Obfuscating Point Functions with Multibit Output

Ran Canetti and Ronny Ramzi Dakdodk

L IBM T. J. Watson Research Center, Hawthorne, NY.
canetti@watson.ibm.com
2 Yale University, New Haven, CT.
dakdouk@cs.yale.edu

Abstract. We study obfuscation of point functions with multibit output and other
related functions. A point function with multibit output returns a string on a single
input point and zero everywhere else. We provide a construction that obfuscates
these functions. The construction is generic in the sense that it can use any per-
fectly one-way (POW) function or obfuscator for point functions.

Analyzing this construction reveals gaps in the definition of obfuscation, specifi-
cally, that it does not guarantee security even under self-composition, a property
needed in our analysis. Thus, we use obfuscation secure under composition. In
particular, we show that composable obfuscation of multibit point functions ex-
ists if and only if composable obfuscation of point functions exists. Moreover, we
show that this construction is secure based on statistically indistinguishable POW
functions. However, if we relax the assumption to computational indistinguisha-
bility, then the construction satisfies a weaker notion of obfuscation. Finally, the
same technique can be used to obfuscate set-membership predicates and func-
tions, for polynomial-size sets.

Keywordsobfuscation, composable obfuscation, multibit point function obfusca-
tion, digital locker, point function obfuscation.

1 Introduction

One of the major problems in cryptography is obfuscation [2]. Informally, an obfusca-
tor is a compiler that converts a program into another one, called the obfuscated pro-
gram or code, that has a similar functionality but satisfies certain secrecy requirements.
Informally, the secrecy requirement stipulates that whatever “useful” information the
obfuscated code reveals is learnable from the program’s input/output behavior. In other
words, an obfuscated program should not reveal anything useful beyond executing it.
This requirement is formalized by Barak al. [2] through a simulation-based defini-
tion called the virtual-blackbox property. The virtual-blackbox property says that every
adversary has a corresponding simulator that emulates the output of the adversary given
oracle (i.e., blackbox) access to the same functionality being obfuscated.

In the same work, Bara&t al. provide impossibility results regarding general ob-
fuscation, even when the output of the adversary is restricted to predicates. In other
words, it is shown that there are certain functionalities and corresponding predicates
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where these predicates are learnable from any program implementing the functionali-
ties but not so given blackbox access to them. In light of this general negative result,
we are forced to study obfuscation of restricted classes of functions if we wish to adopt
the definition of [2]. Here, we follow this line of work. In particular, we build on the
previous work on point function obfuscation [4, 5, 12, 11] towards obfuscating slightly
more complex functions, namely point functions with multibit output. Moreover, we
show that obfuscation of point functions are not necessarily secure under composition,
a property needed in our analysis. We next go into a more detailed exposition of our
work.

Obfuscation of point functions with multibit outpuf point function returnsl on a

single input and) everywhere else. Formally;,(y) = 1 if y = = and0 otherwise. A

point function with multibit output generalizes point functions in that it outputs on a
single input a long string instead df Formally,F, ,(z) = y if z = z, and0 otherwise.
Obfuscation of such functions has a useful application d&gy#al locker. A digital

locker is a strong form of symmetric encryption where secrecy holds even when the
secret key isiot uniformbut has high entropy. Real life applications include password-
based encryption where the human-generated password may be relatively strong but
nonuniform. For instance, Firefox has a password manager that acts as a digital locker
[1]. The password manager locks website credentials using a master password chosen
by the user. Then, the user has to provide this password in order to unlock the content.
Obfuscation of point functions with multibit output can be used to realize digital lock-
ers as follows: to encrypt a messageusing a keyk, simply output the obfuscation

of Fi . The virtual-blackbox property guarantees the secrecy of the message if the
key has superlogarithmic min-entropy because the simulator has a negligible chance in
guessing the key and consequently, compromising

Even though obfuscation of point functions with multibit output is known in the
Random Oracle Model [11], it is not known in the standard model except when the func-
tion is drawn from a uniform distribution (specifically, wherin F,, , is uniform) [7]
or when the output length of the function is short (specifically, wher= O(log|x|))

[12]. Moreover, even though we provide in Section 3.2 a construction similar to the
one in [11] that works fowell-spreaddistributions on this class of functions, it is not
clear how to make the RO construction in [11] work in the standard model for any
distribution.

We provide a transformation from point function obfuscators to obfuscators of point
functions with multibit output. The idea is simple. The obfuscation of multibit point
functions consists of some number of copies of obfuscated point functions. These copies
have the property that the first and tiie copy correspond to an obfuscation of the same
point function if and only if th&th bit in the multibit output is.. In more detail, let, ;,
be the multibit point function to be obfuscateds |b|, andO(F,, r) be the obfuscation
of the point function,F,, using randomness Then, the obfuscation dfy ; consists
of O(F,,19),0(x1,71), ..., O(my,7¢), Wherez; is F, if b; = 1 andz; is a uniformly
chosen point function otherwise. To recobagiven the correct: and this obfuscation,
first verify thatO(F,,r¢)(a) = 1, thenb = O(x1,71)(a), ..., O(x¢, ¢ )(a).



On composing obfuscatiolhe construction described above is very simple and mod-
ular, and one expects that its proof be likewise. However, it turns out that this is not the
case. To prove the security of the above transformation, we face an issue. Observe that
our construction is composed of a concatenation 6f1 obfuscated point functions.
Thus, in order for our construction to be secure, the original obfuschéisto remain
secure under composition. However, we show that the current definition of obfusca-
tion does not guarantee composition. This is also the case even for composing multiple
obfuscated copies of treamefunction. Interestingly, the statement still holds even if

we consider obfuscation secure in the presence of auxiliary information. We emphasize
that this is a fundamental point about the definition of obfuscation that is of independent
interest.

In more detail, we show that there exists an obfuscation of point functions that
reveals the input when it is self-composed. Specifically, we show an obfus@asuch
that for anyz, it is possible to recover from O(F;,71), ..., O(Fy, Tniog(n)), Where
n=|x|.

Moreover, similar results holds for POW functions and POW functions secure with
auxiliary information [4, 5]. At a high level, a POW function can be thought of as an
obfuscation of point function. However, POW definitions vary depending on the secrecy
requirement. There are two types of secrecy requirement: semantic perfect one-wayness
which closely resembles point function obfuscation, and indistinguishable perfect one-
wayness, which is stronger than obfuscation. Informally, indistinguishable perfect one-
wayness says that hashes of the same input are indistinguishable from hashes of random
inputs. We refer the reader to Appendix A for more detail.

In light of these negative results, we analyze the above construction using, as the
underlying primitive, three different forms of composable obfuscation of point func-
tions. First, if the underlying primitive is a composable obfuscation of point functions
(as in simply-composable obfuscation of [11]), then this construction is a composable
obfuscation of multibit point functions. This is actually a characterization: composable
obfuscation of point functions exists if and only if that of point functions with multibit
output exists. Second, we show that our construction is an obfuscation of multibit point
functions if the underlying primitive is a statistically indistinguishable POW function.
Third, if the primitive is a computationally indistinguishable POW function, then the
construction is an obfuscation provided thah F, ,, is “independent” ofc.

Finally, we show how to generalize this construction to obfuscate set-membership
predicates and functions for polynomial-sized sets. A set-membership predicate out-
puts1 if the input belongs to the set afidotherwise, while a set-membership function
outputs a stringy;, if the input matches a set membey, and0 otherwise.

1.1 Related Work

Obfuscating Point Functions in the Random Oracle Modsinn et al. [11], inspired
by the password-hiding scheme in Unix that stores a hash of the password instead of the

3 To be accurate, the second construction satisfies approximate functionality only computation-
ally, i.e, efficiently finding an input point on which the obfuscated function differs from the
original one is hard.



password itself, propose a similar obfuscation of point functions in the random oracle
model. In this model, an obfuscat@p, has oracle access to a truly random function,
R. In order to construct an obfuscation of a point functiéh, O queriesR on x to

getz = R(z) and then stores in the obfuscated cod€)(F,). O(F,) also contains
preprocessing code which on inputeturnsl if and only if R(y) = z.

It is easy to see thad(F,) and F,, have approximate functionality (they have the
same functionality almost always). Intuitivel9( F,) is an obfuscation of’, because
R's answers on queries are completely independent and random. So, statindoes
not reveal any information about but it allows verification of a guess, which is also
achievable via oracle accesskp.

Also, Lynn et al. [11] generalize this construction to obfuscate multibit output
point functions and set-membership predicates and functions in the random oracle
model. To obfuscate a multibit point functiofy, ,,, choose a random, and output
r,Ri(x,r), Re(x,r) &y, whereR; and R, denote the first and second half of the bits
of R(.). This construction is secure under composition (as in Definition 2 or the simply-
composable definition of [11]).

Obfuscating Point Functions in the standard modBerfectly one-way (POW) func-
tions [4] can be used to obfuscate a point functignby replacing the random oracle
in [11] with a POW function,H. Here, instead of storin®(x), we storeH (x) in the
obfuscated code and use the verifier foito determine ifH () is a valid hash of the
input.

Canetti [4] constructs a POW hash function based on a strong version of the Diffie-
Hellman assumption. In particular, it assumes that the Diffie-Hellman assumption holds
not only against uniform distributions but also with respect to any well-spread distribu-
tion. Moreover, Wee [12] shows how to obfuscate point functions and point functions
with logarithmic output based on a strong one-way permutation assumption. Specifi-
cally, the assumption is that any polynomial-time machine can invert the permutation
on at most a polynomial number of points. The two constructions mentioned so far use
a weaker notion of obfuscation than the one in [2]. Specifically, the simulator in [4,
12] depends on the simulation-error gap between the adversary and the simulator. (see
Definition 1 for more detail).

Canettiet al. [5] provide two constructions of POW functions based on standard
computational assumptions (in particular, based on either claw-free permutations or
one-way permutations). The simulator for these constructions does not depend on the
gap. However, the input distribution is assumed to have high min-entrgpyNiore-
over, Futoranskyet al. [7] show how to obfuscate point functions and point functions
with multibit output based on standard assumption. However, the input distribution
is assumed to be uniform. Finally, Hofheipt al. [10] obfuscate point functionde-
terministically However, the secrecy requirement does not guarantee no information
leakage, rather that it is hard to recover the input in its entirety. This obfuscation is
self-composable because the obfuscator is deterministic. However, it is not composable
according to our notion. In particular, different obfuscated point functions can not be
securely composed.



2 Preliminaries

Let X,, denote a probability distribution of0, 1} and U,, the uniform distribution
on {0,1}". Then,X = {X,},en is called a distribution ensemble (distribution for
short). A distribution is calledvell-spreadif it has superlogarithmic min-entropy, i.e.,
maxy Pr[X, = k] is a negligible function im. Moreover,a < D,, means that is
chosen from{0, 1}" according to distributiorD,,. Finally, denote byA(X,,Y,,) the
statistical difference between the two distributioxis andY,, over {0, 1}"™. Formally,
A(X'myn) = %Eae{o,l}”|Pr[Xn = Cl] - PTD/" = Cl]‘

A probabilistic function family is a set of probabilistic functions having common
input and output domains. Formally, we denotefy the key space that describes the
functions in the set, byz,, the randomness domain, By the input domain, and bg,,
the output range. ThedI™ = {Hj }recxk,, is a function family with key spac&’,, and
randomness domaiR,, if, forall k € K,,, H : I,, x R,, — O,,. A probabilistic func-
tion family haspublic randomnessif the random input is revealed in the output; for all
k, Hy(z,r) = r, H,(x,r) for some deterministic functioff;.. A family ensemble is
a collection of function families, i.efl = {H"},cn. In this paper, we deal only with
polynomial-time (inn) computable function families and family ensembles.

Let PPT denote any probabilistic polynomial-time Turing machine, and nonuniform
PPT any probabilistic polynomial-sized circuit family. A PPT (respectively nonuniform
PPT) A with oracle access t0 is denoted by4©.

A function, , is called negligible if it decreases faster than any inverse polynomial.
Formally, it is negligible if, for any polynomigp, there exists aV,, such that, for all
n > Np:p(n) < ﬁ In this work, we reserve to denote negligible functions. An
uninvertible functionf, is an efficiently computable function that is hard to invert with
respect to a well-spread distribution. FormallyXif, is a well-spread distribution, then
forany PPTA, Priz — X, A(f(z)) = ] < pu(n).

A point function, F. : {0,1}"™ — {0, 1}, outputsl if and only if its input matches
z, i.e., Fy(y) = 1iff y = x. A point function with multibit output , F, ,, : {0,1}" —

{y, 0}, outputsy if and only if its input matches, i.e., F;, ,(z) = y iff z = z. A
set-membership predicate Fs—(,, ... .} : {0,1}" — {0, 1}, outputsl if and only if

its input is inS. Here, S is assumed to have at most polynomially many elements. A
set-membership function Fi,, vy, .y : 10,1} — {y1,...,4:, 0} outputsy; if

and only if the input matches;.

2.1 Obfuscation

We adopt the definition of obfuscation used in [4,12] because obfuscation of point
functions is known for this notion only (if the distribution on this class of functions
is not restricted). This definition is weaker than the one in [2] because the size of the
simulator is allowed to depend on the quality of the simulation. Formally,

Definition 1 (Obfuscation). LetF be any family of functions. A PP®, is called an
obfuscatorof FF, if:

1. Approximate FunctionalityFor any F' € F: Pr[3z, O(F)(x) # F(z)] is negligi-
ble. Here, the probability is taken over the coin tosse® of



2. Polynomial SlowdowriThere is a polynomiap such that, for anyF" € F, O(F)
runs in time at mosp(7r), whereTr is the worst-case running time &f.
3. Weak Virtual Black-box Propertyror any nonuniform PPTA and any polynomial
p, there exists a nonuniform PRY such that for any” € F and sufficiently large
n:
\Prb — A(O(F)) :b=1] — Prlb — SP(11F)) : b= 1]| < %
pn

3 Obfuscating Point Functions with Multibit Output

We show how to obfuscate point functions with multibit output as well as set-membership
predicates and functions for polynomial-sized sets. Because the constructions and proofs
for obfuscating set-membership predicates and functions are similar to that for multibit
output point function, we focus on the latter. We comment on the former in Section 3.1.

We use obfuscated point functions as building blocks in obfuscating point functions
with multibit output. The idea is simple. To obfuscdig,,, we encode bit-by-bit using
an obfuscator fof’,. Specifically, if theith bit of y is 1, it is encoded as an obfuscation
of F,, otherwise, it is encoded as an obfuscation of an independent and uniform point
function. In more detail, letf be a randomized obfuscator for point functions. Then the
obfuscation containgl (F,,r), H(Fy,,71),....H(Fy,,7¢), wheret = |y| andz; = «
if the ith bit in y is 1, otherwise,z; is uniform. The first obfuscated point functions
always corresponds to, and is used to check whether the input is actualliow, y
can be recovered given = z. First, check that? (F,,r)(z) = 1. If so, for everyi,
yi = H(Fy,,71)(2).

Formally, we present an obfuscatat, for the class of multibit output point func-
tions,F. O, on inputF} ,, wherey has length, selects-, ..., r.4; from R,,, the ran-
domness domain of the point function obfuscaf@r, It then computedi (F,,ry). It
also computed? (F,,r;+1) if they; = 1 and H(z;+1,r;41) otherwise, where; 1 is
uniform. Letu, = ug, ..., us11 be the sequence of obfuscated functions just computed.
ThenO outputs the following obfuscatiod)(F , ), with u, stored in it.

input: a

1 if uy(a) = 0then

return 0;
else

for i — 2tot+1do

if u;(a) =1then
Yi—1 < 15
else
Yi—1 < 0;
return y = yi, ..., Ys;
end

© 00 N O 0~ W N
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Algorithm 1: O(F, )

Analysis. This construction is simple and modular. It is possible to repldday any
relative of point function obfuscation such as POW functions (see Appendix A) and an-



alyze the security of the construction based on the security of the underlying primitive.
We would like to prove that our construction is secure based on the simple assumption
that the underlying primitive is an obfuscation of point functions. However, as we show
in Section 4, this is not possible. This is so because the definition of obfuscation does
not guarantee even self-composition. Thus, if we use such a primitive, this construction
becomes provably insecure.

We investigate the secrecy of this construction based on three underlying primi-
tives with different composition properties. In the first case, we consider the notion of
composable obfuscation (as in Definition 2, also known as simply-composable obfus-
cation in [11]). We show a characterization that composable point function obfuscation
exists if and only if composable multibit point function obfuscation exists. In the sec-
ond case, we show thatH is a statistically indistinguishable POW function, then our
construction is secure. Finally, if is a computationally indistinguishable POW then
this construction satisfies a weaker form of obfuscation wherne F, ,, has to be
independent of.

Analysis based on composable obfuscatidn.this work, composable obfuscation
refers to the fact that concatenating any sequence of obfuscated functions, where the
functions are taken from the same class, constitutes an obfuscation for that sequence
of functions. This form of composition, also known as simply-composable obfuscation

in [11], should not be confused with self-composition which means that concatenat-
ing a sequence of obfuscated functiomhere these functions are identicdloes not
compromise secrecy. Formally,

Definition 2 (¢-Composable Obfuscation, [11])Let F be any family of functions. A
PPT,O, is called at-composable obfuscator fdf, if:

1. Approximate functionality and polynomial slowdown are as before.

2. Virtual Black-box propertyFor any nonuniform PPTA, and any polynomialp,
there is a nonuniform PPTS, such that for any functionB', ..., Fy,,y € F (nis a
security parameters, e.qu, = |Fi| = ... = | Fy(,)|) and sufficiently large:

1
p(n)

If O is at-composable obfuscator fdit for any polynomiak, then it is called a com-
posable obfuscator.

|Pr[b « A(O(F), ...0(Fy(ny) : b= 1]=Pr[b « SFFrm (1) : p = 1]| <

If H satisfies(t + 1)-composable obfuscation for somgthen our construction
can be shown to be an obfuscation of multibit point function with output lemgth
Approximate functionality and polynomial slowdown follow from the corresponding
properties ord. By the virtual black-box property off, the output ofA(O(F} ,) =
O(F,), O(Fy,), ... O(Fy,,,))) can be simulated bg"™ "1™ (17), wherez; =
F, if y; = 1 andz; is uniform otherwise. Moreover, oracle acces$ioF,.,, ..., Froin
can be simulated with oracle accessHp,: If S queries any of its oracle on a point
z such thatF, ,(z) = 0, then answeb (this may incur a negligible simulation error
only), otherwisez = z soy can be fully recovered. Thus, this construction satisfies the

virtual black-box property.



Observe that our construction iscamposablebfuscation of multibit point func-
tions with the appropriate parameters. Specifically, if the output length of the multibit
point function is restricted to at mostthen this construction is#-composable obfus-
cation if H is (¢ + 1)t’-composable. In addition, it is easy to see that the existence of a
t-composable obfuscation of multibit point functions implies@mposable obfusca-
tion of point functions. Formally, we have the following characterization.

Theorem 1. Composable obfuscators of point functions with multibit output exist if
and only if composable obfuscators of point functions exist.

Specifically, if a point function obfuscatdi, is (¢t + 1)¢'-composable (as in Def-
inition 2) then the above construction isacomposable obfuscation of multibit point
functions with output length On the other hand, &composable obfuscation of multi-
bit point functions implies &composable obfuscation of point functions.

Analysis based on statistical indistinguishabilituppose: is a statistically indistin-
guishable POW family ensemble (see Appendix A for the formal definition). We can
replaceHd by G in the above construction. Specifically, the obfuscathrsamples a

key, k, for G and replace$] (x, .)(a) with V(a, Gi(z,.)), whereV is the verification
algorithm forG. This results in an obfuscation of point function with multibit output ex-
cept withcomputational approximate functionality2], i.e, no adversary can efficiently
find a point on which the original function differs from the obfuscated one. This relax-
ation to approximate functionality is necessary when using statistical POW functions
because they can not be statistically collision resistant. On the other hand, we argue that
the result satisfies the virtual-blackbox property. Informally, from the fact@heat a
statistical POW function we can conclude that an obfuscatidn,gf, wherex is taken

from a well-spread distribution anglis arbitrary, is statistically close to a sequence of
hashes of random inputs. It follows that for all but polynomially manyn obfusca-

tion of F, , is indistinguishable from random hashes. Consequently, we get a simulator
that runs the adversary on random hashes unlésgaken from that polynomial set,

in which case the simulator can recoyeand run the adversary on an obfuscation of
F, . Formally,

Theorem 2. Let G be a statistically(t + 1)-indistinguishable POW function (as in
Definition 5). Then, the above construction is an obfuscation of point functions with
multibit output lengtht (as in Definition 1).

Proof (Sketch)Polynomial slowdown follows immediately from the fact tifathas a
polynomial output length. Also, by public verification and collision resistance of POW
functions (definition 3), it follows thaD satisfies computational approximate function-
ality.

Virtual black-box property.Recall, the definition of statistical indistinguishability says
that for any well-spread distributioiX:

A(Gr(Xn, RY), ..., G (X, RUTVM)) Gr(UL, RY), ..., GR(UL™ | REFD())



is negligible, where each distributid®’, (respectivelyl/:) is the same a&,, (respec-
tively, U,,).

Using the fact that for any function\,, A(A\(X), A\(Y)) < A(X,Y), we have for
any distributionXY on (z, y), where the corresponding distribution @is well-spread:

A(O(XYy), Gr(UL, RL), ..., G (U™ R{HDM) 1)

is negligible. (We assume without loss of generality th4f’, ,) consists only of the
t + 1 G-hashes.)

Using the same technique from the proof of Theorem 4 in [4], it can be shown that
O(F; ) is indistinguishable fronfz-hashes of uniform strings on all but a polynomial
number ofz. That is, for any nonuniform PP, and any polynomialy, there exists a
polynomial size family of setd,L,, }, such that for sufficiently large, andx ¢ L,, and

anyy:

|Pr(b«— A(O(Fgy)) : b=1] — Prlui, ..., usp1 «— Uy, ..., Uy,

T1y ey Teal — Ry ooy Ry b — A(Gr(u1,71), ooy, Gr(Ugg1,me41)) : b=1]] < Z%n)
Intuitively, this is true because otherwise there is a super-polynomial number of of val-
ues forz (with a corresponding value fa), on which A can distinguistO(F, ) from
hashes of random strings. By defining a well-spread distribution, e.g., a uniform distri-
bution, on this superpolynomial number of values#or violates (1).

Now, for any nonuniform PPT4, and a polynomialp, we construct a nonuniform
PPT,S that simulatesA. S receives the polynomial size sdt,, as an advice string. It
checks if the oraclely, ,,, responds with the nonzero valug to any element in the set,

L,. If so, thenS can comput&(F} ,) and simulated on it. Otherwiseg is notinL,,
s0.S runs A on hashes of random inputs. By (2), this is close to a true simulation. For
more detail, we refer the reader to the proof of Theorem 4 in [4]. ad

Analysis based on computational indistinguishabiliye would like to weaken the as-
sumption in Theorem 2 to computational indistinguishability. However, it is not clear
how to use computational indistinguishability, i.&(x,r1), ..., Gk (x,r¢41) iS COM-
putationally indistinguishable from hashes of uniform, to concludedhdt, ) is in-
distinguishable from hashes of random inputs. It seems that the problem lies in the
potential dependence gfon z, e.g.,y may be equal ta.. This is not a problem in the
statistical case because we can use the fact that statistical difference does not increase
by applying the same function on both distributions. In the computational setting, if
we use the traditional blackbox reduction, we need to constét, ,,) from hashes

of z and then rund on it. However, it is not clear how to do this §f = z. On the

other hand, supposgis independent of, e.g.,y is taken independently from a uni-
form distribution. Then, for some, it is possible to comput®(F;, ,) given hashes of

x, Gp(x,r1), ..., Gg(x,re41), Dy replacingGy (x, ;) with a hash of a random string if

and only if theith bit of ¢ is 0. Thus, we know that computational indistinguishability
gives us a weaker notion of obfuscation where the simulator depends on the distribution
ony. Whether computational indistinguishability gives us the standard virtual-blackbox



property remains unknown. Nevertheless, this weak obfuscation can be used as a digital
locker as described in the introduction. The caveat is that the message being encrypted
should be independent of the encryption key. This is the case if, for instance, the mes-
sage is chosen without knowledge of the key.

Formally, the virtual black-box property becomes: for any nonuniform BPany
polynomialp, and any (efficiently samplable) distributidf) there exists a nonuniform
PPTS such that for any: and sufficiently largex:

|Prly < Yn, b— A(O(Fy,y)) :b=1] = Prly < Yy, b— SFew (11Feuly  p = 1]

1
S oy 3
Finally, we remark that this construction has either approximate or computational ap-
proximate functionality depending on whether the POW function satisfies statistical
or computational collision resistance. Formally, we have the following theorem whose

proof is similar to that for Theorem 2 and is not recreated here.

Theorem 3. If G is a computationally¢+ 1)-indistinguishable POW function, then the
above construction is a weak obfuscation of point function with output lengthere
the virtual-blackbox property is as in (3).

3.1 Obfuscating Set-membership Predicates and Functions

To obfuscate a set-membership predicate, simply obfuscate the point functions on every
element in the set (this is feasible because the set has a polynomial size), and then store
all the obfuscated functions in a randomly permuted order. To determine whether a par-
ticular input is in the set, we only need to check whether any of the obfuscated functions
outputsl on this input. It can be shown that composable obfuscation of point functions
exists if and only if this construction is an obfuscation of set-membership predicate.
Moreover, to obfuscate a set-membership functigg, ,.).....z,,y.)» We only need to

run the obfuscator for the multibit output point function on e#th ., and then store
these obfuscated functions in a randomly permuted order. Again, composable obfusca-
tion of point functions is a necessary and sufficient condition for the security of this
construction.

3.2 A More Efficient Obfuscation of Multibit Point Functions for Well-spread
Distributions

It is interesting to note that if we restrict our attention to well-spread distributions on
x for the multibit point function,F;, ,, then we have a more efficient construction,
similar to the one in the RO model [11]. Specifically, &tbe a POW function with
public randomness. To obfuscdtg ,, select; andr, uniformly from the randomness
domain of G and outputH (x, 1), 72, z, WhereGg(z,r2) = (re,v0 andz = y Qv

4. To recovery from (a, b, c) andz’, first check that/ (z’,a) = 1, if so, then return

4 Without loss of generality, we assume thandv have the same length. Otherwise, the second
input should be of a longer input, sap®.



y = ¢ ® v, whereGy(z',b) = b, v. Even though this construction is more efficient than
the first one, it suffers from three problems. First, in order to completely fidteis

not sufficient thatG be indistinguishable as in Definition 6 rather its output has to be
indistinguishable from uniform. If, for example, the first bit of the hash is alvéagtsen

the first bit ofy is revealed. Second, for the proof to go through, we need to assume that
G is statisticallyindistinguishable fronuniformbecause may depend om. The third

and more important problem is that it is not clear how to generalize this construction
to work for any distribution. In particular, it seems ttfathas to behave as a random
oracle. In other words, for any, it should be the case that, (z,71), r2, Gk (x,72))
should look pseudorandom, unless the adversary gugsses

4 On Composable Obfuscation of Point Functions

In Section 3, we provided a transformation from an obfuscation of a point function to
an obfuscation of a point function with multibit output. This transformation requires an
essential property on the given obfuscation, specifically, composition. In other words,
our construction assumes that we have an obfuscation of a point function such that
security is not compromised when multiple obfuscated functions are given. Notably,
Theorems 1, 2, and 3 all assume tliatsatisfies some form of composable security.
Since the obfuscator is probabilistic, composable security is nontrivial. In this section,
we address this question. Specifically, does the basic definition of obfuscation imply
composition? From a different angle, Canetti al. [5] ask if semantic perfect one-
wayness implies indistinguishable perfect one-wayness winiistinguishable POW
functions are + 1-indistinguishable. We answer these questions negatively: such prim-
itives are not necessarily secure even under self-compasitiomore detail, we show
that weake-indistinguishable POW functions (where the probability is taken over the
choices of the seed as well, [5]) are not necessarii -indistinguishable for any con-
stantc. We also show that POW functions, POW functions with auxiliary input, and ob-
fuscation of point functions do not imply composition. Specificdlindistinguishable
POW functions and obfuscation of point functions are not necessarily secure for a poly-
nomial number of copies. Moreover, even thougimdistinguishable POW functions
with auxiliary input is alsac-indistinguishable for any constaatit is not necessarily
t-indistinguishable with auxiliary input for a polylogarithmic

In Section 4.1, we show a tight impossibility result for weak POW functions. Specif-
ically, we show that for any constant weak c-indistinguishable POW functions are
not weaklyc + 1-indistinguishable. We also show thattifs polynomial, then weak
t-indistinguishable POW functions are not weakly + 1)2-indistinguishable. In Sec-
tion 4.2, we prove that sematic POW functiohsndistinguishable POW functions, and
point function obfuscation are not secure if composed roughdy(n) times. More-
over, if we consider the same functions with respect to auxiliary information, then we
have a tighter result where they are not secure with respect to auxiliary information if
composed superlogarithmically-many times.

5 Recall, self-composition refers to concatenation of the output of a randomized function on the
sameinput.



4.1 Weak POW functions Are Not Self-composable in General

A weak POW functions deviates from Definition 6 in that the probability is taken over
the choices of the function key, as well. Here, we show that a weakndistinguishable
POW function with respect to the uniform distribution may notcbe 1 indistinguish-
able for any constant. The idea is simple: we take any weak-indistinguishable
POW function and convert it into a new function thatimdistinguishable but the out-
put contains shares of the input such that it is easy to compute the inputfrorn
hashes. Informally, we adduniform strings to the original seed and make sure that a
hash of the input using any one of thasstrings appears in the output with probability
CJ%I. Also, with the same probability the exclusive-or of the input and all the aforemen-
tioned hashes appears in the output. Therefore, if the output of the function contains alll
¢ hashes and the exclusive-or of these hashes with the input, then it is easy to recover
the input.

Formally, letH be any (possibly wealc-indistinguishable POW function with key
space K,,, and public randomness. We also assumelthitalso3c-indistinguishable
from uniform. Define a new family ensembi@, with a key spacéK,,, R, ..., R,,), an

N——

input domain({0, 1}, {0, 1}"), and randomness domaiR,,, {0, 1}°9¢), as follows:
Ghur,..u. (1, 22), (11,72)) =
r27Hk(x1)r1);Hk(m27rl)aHk(mlau’l‘g) If r2 #O
ro, Hi(x1,71), Hi(x1,u1) ® Hi(x1,u2)... ® Hi(z1,uc) ® 2o if ro =0

Now, observe that it is easy to recover from Gy, ., ((z1,22), (r?,0)), ...,
Groun....u, ((z1,22), (1§, ¢)). Thus,G is not (¢ + 1)-indistinguishable because+ 1

randomly-chosen hashes @f;, z2) have distinctr, (i.e., match the aforementioned

hashes) with probabilityz%. On the other hand, we argue thatis a weake-

indistinguishable POW function with respect to the uniform distribution . First, com-
pleteness and collision resistance follow from thatthrSecond,

Gk7ulv"-7u'c ((1’1, 1’2), (TL T%))7 ceey Gk77t1,--~7uc((‘r1a IQ), (Tiv T;))

is indistinguishable from

Gk7u17~~-7uc((ula 1}2), (T%, T%))7 sy Gk7u1,-<-~,uc((uc7 :I:g), (Tf, Tg))

by the3c-indistinguishability property o, whereuy, ..., u. are uniform and indepen-
dent strings. Moreover, by thge-indistinguishability from uniform, we have

Gk7u17m7uc((ula 372), (T%, T%))7 ceey Gk7u1,~~7uc ((uca :I:g), (Tf, Tg))
is indistinguishable from

Gk,ul,m,uc ((ulv Ul)ﬂ (7‘%, 7‘%))7 ey Gk’uhu-,uc ((uca UC)v (va Tg))?

wherevy, ..., v. are uniform and independent strings.



Moreover, this result can be generalized to any polynoml&H is 3¢-indistinguishable
from uniform, thenG is a weak:-indistinguishable POW function with respect to the
uniform distribution. On the other han@; is notn(t + 1)2-indistinguishable with re-
spect to the uniform distribution. This is because all the- 1) “shares” appear in
n(t + 1)? hashes with overwhelming probability. This result is stated formally in the
following theorem.

Theorem 4. Let H be any weak POW function that 3¢-indistinguishable from uni-
form and has public randomness. Then for any constafitt, there exist weak POW
functions that arec-indistinguishable (respectively;indistinguishable) with respect
to the uniform distribution but not + 1-indistinguishable (respectively,(t + 1)2-
indistinguishable) with respect to the uniform distribution.

4.2 Both Point Function Obfuscation and POW Functions Are Not
Self-composable in General

We show that POW functions, POW functions with auxiliary input, obfuscation of point
functions, and obfuscation of point functions with auxiliary input are not generally self-
composable. Also, we observe that the obfuscation of point functions in [12] is not self-
composable as well. The idea is simple, we start with a POW function and append to
its output a hardcore bit, specifically the inner product between the input and a random
string. This hardcore bit does not compromise security of a single hash. However, the
function becomes completely insecure for polynomially many hashes as the input can
be recovered with high probability by solving a linear system of equations.

We present the proof for the case of POW functions with auxiliary input only as
the proofs for the other cases follow similar lines. [tbe a POW function that is
1-indistinguishable with auxiliary input. Define a new family ensem@illesuch that

Gk(xv (7'17T2)) = T27Hk(xvrl)v <xa T2>a

where(z, r2) is the inner product of andr, mod2. We argue thak is 1-indistinguishable
with auxiliary input. First, completeness and collision resistance follow from that.on
Moreover, for any uninvertible functioR', F'(x), H(x,r1), r2 is one-way inz because

H is 1-indistinguishable with auxiliary input. Therefore, by Goldreich-Levin theorem
[8], we have:

F(x),rq, H(x,r1), (z,r2) is indistinguishable fron¥'(z), v, H(x,r1),b, whereb
is uniform.

By 1-indistinguishability with auxiliary input ofil: F'(z),rs, H(z,71), b, is indis-
tinguishable from# (x), ro, H(Up,71), b.

On the other handi is not polylogarithmically indistinguishable with auxiliary
input. To see that, lef" be a function that outputs the last— w(1)log(n) bits of its
input. Then,F' is uninvertible with respect to the uniform distribution. However, we
argue that giverF'(z) and a polylogarithmic number of hashescan be recovered
completely by solving a system of linear equations. Formally,



Lemma 1. For any two constantg ande, there exists & which is polylogarithmic in n

(specificallyt = w(l)log(n)log%‘f%) and a PPTA, such that for any; € K,,:

1
Prlz « Uy, 71,...,7s — RS, .., RS, A(F(x),GL(x,m1),...,Grp(x,74))] > vt

whereR¢ is the randomness domain f6f;,.

Proof. Let A be a PPT that ignores &l hashesH(z, .)) but plugins the values of the
lastn — w(1)log(n) bits of z in the system of linear equations:

<x7r%>,..., (x,rf).

We show that by solving this system we can recavavith probability%. Given the
lastn — w(1)log(n) bits of = revealed byF, we can recover from w(1)log(n) lin-
early independent equations on the fiet )log(n) bits. Thus, in the rest of the proof
we show that we have this many linearly independent equatioharniformly chosen
equations with probability#. First, observe that a uniform and independeig lin-
early independent fromy(1)log(n) — 1 or less equations with probability at least
Consequently, the probability thaequations contaiw(1)log(n) linearly independent
equations is at least:

1

1 w(1)log(n)
) o9 —in(G+e)

)w(l)log(n) > eln(#-‘re) = i

1 —
( —

O

Using the same constructio®, and a similar analysis, one can show thatdistinguishable
POW functions (respectively obfuscation of point functions) are not necessardystinguishable
(respectively, secure undeiself-composition), wheré = nlog 7ln(l+6). As a con-

crete example, the same analysis can be used to show that the obfuscation of point
function in [12] is not secure when composihgbfuscated copies of the same point
function.

The previous results can be stated formally as follows.

Theorem 5. If there exists al-indistinguishable POW function (respectively, a point
function obfuscation) with auxiliary input then there exists anotherdistinguishable
POW function (respectively, another point function obfuscation) with auxiliary input
such that for any constantsande, the latter is not-indistinguishable (respectively, is
not at-self-composable point function obfuscation) with auxiliary input with respect to
the uniform distribution, where= w(l)log(n)log%.

Moreover, if there exists &-indistinguishable POW function (respectively, a point
function obfuscation) then there exists anothéndistinguishable POW function (re-
spectively, another point function obfuscation) such that for any constanide, the
latter is nott-indistinguishable (respectively, is notaelf-composable point function

obfuscation) with respect to the uniform distribution, whiete nlogﬁ.
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A Perfectly One-way Probabilistic Hash Functions

A perfectly one-way hash function, POW for short, is a probabilistic function that sat-
isfies collision resistance and hides all information about its input. Due to its proba-
bilistic nature, such a function is coupled with an efficient verification algorithm that
determines, givelz, y), whethery is a valid hash of. Usually, collision resistance of
deterministichash functions requires that it be hard to find two input strings mapped to
the same hash. However, because these functions are probabilistic by nature, we need
to modify collision resistance to take the verification process into account. In particular,
collision resistance says that it is hard to find two input strings and a output string such
that the verification scheme accepts this output as a valid hash of both input points.
Formally,



Definition 3 (Public Verification, [4]). A family ensembleéll = {H"},, <y, satisfies
public verification if there exists a deterministic polynomial-time algoritimsuch
that:

1. Completenessik € K,,, z € {0,1}", r € R,,, V(x, Hp(z,7)) = 1.
2. Collision Resistance: For any nonuniform PPX,

Prik — Ky, (z1,22,y) < A(k) : 1 # 22 ANV (21,9) = V(x2,y) = 1],
is negligible.

There are several ways to formulate information hiding, some of which are not
equivalent. We start with the most basic definition, namely semantic perfect one-wayness,
and later present two more definitions, namely, statistical and computational indistin-
guishability. Semantic perfect one-wayness has its roots in semantic security of prob-
abilistic encryption [9] which requires that every function that can be computed given
the ciphertext can also be computed without it. However, the notion of secrecy in this
setting is slightly weaker than semantic security because a hash can be used to verify
whether a guess is correct or not. This notion is captured by a simulation-based defini-
tion which requires that every predicate computable given a hash can also be computed
by a “simulator” with oracle access to the corresponding point function. Formally,

Definition 4 (Semantic Perfect One-wayness, [4]A family ensembl#l = {H" },,cn,
is calledsemantically perfectly one-wai it satisfies public verification (Definition 3)
and, for any nonuniform PPT, and polynomialp, there exists a nonuniform PRY
such that for sufficiently large, anyk, and any distribution{ X, },,en:

|Priz «— X,, r — R, b — A(k, Hy(z,7)) : b=1] —

Priz e Xp, v Ro, b 8P (k) : b= 1] < ——
p(n)

Recall F, is the point function on:.
Remark 1.Note that semantic perfect one-wayness corresponds in a straightforward
way to the virtual blackbox property required for obfuscating point functions in Defini-
tion 1. Thus, a function satisfying definition 4 is an obfuscation of a point function (with
computational approximate functionality). However, the converse may not be true.

In more detail, letl be a semantic POW function. To obfuscétg sample a seed,
k, and random string;, for H and output the obfuscatio®)(F,) = k, Hi(z,r). The
new function,O(F,), simply computes the predicaté(., Hy(x,r)). It can be shown
that O is an obfuscator for the class of point functions. Completeness and collision
resistance ofl imply computational approximate functionality while semantic perfect
one-wayness implies the virtual blackbox property. On the other hand, an obfuscation
of point functions may not be a POW function because approximate functionality does
not rule out collisions chosen in an adversarial way.

As mentioned in the introduction, neither Definition 1 nor Definition 4 is sufficient
for the security of our construction in Section 3 because they do not guarantee composi-
tion. Thus, we analyze our construction based on primitives with different composable



properties. Two of these primitives are statistical and computational POW functions,
which are defined in the rest of this appendix.

Definitions of composable POW functions are known when the input is assumed
to be sampled from some well-spread distribution [5]. Specifically, this notion requires
hardness of indistinguishability between hashes of the same input and hashes of differ-
ent inputs. It is interesting to note that if we formulate this notion against unbounded
adversaries (as in Definition 5) then it is equivalent to the information-theoretic version
of semantic perfect one-wayness [6], (where the adversary in Definition 4 is assumed
to be unbounded). On the other hand, we do not know whether this equivalence holds
in the computational setting. However, we know that the latter notion implies semantic
perfect one-wayness [5].

Statistical Perfect One-waynesStatistical information hiding is captured by requiring
statistical closeness between hashes of the same input and those of different inputs.

Definition 5 (Statistical t-Indistinguishability). A family ensemblél = {H"},,cn,
whereH), : {0,1}" x R,, — {0, 1}!(") for some polynomial, is calledstatistically t-
indistinguishableif it satisfies public verification (Definition 3) and for any well-spread
distributionX = {X,, },.en and anyk € K,,,
A(Hp (X, RY), ..., He (X, RM), Hy, (U}

n?

R’}L)’ i) Hk(U’!tL(n)’ be(n))) < :u(n)v
t(n) t(n)

where each distributiod!, (respectivelyl/}) is the same a®,, (respectivelyl/,,).
Moreover, ifH is statistically¢-indistinguishable for any polynomial, then it is
called statistically indistinguishable.

We note that the first construction in [5] is slightly weaker than Definition 5 in that
the input distribution needs® min-entropy instead of superlogarithmic min-entropy.
Constructing functions with the latter property remains an open problem.

Computational Perfect One-waynesSomputational perfect one-wayness differs from
statistical perfect one-wayness in two main ways. The first and obvious difference is that
indistinguishability holds fopolynomially-bounded adversariemly. Second, com-
putational perfect one-wayness differs depending on whether we take the presence of
auxiliary information into account. In this context, we restrict the notion of auxiliary
information to uninvertible functions about the input.

Instead of explicitly writing two definitions, one with auxiliary information and an-
other without it, we present here one definition only. To take both cases into account,
we use the convention that auxiliary information is surrounded by boxes. So, by remov-
ing ] the words in boxefsfrom Definition 6, we get the first definition while keeping the
boxes gives us the second one. Formally,

Definition 6 (t-Indistinguishability, [3]).

LetX = {X,, }nen be any well-spread distribution. Lét be any (possibly proba-
bilistic) uninvertible function. A family ensemfite= {H"}, cn, whereH, : {0,1}" x
R, — {0,1}*™ for some polynomial, is calledt-indistinguishablewith respect to



X, | with auxiliary input# ‘ if it satisfies public verification (Definition 3) and for any
k € K, and any PPTA:

|Prlw — X, [2 = F(2)], (1, m0) (R Ry) -
A(k,, Hk(m,rl),...,Hk(x,rt)) = 1} —
Priz «— X,, (u1,...,us) — (Upn, ..., Up), |z — F(z)|, (r1,....;rt) — (Rn, ..., Rp) :
A(k,[ 2], Hi(ui, 1), ooy Hi(ug, ) = 1] < pu(n).

If H is t-indistinguishabl#with any auxiliary inputF‘ with respect to any well-

spread distributiorX, then it is called t—indistinguishab‘evvith auxiliary input‘. More-

over, if it is t-indistinguishablewith auxiliary input| for any polynomiatt, then it is

called indistinguishabl#with auxiliary input‘.




