0,1}n |Pr[Xn = a]− Pr[Yn = a]|.
A probabilistic function family is a set of probabilistic functions having common

input and output domains. Formally, we denote byKn the key space that describes the
functions in the set, byRn the randomness domain, byIn the input domain, and byOn

the output range. Then,Hn = {Hk}k∈Kn
is a function family with key spaceKn and

randomness domainRn if, for all k ∈ Kn,Hk : In ×Rn → On. A probabilistic func-
tion family haspublic randomnessif the random input is revealed in the output; for all
k, Hk(x, r) = r, H ′

k(x, r) for some deterministic functionH ′
k. A family ensemble is

a collection of function families, i.e.,H = {Hn}n∈N. In this paper, we deal only with
polynomial-time (inn) computable function families and family ensembles.

Let PPT denote any probabilistic polynomial-time Turing machine, and nonuniform
PPT any probabilistic polynomial-sized circuit family. A PPT (respectively nonuniform
PPT)A with oracle access toO is denoted byAO.

A function,µ, is called negligible if it decreases faster than any inverse polynomial.
Formally, it is negligible if, for any polynomialp, there exists anNp such that, for all
n ≥ Np: µ(n) < 1

p(n) . In this work, we reserveµ to denote negligible functions. An
uninvertible function,f , is an efficiently computable function that is hard to invert with
respect to a well-spread distribution. Formally, ifXn is a well-spread distribution, then
for any PPT,A, Pr[x← Xn, A(f(x)) = x] < µ(n).

A point function , Fx : {0, 1}n → {0, 1}, outputs1 if and only if its input matches
x, i.e.,Fx(y) = 1 iff y = x. A point function with multibit output , Fx,y : {0, 1}n →
{y, 0}, outputsy if and only if its input matchesx, i.e., Fx,y(z) = y iff z = x. A
set-membership predicate, FS={x1,...,xt} : {0, 1}n → {0, 1}, outputs1 if and only if
its input is inS. Here,S is assumed to have at most polynomially many elements. A
set-membership function, F(x1,y1),...,(xt,yt) : {0, 1}n → {y1, ..., yt, 0} outputsyi if
and only if the input matchesxi.

2.1 Obfuscation

We adopt the definition of obfuscation used in [4, 12] because obfuscation of point
functions is known for this notion only (if the distribution on this class of functions
is not restricted). This definition is weaker than the one in [2] because the size of the
simulator is allowed to depend on the quality of the simulation. Formally,

Definition 1 (Obfuscation). Let F be any family of functions. A PPT,O, is called an
obfuscatorof F, if:

1. Approximate FunctionalityFor anyF ∈ F: Pr[∃x, O(F )(x) 6= F (x)] is negligi-
ble. Here, the probability is taken over the coin tosses ofO.



2. Polynomial SlowdownThere is a polynomialp such that, for anyF ∈ F, O(F )
runs in time at mostp(TF ), whereTF is the worst-case running time ofF .

3. Weak Virtual Black-box PropertyFor any nonuniform PPTA and any polynomial
p, there exists a nonuniform PPTS such that for anyF ∈ F and sufficiently large
n:

|Pr[b← A(O(F )) : b = 1]− Pr[b← SF (1|F |) : b = 1]| ≤ 1
p(n)

.

3 Obfuscating Point Functions with Multibit Output

We show how to obfuscate point functions with multibit output as well as set-membership
predicates and functions for polynomial-sized sets. Because the constructions and proofs
for obfuscating set-membership predicates and functions are similar to that for multibit
output point function, we focus on the latter. We comment on the former in Section 3.1.

We use obfuscated point functions as building blocks in obfuscating point functions
with multibit output. The idea is simple. To obfuscateFx,y, we encodey bit-by-bit using
an obfuscator forFx. Specifically, if theith bit of y is 1, it is encoded as an obfuscation
of Fx, otherwise, it is encoded as an obfuscation of an independent and uniform point
function. In more detail, letH be a randomized obfuscator for point functions. Then the
obfuscation containsH(Fx, r),H(Fx1 , r1), ...,H(Fxt

, rt), wheret = |y| andxi = x
if the ith bit in y is 1, otherwise,xi is uniform. The first obfuscated point functions
always corresponds tox, and is used to check whether the input is actuallyx. Now, y
can be recovered givenz = x. First, check thatH(Fx, r)(z) = 1. If so, for everyi,
yi = H(Fxi , ri)(z).

Formally, we present an obfuscator,O, for the class of multibit output point func-
tions,F. O, on inputFx,y, wherey has lengtht, selectsr1, ..., rt+1 from Rn, the ran-
domness domain of the point function obfuscator,H. It then computesH(Fx, r1). It
also computesH(Fx, ri+1) if the yi = 1 andH(zi+1, ri+1) otherwise, wherezi+1 is
uniform. Letux = u1, ..., ut+1 be the sequence of obfuscated functions just computed.
ThenO outputs the following obfuscation,O(Fx,y), with ux stored in it.

input : a

if u1(a) = 0 then1

return 0;2

else3

for i← 2 to t + 1 do4

if ui(a) = 1 then5

yi−1 ← 1;6

else7

yi−1 ← 0;8

return y = y1, ..., yt;9

end10

Algorithm 1 : O(Fx,y)

Analysis. This construction is simple and modular. It is possible to replaceH by any
relative of point function obfuscation such as POW functions (see Appendix A) and an-



alyze the security of the construction based on the security of the underlying primitive.
We would like to prove that our construction is secure based on the simple assumption
that the underlying primitive is an obfuscation of point functions. However, as we show
in Section 4, this is not possible. This is so because the definition of obfuscation does
not guarantee even self-composition. Thus, if we use such a primitive, this construction
becomes provably insecure.

We investigate the secrecy of this construction based on three underlying primi-
tives with different composition properties. In the first case, we consider the notion of
composable obfuscation (as in Definition 2, also known as simply-composable obfus-
cation in [11]). We show a characterization that composable point function obfuscation
exists if and only if composable multibit point function obfuscation exists. In the sec-
ond case, we show that ifH is a statistically indistinguishable POW function, then our
construction is secure. Finally, ifH is a computationally indistinguishable POW then
this construction satisfies a weaker form of obfuscation wherey, in Fx,y, has to be
independent ofx.

Analysis based on composable obfuscation.In this work, composable obfuscation
refers to the fact that concatenating any sequence of obfuscated functions, where the
functions are taken from the same class, constitutes an obfuscation for that sequence
of functions. This form of composition, also known as simply-composable obfuscation
in [11], should not be confused with self-composition which means that concatenat-
ing a sequence of obfuscated functions,where these functions are identical, does not
compromise secrecy. Formally,

Definition 2 (t-Composable Obfuscation, [11]).Let F be any family of functions. A
PPT,O, is called at-composable obfuscator forF, if:

1. Approximate functionality and polynomial slowdown are as before.
2. Virtual Black-box propertyFor any nonuniform PPT,A, and any polynomial,p,

there is a nonuniform PPT,S, such that for any functionsF1, ..., Ft(n) ∈ F (n is a
security parameters, e.g.,n = |F1| = ... = |Ft(n)|) and sufficiently largen:

|Pr[b← A(O(F1), ...O(Ft(n)) : b = 1]−Pr[b← SF1,...,Ft(n)(1n) : b = 1]| ≤ 1
p(n)

If O is a t-composable obfuscator forF for any polynomialt, then it is called a com-
posable obfuscator.

If H satisfies(t + 1)-composable obfuscation for somet, then our construction
can be shown to be an obfuscation of multibit point function with output lengtht.
Approximate functionality and polynomial slowdown follow from the corresponding
properties onH. By the virtual black-box property onH, the output ofA(O(Fx,y) =
O(Fx), O(Fx1), ..., O(Fxt(n))) can be simulated bySFx,Fx1 ,...,Fxt(n) (1n), wherexi =
Fx if yi = 1 andxi is uniform otherwise. Moreover, oracle access toFx, Fx1 , ..., Fxt(n)

can be simulated with oracle access toFx,y: If S queries any of its oracle on a point
z such thatFx,y(z) = 0, then answer0 (this may incur a negligible simulation error
only), otherwise,z = x soy can be fully recovered. Thus, this construction satisfies the
virtual black-box property.



Observe that our construction is acomposableobfuscation of multibit point func-
tions with the appropriate parameters. Specifically, if the output length of the multibit
point function is restricted to at mostt, then this construction is at′-composable obfus-
cation ifH is (t + 1)t′-composable. In addition, it is easy to see that the existence of a
t-composable obfuscation of multibit point functions implies at-composable obfusca-
tion of point functions. Formally, we have the following characterization.

Theorem 1. Composable obfuscators of point functions with multibit output exist if
and only if composable obfuscators of point functions exist.

Specifically, if a point function obfuscator,H, is (t + 1)t′-composable (as in Def-
inition 2) then the above construction is at′-composable obfuscation of multibit point
functions with output lengtht. On the other hand, at-composable obfuscation of multi-
bit point functions implies at-composable obfuscation of point functions.

Analysis based on statistical indistinguishability.SupposeG is a statistically indistin-
guishable POW family ensemble (see Appendix A for the formal definition). We can
replaceH by G in the above construction. Specifically, the obfuscator,O, samples a
key,k, for G and replacesH(x, .)(a) with V (a,Gk(x, .)), whereV is the verification
algorithm forG. This results in an obfuscation of point function with multibit output ex-
cept withcomputational approximate functionality[12], i.e, no adversary can efficiently
find a point on which the original function differs from the obfuscated one. This relax-
ation to approximate functionality is necessary when using statistical POW functions
because they can not be statistically collision resistant. On the other hand, we argue that
the result satisfies the virtual-blackbox property. Informally, from the fact thatG is a
statistical POW function we can conclude that an obfuscation ofFx,y, wherex is taken
from a well-spread distribution andy is arbitrary, is statistically close to a sequence of
hashes of random inputs. It follows that for all but polynomially manyx, an obfusca-
tion of Fx,y is indistinguishable from random hashes. Consequently, we get a simulator
that runs the adversary on random hashes unlessx is taken from that polynomial set,
in which case the simulator can recovery and run the adversary on an obfuscation of
Fx,y. Formally,

Theorem 2. Let G be a statistically(t + 1)-indistinguishable POW function (as in
Definition 5). Then, the above construction is an obfuscation of point functions with
multibit output lengtht (as in Definition 1).

Proof (Sketch).Polynomial slowdown follows immediately from the fact thatG has a
polynomial output length. Also, by public verification and collision resistance of POW
functions (definition 3), it follows thatO satisfies computational approximate function-
ality.

Virtual black-box property.Recall, the definition of statistical indistinguishability says
that for any well-spread distribution,X:

∆(Gk(Xn, R1
n), ..., Gk(Xn, R(t+1)(n)

n ), Gk(U1
n, R1

n), ..., Gk(U t(n)
n , R(t+1)(n)

n )



is negligible, where each distributionRi
n (respectively,U i

n) is the same asRn (respec-
tively, Un).

Using the fact that for any function,λ, ∆(λ(X), λ(Y )) ≤ ∆(X, Y ), we have for
any distribution,XY on(x, y), where the corresponding distribution onx is well-spread:

∆(O(XYn), Gk(U1
n, R1

n), ..., Gk(U t(n)
n , R(t+1)(n)

n ) (1)

is negligible. (We assume without loss of generality thatO(Fx,y) consists only of the
t + 1 G-hashes.)

Using the same technique from the proof of Theorem 4 in [4], it can be shown that
O(Fx,y) is indistinguishable fromG-hashes of uniform strings on all but a polynomial
number ofx. That is, for any nonuniform PPT,A, and any polynomial,p, there exists a
polynomial size family of sets,{Ln}, such that for sufficiently largen, andx /∈ Ln and
anyy:

|Pr[b← A(O(Fx,y)) : b = 1]− Pr[u1, ..., ut+1 ← Un, ..., Un,

r1, ..., rt+1 ← Rn, ..., Rn, b← A(Gk(u1, r1), ..., Gk(ut+1, rt+1)) : b = 1]| ≤ 1
p(n)

.

(2)
Intuitively, this is true because otherwise there is a super-polynomial number of of val-
ues forx (with a corresponding value fory), on whichA can distinguishO(Fx,y) from
hashes of random strings. By defining a well-spread distribution, e.g., a uniform distri-
bution, on this superpolynomial number of values forx, A violates (1).

Now, for any nonuniform PPT,A, and a polynomial,p, we construct a nonuniform
PPT,S that simulatesA. S receives the polynomial size set,Ln, as an advice string. It
checks if the oracle,Fx,y, responds with the nonzero value,y, to any element in the set,
Ln. If so, thenS can computeO(Fx,y) and simulateA on it. Otherwise,x is not inLn,
soS runsA on hashes of random inputs. By (2), this is close to a true simulation. For
more detail, we refer the reader to the proof of Theorem 4 in [4]. ut

Analysis based on computational indistinguishability.We would like to weaken the as-
sumption in Theorem 2 to computational indistinguishability. However, it is not clear
how to use computational indistinguishability, i.e.,Gk(x, r1), ..., Gk(x, rt+1) is com-
putationally indistinguishable from hashes of uniform, to conclude thatO(Fx,y) is in-
distinguishable from hashes of random inputs. It seems that the problem lies in the
potential dependence ofy on x, e.g.,y may be equal tox. This is not a problem in the
statistical case because we can use the fact that statistical difference does not increase
by applying the same function on both distributions. In the computational setting, if
we use the traditional blackbox reduction, we need to constructO(Fx,y) from hashes
of x and then runA on it. However, it is not clear how to do this ify = x. On the
other hand, supposey is independent ofx, e.g.,y is taken independently from a uni-
form distribution. Then, for somey, it is possible to computeO(Fx,y) given hashes of
x, Gk(x, r1), ..., Gk(x, rt+1), by replacingGk(x, ri) with a hash of a random string if
and only if theith bit of y is 0. Thus, we know that computational indistinguishability
gives us a weaker notion of obfuscation where the simulator depends on the distribution
ony. Whether computational indistinguishability gives us the standard virtual-blackbox



property remains unknown. Nevertheless, this weak obfuscation can be used as a digital
locker as described in the introduction. The caveat is that the message being encrypted
should be independent of the encryption key. This is the case if, for instance, the mes-
sage is chosen without knowledge of the key.

Formally, the virtual black-box property becomes: for any nonuniform PPTA, any
polynomialp, and any (efficiently samplable) distributionY, there exists a nonuniform
PPTS such that for anyx and sufficiently largen:

|Pr[y ← Yn, b← A(O(Fx,y)) : b = 1]− Pr[y ← Yn, b← SFx,y (1|Fx,y|) : b = 1]|

≤ 1
p(n)

. (3)

Finally, we remark that this construction has either approximate or computational ap-
proximate functionality depending on whether the POW function satisfies statistical
or computational collision resistance. Formally, we have the following theorem whose
proof is similar to that for Theorem 2 and is not recreated here.

Theorem 3. If G is a computationally(t+1)-indistinguishable POW function, then the
above construction is a weak obfuscation of point function with output lengtht, where
the virtual-blackbox property is as in (3).

3.1 Obfuscating Set-membership Predicates and Functions

To obfuscate a set-membership predicate, simply obfuscate the point functions on every
element in the set (this is feasible because the set has a polynomial size), and then store
all the obfuscated functions in a randomly permuted order. To determine whether a par-
ticular input is in the set, we only need to check whether any of the obfuscated functions
outputs1 on this input. It can be shown that composable obfuscation of point functions
exists if and only if this construction is an obfuscation of set-membership predicate.
Moreover, to obfuscate a set-membership function,F(x1,y1),...,(xt,yt), we only need to
run the obfuscator for the multibit output point function on eachFxi,yi

, and then store
these obfuscated functions in a randomly permuted order. Again, composable obfusca-
tion of point functions is a necessary and sufficient condition for the security of this
construction.

3.2 A More Efficient Obfuscation of Multibit Point Functions for Well-spread
Distributions

It is interesting to note that if we restrict our attention to well-spread distributions on
x for the multibit point function,Fx,y, then we have a more efficient construction,
similar to the one in the RO model [11]. Specifically, letG be a POW function with
public randomness. To obfuscateFx,y, selectr1 andr2 uniformly from the randomness
domain ofG and outputH(x, r1), r2, z, whereGk(x, r2) = (r2, v0 andz = y ⊕ v
4. To recovery from (a, b, c) andx′, first check thatV (x′, a) = 1, if so, then return

4 Without loss of generality, we assume thaty andv have the same length. Otherwise, the second
input should be of a longer input, sayx0t.



y = c⊕ v, whereGk(x′, b) = b, v. Even though this construction is more efficient than
the first one, it suffers from three problems. First, in order to completely hidey, it is
not sufficient thatG be indistinguishable as in Definition 6 rather its output has to be
indistinguishable from uniform. If, for example, the first bit of the hash is always0, then
the first bit ofy is revealed. Second, for the proof to go through, we need to assume that
G is statisticallyindistinguishable fromuniformbecausey may depend onx. The third
and more important problem is that it is not clear how to generalize this construction
to work for any distribution. In particular, it seems thatG has to behave as a random
oracle. In other words, for anyx, it should be the case that(Gk(x, r1), r2, Gk(x, r2))
should look pseudorandom, unless the adversary guessesx.

4 On Composable Obfuscation of Point Functions

In Section 3, we provided a transformation from an obfuscation of a point function to
an obfuscation of a point function with multibit output. This transformation requires an
essential property on the given obfuscation, specifically, composition. In other words,
our construction assumes that we have an obfuscation of a point function such that
security is not compromised when multiple obfuscated functions are given. Notably,
Theorems 1, 2, and 3 all assume thatH satisfies some form of composable security.
Since the obfuscator is probabilistic, composable security is nontrivial. In this section,
we address this question. Specifically, does the basic definition of obfuscation imply
composition? From a different angle, Canettiet. al. [5] ask if semantic perfect one-
wayness implies indistinguishable perfect one-wayness or ift-indistinguishable POW
functions aret+1-indistinguishable. We answer these questions negatively: such prim-
itives are not necessarily secure even under self-composition5. In more detail, we show
that weakc-indistinguishable POW functions (where the probability is taken over the
choices of the seed as well, [5]) are not necessarilyc+1-indistinguishable for any con-
stantc. We also show that POW functions, POW functions with auxiliary input, and ob-
fuscation of point functions do not imply composition. Specifically,1-indistinguishable
POW functions and obfuscation of point functions are not necessarily secure for a poly-
nomial number of copies. Moreover, even though1-indistinguishable POW functions
with auxiliary input is alsoc-indistinguishable for any constantc, it is not necessarily
t-indistinguishable with auxiliary input for a polylogarithmict.

In Section 4.1, we show a tight impossibility result for weak POW functions. Specif-
ically, we show that for any constantc, weakc-indistinguishable POW functions are
not weaklyc + 1-indistinguishable. We also show that ift is polynomial, then weak
t-indistinguishable POW functions are not weaklyn(t + 1)2-indistinguishable. In Sec-
tion 4.2, we prove that sematic POW functions,1-indistinguishable POW functions, and
point function obfuscation are not secure if composed roughlynlog(n) times. More-
over, if we consider the same functions with respect to auxiliary information, then we
have a tighter result where they are not secure with respect to auxiliary information if
composed superlogarithmically-many times.

5 Recall, self-composition refers to concatenation of the output of a randomized function on the
sameinput.



4.1 Weak POW functions Are Not Self-composable in General

A weak POW functions deviates from Definition 6 in that the probability is taken over
the choices of the function key,k, as well. Here, we show that a weakc-indistinguishable
POW function with respect to the uniform distribution may not bec + 1 indistinguish-
able for any constantc. The idea is simple: we take any weak3c-indistinguishable
POW function and convert it into a new function that isc-indistinguishable but the out-
put contains shares of the input such that it is easy to compute the input fromc + 1
hashes. Informally, we addc uniform strings to the original seed and make sure that a
hash of the input using any one of thosec strings appears in the output with probability

1
c+1 . Also, with the same probability the exclusive-or of the input and all the aforemen-
tioned hashes appears in the output. Therefore, if the output of the function contains all
c hashes and the exclusive-or of these hashes with the input, then it is easy to recover
the input.

Formally, letH be any (possibly weak)3c-indistinguishable POW function with key
space,Kn, and public randomness. We also assume thatH is also3c-indistinguishable
from uniform. Define a new family ensemble,G, with a key space(Kn, Rn, ..., Rn︸ ︷︷ ︸

c

), an

input domain({0, 1}n, {0, 1}n), and randomness domain(Rn, {0, 1}logc), as follows:

Gk,u1,...,uc
((x1, x2), (r1, r2)) ={

r2,Hk(x1, r1),Hk(x2, r1),Hk(x1, ur2) if r2 6= 0
r2,Hk(x1, r1),Hk(x1, u1)⊕Hk(x1, u2)...⊕Hk(x1, uc)⊕ x2 if r2 = 0

Now, observe that it is easy to recoverx2 from Gk,u1,...,uc
((x1, x2), (r0

1, 0)), ...,
Gk,u1,...,uc

((x1, x2), (rc
1, c)). Thus,G is not (c + 1)-indistinguishable becausec + 1

randomly-chosen hashes of(x1, x2) have distinctr2 (i.e., match the aforementioned
hashes) with probability (c+1)!

(c+1)c+1 . On the other hand, we argue thatG is a weakc-
indistinguishable POW function with respect to the uniform distribution . First, com-
pleteness and collision resistance follow from that onH. Second,

Gk,u1,...,uc
((x1, x2), (r1

1, r
1
2)), ..., Gk,u1,...,uc

((x1, x2), (rc
1, r

c
2))

is indistinguishable from

Gk,u1,...,uc
((u1, x2), (r1

1, r
1
2)), ..., Gk,u1,...,uc

((uc, x2), (rc
1, r

c
2))

by the3c-indistinguishability property onH, whereu1, ..., uc are uniform and indepen-
dent strings. Moreover, by the3c-indistinguishability from uniform, we have

Gk,u1,...,uc
((u1, x2), (r1

1, r
1
2)), ..., Gk,u1,...,uc

((uc, x2), (rc
1, r

c
2))

is indistinguishable from

Gk,u1,...,uc((u1, v1), (r1
1, r

1
2)), ..., Gk,u1,...,uc((uc, vc), (rc

1, r
c
2)),

wherev1, ..., vc are uniform and independent strings.



Moreover, this result can be generalized to any polynomialt. If H is3t-indistinguishable
from uniform, thenG is a weakt-indistinguishable POW function with respect to the
uniform distribution. On the other hand,G is notn(t + 1)2-indistinguishable with re-
spect to the uniform distribution. This is because all the(t + 1) “shares” appear in
n(t + 1)2 hashes with overwhelming probability. This result is stated formally in the
following theorem.

Theorem 4. Let H be any weak POW function that is3t-indistinguishable from uni-
form and has public randomness. Then for any constantc ≤ t, there exist weak POW
functions that arec-indistinguishable (respectively,t-indistinguishable) with respect
to the uniform distribution but notc + 1-indistinguishable (respectively,n(t + 1)2-
indistinguishable) with respect to the uniform distribution.

4.2 Both Point Function Obfuscation and POW Functions Are Not
Self-composable in General

We show that POW functions, POW functions with auxiliary input, obfuscation of point
functions, and obfuscation of point functions with auxiliary input are not generally self-
composable. Also, we observe that the obfuscation of point functions in [12] is not self-
composable as well. The idea is simple, we start with a POW function and append to
its output a hardcore bit, specifically the inner product between the input and a random
string. This hardcore bit does not compromise security of a single hash. However, the
function becomes completely insecure for polynomially many hashes as the input can
be recovered with high probability by solving a linear system of equations.

We present the proof for the case of POW functions with auxiliary input only as
the proofs for the other cases follow similar lines. LetH be a POW function that is
1-indistinguishable with auxiliary input. Define a new family ensemble,G, such that

Gk(x, (r1, r2)) = r2,Hk(x, r1), 〈x, r2〉,

where〈x, r2〉 is the inner product ofx andr2 mod2. We argue thatG is1-indistinguishable
with auxiliary input. First, completeness and collision resistance follow from that onH.
Moreover, for any uninvertible functionF , F (x),H(x, r1), r2 is one-way inx because
H is 1-indistinguishable with auxiliary input. Therefore, by Goldreich-Levin theorem
[8], we have:

F (x), r2,H(x, r1), 〈x, r2〉 is indistinguishable fromF (x), r2,H(x, r1), b, whereb
is uniform.

By 1-indistinguishability with auxiliary input onH: F (x), r2,H(x, r1), b, is indis-
tinguishable fromF (x), r2,H(Un, r1), b.

On the other hand,G is not polylogarithmically indistinguishable with auxiliary
input. To see that, letF be a function that outputs the lastn − ω(1)log(n) bits of its
input. Then,F is uninvertible with respect to the uniform distribution. However, we
argue that givenF (x) and a polylogarithmic number of hashes,x can be recovered
completely by solving a system of linear equations. Formally,



Lemma 1. For any two constantsc andε, there exists at which is polylogarithmic in n
(specifically,t = ω(1)log(n)log ω(1)log(n)

−ln( 1
nc +ε)

) and a PPT,A, such that for anyk ∈ Kn:

Pr[x← Un, r1, ..., rt ← RG
n , ..., RG

n , A(F (x), Gk(x, r1), ..., Gk(x, rt))] ≥
1
nc

,

whereRG
n is the randomness domain forGk.

Proof. Let A be a PPT that ignores allH hashes (Hk(x, .)) but plugins the values of the
lastn− ω(1)log(n) bits ofx in the system of linear equations:

〈x, r2
1〉, ..., 〈x, r2

t 〉.

We show that by solving this system we can recoverx with probability 1
nc . Given the

last n − ω(1)log(n) bits of x revealed byF , we can recoverx from ω(1)log(n) lin-
early independent equations on the firstω(1)log(n) bits. Thus, in the rest of the proof
we show that we have this many linearly independent equations int uniformly chosen
equations with probability1

nc . First, observe that a uniform and independentr is lin-
early independent fromω(1)log(n) − 1 or less equations with probability at least1

2 .
Consequently, the probability thatt equations containω(1)log(n) linearly independent
equations is at least:

(1− 1

2
log

ω(1)log(n)
−ln( 1

nc +ε)

)ω(1)log(n) ≥ eln( 1
nc +ε) − ε =

1
nc

.

ut

Using the same construction,G, and a similar analysis, one can show that1-indistinguishable
POW functions (respectively obfuscation of point functions) are not necessarilyt-indistinguishable
(respectively, secure undert-self-composition), wheret = nlog n

−ln( 1
nc +ε)

. As a con-

crete example, the same analysis can be used to show that the obfuscation of point
function in [12] is not secure when composingt obfuscated copies of the same point
function.

The previous results can be stated formally as follows.

Theorem 5. If there exists a1-indistinguishable POW function (respectively, a point
function obfuscation) with auxiliary input then there exists another1-indistinguishable
POW function (respectively, another point function obfuscation) with auxiliary input
such that for any constantsc andε, the latter is nott-indistinguishable (respectively, is
not at-self-composable point function obfuscation) with auxiliary input with respect to
the uniform distribution, wheret = ω(1)log(n)log ω(1)log(n)

−ln( 1
nc +ε)

.

Moreover, if there exists a1-indistinguishable POW function (respectively, a point
function obfuscation) then there exists another1-indistinguishable POW function (re-
spectively, another point function obfuscation) such that for any constantsc andε, the
latter is nott-indistinguishable (respectively, is not at-self-composable point function
obfuscation) with respect to the uniform distribution, wheret = nlog n

−ln( 1
nc +ε)

.
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A Perfectly One-way Probabilistic Hash Functions

A perfectly one-way hash function, POW for short, is a probabilistic function that sat-
isfies collision resistance and hides all information about its input. Due to its proba-
bilistic nature, such a function is coupled with an efficient verification algorithm that
determines, given(x, y), whethery is a valid hash ofx. Usually, collision resistance of
deterministichash functions requires that it be hard to find two input strings mapped to
the same hash. However, because these functions are probabilistic by nature, we need
to modify collision resistance to take the verification process into account. In particular,
collision resistance says that it is hard to find two input strings and a output string such
that the verification scheme accepts this output as a valid hash of both input points.
Formally,



Definition 3 (Public Verification, [4]). A family ensemble,H = {Hn}n∈N, satisfies
public verification if there exists a deterministic polynomial-time algorithmV such
that:

1. Completeness:∀k ∈ Kn, x ∈ {0, 1}n, r ∈ Rn, V (x,Hk(x, r)) = 1.
2. Collision Resistance: For any nonuniform PPT,A:

Pr[k ← Kn, (x1, x2, y)← A(k) : x1 6= x2 ∧ V (x1, y) = V (x2, y) = 1],

is negligible.

There are several ways to formulate information hiding, some of which are not
equivalent. We start with the most basic definition, namely semantic perfect one-wayness,
and later present two more definitions, namely, statistical and computational indistin-
guishability. Semantic perfect one-wayness has its roots in semantic security of prob-
abilistic encryption [9] which requires that every function that can be computed given
the ciphertext can also be computed without it. However, the notion of secrecy in this
setting is slightly weaker than semantic security because a hash can be used to verify
whether a guess is correct or not. This notion is captured by a simulation-based defini-
tion which requires that every predicate computable given a hash can also be computed
by a “simulator” with oracle access to the corresponding point function. Formally,

Definition 4 (Semantic Perfect One-wayness, [4]).A family ensembleH = {Hn}n∈N,
is calledsemantically perfectly one-wayif it satisfies public verification (Definition 3)
and, for any nonuniform PPT,A, and polynomial,p, there exists a nonuniform PPTS
such that for sufficiently largen, anyk, and any distribution,{Xn}n∈N:

|Pr[x← Xn, r ← Rn, b← A(k,Hk(x, r)) : b = 1] −

Pr[x← Xn, r ← Rn, b← SFx(k) : b = 1]| ≤ 1
p(n)

.

RecallFx is the point function onx.

Remark 1.Note that semantic perfect one-wayness corresponds in a straightforward
way to the virtual blackbox property required for obfuscating point functions in Defini-
tion 1. Thus, a function satisfying definition 4 is an obfuscation of a point function (with
computational approximate functionality). However, the converse may not be true.

In more detail, letH be a semantic POW function. To obfuscateFx, sample a seed,
k, and random string,r, for H and output the obfuscation,O(Fx) = k, Hk(x, r). The
new function,O(Fx), simply computes the predicateV (.,Hk(x, r)). It can be shown
that O is an obfuscator for the class of point functions. Completeness and collision
resistance onH imply computational approximate functionality while semantic perfect
one-wayness implies the virtual blackbox property. On the other hand, an obfuscation
of point functions may not be a POW function because approximate functionality does
not rule out collisions chosen in an adversarial way.

As mentioned in the introduction, neither Definition 1 nor Definition 4 is sufficient
for the security of our construction in Section 3 because they do not guarantee composi-
tion. Thus, we analyze our construction based on primitives with different composable



properties. Two of these primitives are statistical and computational POW functions,
which are defined in the rest of this appendix.

Definitions of composable POW functions are known when the input is assumed
to be sampled from some well-spread distribution [5]. Specifically, this notion requires
hardness of indistinguishability between hashes of the same input and hashes of differ-
ent inputs. It is interesting to note that if we formulate this notion against unbounded
adversaries (as in Definition 5) then it is equivalent to the information-theoretic version
of semantic perfect one-wayness [6], (where the adversary in Definition 4 is assumed
to be unbounded). On the other hand, we do not know whether this equivalence holds
in the computational setting. However, we know that the latter notion implies semantic
perfect one-wayness [5].

Statistical Perfect One-wayness.Statistical information hiding is captured by requiring
statistical closeness between hashes of the same input and those of different inputs.

Definition 5 (Statistical t-Indistinguishability). A family ensembleH = {Hn}n∈N,
whereHk : {0, 1}n × Rn → {0, 1}l(n) for some polynomiall, is calledstatistically t-
indistinguishableif it satisfies public verification (Definition 3) and for any well-spread
distributionX = {Xn}n∈N and anyk ∈ Kn,

∆(Hk(Xn, R1
n), ...,Hk(Xn, Rt(n)

n )︸ ︷︷ ︸
t(n)

,Hk(U1
n, R1

n), ...,Hk(U t(n)
n , Rt(n)

n )︸ ︷︷ ︸
t(n)

) ≤ µ(n),

where each distributionRi
n (respectively,U i

n) is the same asRn (respectively,Un).
Moreover, ifH is statisticallyt-indistinguishable for any polynomial,t, then it is

called statistically indistinguishable.

We note that the first construction in [5] is slightly weaker than Definition 5 in that
the input distribution needsnε min-entropy instead of superlogarithmic min-entropy.
Constructing functions with the latter property remains an open problem.

Computational Perfect One-wayness.Computational perfect one-wayness differs from
statistical perfect one-wayness in two main ways. The first and obvious difference is that
indistinguishability holds forpolynomially-bounded adversariesonly. Second, com-
putational perfect one-wayness differs depending on whether we take the presence of
auxiliary information into account. In this context, we restrict the notion of auxiliary
information to uninvertible functions about the input.

Instead of explicitly writing two definitions, one with auxiliary information and an-
other without it, we present here one definition only. To take both cases into account,
we use the convention that auxiliary information is surrounded by boxes. So, by remov-
ing the words in boxesfrom Definition 6, we get the first definition while keeping the
boxes gives us the second one. Formally,

Definition 6 (t-Indistinguishability, [3]).
Let X = {Xn}n∈N be any well-spread distribution. LetF be any (possibly proba-

bilistic) uninvertible function. A family ensembleH = {Hn}n∈N, whereHk : {0, 1}n×
Rn → {0, 1}l(n) for some polynomiall, is calledt-indistinguishablewith respect to



X, with auxiliary inputF , if it satisfies public verification (Definition 3) and for any
k ∈ Kn and any PPTA:

|Pr[x← Xn, z ← F (x) , (r1, ..., rt)← (Rn, ..., Rn) :

A(k, z ,Hk(x, r1), ...,Hk(x, rt)) = 1] −

Pr[x← Xn, (u1, ..., ut)← (Un, ..., Un), z ← F (x) , (r1, ..., rt)← (Rn, ..., Rn) :

A(k, z ,Hk(u1, r1), ...,Hk(ut, rt)) = 1]| ≤ µ(n).

If H is t-indistinguishable with any auxiliary inputF with respect to any well-

spread distributionX, then it is called t-indistinguishablewith auxiliary input . More-

over, if it is t-indistinguishablewith auxiliary input for any polynomialt, then it is

called indistinguishablewith auxiliary input .


