
The HMAC construction:
A decade later

Ran Canetti

IBM Research

What is HMAC?

● HMAC: A Message Authentication Code based on
Cryptographic Hash functions
[Bellare-C-Krawczyk96].

● Developed for the IPSec standard of the Internet
Engineering Task Force (IETF).

● Currently:

 - incorporated in IPSec, SSL/TLS, SSH, Kerberos,
 SHTTP, HTTPS, SRTP, MSEC, ...

 - ANSI and NIST standards

 - Used daily by all of us.

Why is HMAC interesting?

● “Theoretical” security analysis impacts the
security of real systems.

● Demonstrates the importance of modelling and
abstraction in practical cryptography.

● The recent attacks on hash functions highlight
the properties of the HMAC design and analysis.

● Use the HMAC lesson to propose requirements
for the next cryptographic hash function.

Organization

● Authentication, MACs, Hash-based MACs
● HMAC construction and analysis
● Other uses of HMAC:

● Pseudo-Random Functions
● Extractors

● What properties do we want from a
“cryptographic hash function”?

 Authentication

The goal: Any tampering with messages should be detected.
“If B accepts message m from A then A has sent m to B.”

• One of the most basic cryptographic tasks

• The basis for any security-conscious interaction over an open
network

A
B

m m'

 Elements of authentication

The structure of typical cryptographic solutions:

• Initial entity authentication:
 The parties perform an initial exchange, bootstrapping

from initial trusted information on each other. The result
is a secret key that binds the parties to each other.

• Message authentication:
 The parties use the key to authenticate exchanged

messages via message authentication codes.

Message Authentication Codes

• A and B obtain a common secret key K

• A and B agree on a keyed function F

• A sends t=FK(m) together with m

• B gets (m',t') and accepts m' if t'=FK(m').

A
B

m,t m',t'

t=FK(m) t' =? FK(m')

Message Authentication Codes:
A definition

The MAC game:
• Key K chosen at random

• An attacker can adaptively ask queries m and get FK(m).

• F is a good MAC function if the attacker is unable to “predict” F,
i.e. generate (m',FK(m')) for an unqueried m'.

Definition can be quantified, counting:
- Number and length of queries
- Local computation
- Probability of success.
Note: this is a weaker requirement than pseudorandom functions.

Adv FK

m

FK(m)

m',FK(m')

Message Authentication Codes:
A definition

The MAC game:
• Key K chosen at random

• An attacker can adaptively ask queries m and get FK(m).

• F is a good MAC if the attacker is unable to “predict” F, i.e.
generate (m',FK(m')) for an un-queried m'.

Definition can be quantified, counting:
- Number and length of queries
- Local computation
- Probability of success.
Note: this is a weaker requirement than pseudorandom functions.

Adv FK

m

FK(m)

m',FK(m')

IPSec

The IP Security effort (1993-)

• An initiative of the Internet Engineering Task
Force (IETF)

• Goal: provide a ubiquitous mechanism for
securing internet traffic:

– Common to all Internet traffic

– Sits in the OS kernel, thus always available
(but also hard to deploy and modify)

– Can be easily used by network components
(routers, NAT boxes, firewalls, etc.)

A central challenge in 1995:
Find a good Message Authentication Code

Requirements:
• Very fast on a variety of platforms

• Ubiquitously available

• Not susceptible to US export controls

• Secure...

MACs for IPSec: Available options

● DES in CBC-MAC mode:

– Relatively slow in software

– Only 64-bit MACs

– Export controls limit to 40-bit keys

• MACs based on “cryptographic hash functions (CHF)”
such as MD5, SHA1, RIPEMD.

– CHFs are anyway incorporated in most libraries

– Very fast in software

– Not susceptible to export controls

– “Nice” security properties

The choice was clear. But, how to do it securely?

Cryptographic Hash Functions

Basics: The common structure of CHFs

● Iterated applications of a basic element, the “compression
function” h, using the Merkle-Damgard (“cascade”) structure.

● Initialize via a fixed s-bit value IV.

s bits
h

s bits
h

s bits
h

s bits
h

k1 hh

x1

h

x2

h

xn-1

h

xn

hIV

b = 512
MD5: s=128
SHA1,RIPEMD: s=160

H(x)=HIV(x)

...
k2 kn-2 kn-1 kn

s bits

b bits{
Hk(x1...xn)=

Hk(x1...xn-1)
h (xn) n>1

hk(x1) n=1

Security properties of CHFs

Main design goal was collision resistance:

 Infeasible to find x,y with H(x)=H(y).

 Theorem [Damgard89]:
 If hk is collision resistant on b-bit inputs, then

 Hk is collision resistant for any input length.

But:
● Used in many situations that require different,

“ad-hoc” security properties.
● Treated like “magic functions”: Output is assumed to

be random and completely uncorrelated with the input.

MACs from CHFs

Main question:

How to incorporate a secret key in a public function?

MACs from CHFs

Main question:

How to incorporate a secret key in a public function?

● Proposal 1- Prepend the key: Prepk(m) = H(k|m)

 - If H is a “random function” then Prep is a secure MAC.

 - But, Prep is susceptible to “extension attacks”:
 let |m1|=|m2|=b. Then obtain t=Prepk(m1), and

 compute Prepk(m1|m2)=ht(m2).

 - Still, the proposal was quite popular.

 (“Packet headers always include the length,
 thus the attack is not practical.”)

MACs from CHFs

● Proposal 2 - Append the key:
 Appk(m) = H(m|k)

 - Prevents extension attacks.

 - if h is a “random function” then App is secure MAC.

 - But, strongly depends on collisions resistance of H.

 (k enters the computation only at the very end.)

 Can we do better?

MACs from CHFs

● Proposal 3 - Prepend and append the key:
 Envk(m)=H(k|m|k) [RFC 1828, Aug95]

 -To align or not to align? [Preneel-VanOorschot95]

 -What are the assumptions on H/h?

● Proposal 4: Start with Env, and add key-related
operations to h [Preneel-VanOorschot95]

None of the above had sound security analysis...

HMAC

Towards HMAC: The NMAC construction

 NMACk1,k2(m)= Hk1(Hk2(m))

● Idea 1: Incorporate the key via the IV.
Better for modeling and analysis. Follows the design of
the underlying CHF.

● Idea 2: Use two independent keys. Indeed, each key
has a different role in the analysis.

k2 hh

x1

h

x2

h

xn

h h
 ...

k1

Performance of NMAC

● Internal application of H: Same as plain hashing of the
message

● Extrnal application of H: Single run of h.

The overhead of the external application is negligible for
long messages (packets), and tolerable even for small
packets.

Security of NMAC (I)

Approach: reduce to weak properties of h.

Assume an attacker A that breaks NMAC. That is:
● A asks sees NMACk1,k2(m1), NMACk1,k2(m2),...

for adaptively chosen m1,m2,... .
● A generates m',NMACk1,k2(m') for a new m'.

Then:
● If Hk2(m')=Hk2(mi) for some i, then A has found a

collision in Hk2, with an unknown k2.
● Else, A managed to “predict” hk1, without either

knowing k1 nor directly seeing the input.

More precisely...

Weak collision resistance

● H is weak collision resistant (WCR) if, given oracle
access to Hk for a random k, it is infeasible to find x,y
such that Hk(x)=Hk(y).

By itself, equivalent to finding collisions with a known random key.
(First get k'=Hk(m) for a random m, and then find a collision in Hk'().)

● H is very WCR if, given oracle access to Hk1(Hk2()) for a
random k1,k2, it is infeasible to find x,y such that
Hk2(x)=Hk2(y).

Security of NMAC (II)

NMAC is a secure MAC as long as:
● hk is a secure MAC on b-bit messages.

● Hk is very weak collision resistant.

Note: Analysis is quantitatively tight.
● No increase in # queries or running time,
● Adversarial success probability is at most the

sum of the assumed success probabilities.

Downsides of NMAC:

● Need to change the IV, thus change
existing libraries that include CHFs.

● Key is long (256 or 320 bits).

HMAC gets around these, at the price of an
additional mild assumption on h.

The HMAC construction

 HMACk(m)=H(k⊕opad | H(k⊕ipad |m))

|k|=s (128 or 160)
opad = 0x36 repeated to make b bits
ipad = 0x5c repeated to make b bits
⊕ is bitwise exclusive or

Note:
-key is short
-keying is only via the input, so no change in existing code.
-Performance: 2 additional applications of h.

Security of HMAC

By reduction to the security of NMAC.
 Recall: HMACk(m)=H(k⊕opad | H(k⊕ipad |m))

 NMACk1,k2(m)= Hk1(Hk2(m))

Notice: HMACk(m)=NMACk1,k2(m),

 where kk1=H(k⊕opad), kk2=H(k⊕ipad).

 Thus, assuming that:

 G(k)=H(k⊕opad),H(k⊕ipad)

 is a pseudorandom generator from s bits to 2s bits,
 we have that HMAC is a MAC function if NMAC is.

Looking back: HMAC as a tradeoff

 HMAC is a tradeoff between “theoretical elegance” and
practical needs:

● The underlying assumptions on the CHF are not the
most “elegant” possible.

● Construction is not the most efficient possible.

But:

● Provides convincing and sound arguments that breaking
HMAC would mean a complete break of the CHF.

● Design is simple and does not require change of existing
code.

Other uses of HMAC

Once HMAC became readily available, people started to use it
in different ways... e.g.:

● Pseudorandom function (PRF):
 for “key expansion”: generate multiple PR keys from

a single short key. In IPSec, TLS, SSH, KERBEROS...

● “Collision-resistant PRF”: In TESLA (stream authentication
for the MSEC secure multicast standard).

● “Computational randomness extractor”: For deriving pseudo-
random keys from somewhat random keying material.

Will talk on the uses as a PRF and an Extractor.

Pseudo-random functions

 PRFs are keyed functions that behave like random functions as
long as the key is random and secret.

More formally, PRFs are defined via a game:

• Oracle O is fixed to either FK for a random key K, or
a random function R with the same domain and range.

• An attacker can adaptively ask queries m and get O(m).
• F is a good PRF if the attacker is unable to tell whether it

interacts with R or with FK.

Adv R / FK

m

O(m)

R / FK?

HMAC as a PRF

Fact 1: If the compression function hK is a PRF on b-bit inputs
then the cascade HK is a PRF on variable size inputs,
as long as no query is a prefix of another [Bellare-C-Krawczyk97].

Fact 2: If hK is a PRF on b-bit inputs and HK is Almost Universal
(AU) on v-size inputs, then NMACK is a PRF on v-size inputs
[Bellare05]. (HK is AU if for any x,y ProbK(HK(x)=HK(y)) is negl.)

Fact 3: If hK is a PRF on b-bit inputs then NMACK is AU [Bellare05].

→ If hK is a PRF on b-bit inputs then NMACK is a PRF on v-size inputs.

→ If in addition G(k)=H(k⊕opad),H(k⊕ipad) is a PRG then HMACK is a
PRF on v-size inputs.

The extraction problem

Some key exchange protocols generate
“defective keys”:
● Have much “computational entropy”, but
● Are not pseudorandom.

Goal: Extract a pseudorandom key.

Main example: Diffie-Hellman exchanges

A B

Choose x in [1..|G|] gx

Choose y in [1..|G|]gy

Output (gx) y = gxy
output (gy) x = gxy

Public: Algebraic group G, generator g

Properties of the generated key (gxy)

The Decisional Diffie-Hellman (DDH) assumption implies:

 (g, gx, gy, gxy) ~ (g, gx, gy, gr)

But:

● DDH is a strong assumption.

● Even under DDH, gxy is pseudorandom only in the group G, which
is often embedded in a much larger group (eg, Zp)

● Even in best case, when |G|=q, p=2q+1, we only have that
gxy is pseudorandom in a small subset of {0,1}k .

● When the exchange is not authenticated by external mechanisms
(e.g., in the MQV or HMQV protocols) the guarantees are even
weaker.

Common practice

Hash using a CHF and hope for the best...

If the CHF is modeled as a random oracle then
everything is ok.

But, can we do better?

Randomness extractors

Input:
● A “defective random source”, namely a value drawn from a

distribution with substantial entropy,
● A short truly random value.
Output:
● A value that is statistically close to random.

A computational variant [Dodis-Gennaro-Hastad-Krawczyk-Rabin05]:
Input:
● A (secret) value drawn from a distribution with substantial

“computational entropy”,
● A (public) truly random value.
Output:
● A (secret) pseudorandom value

HMAC as an extractor

Assume the compression function hk is a c-extractor from b-bit
inputs to s-bit outputs, with an s-bit public random input.

Then:
● The cascade Hk is a c-extractor from v-length input to s-bit

outputs, as long as each input block has sufficient c-entropy
given all subsequent blocks [DGHKR05,CG88].

● NMAC and HMAC behave similarly, when assuming in
addition that h is a PRF from s-bits to s-bits with b-bit key.

s bits
h

s bits
h

s bits
h

s bits
hs bits

b bits

Using HMAC as an extractor

Applicable when the parties have some trusted public
randomness (e.g., the protocol involves exchanging
public authenticated random nonces).

Here do: k = HMACr(g
xy)

where r is the public randomness (eg, concatenation of
nonces).

K is guaranteed to be pseudorandom as long as gxy has
enough c-entropy.

● Indeed, HMAC is used this way in IPSec's IKE.

Open question:

What to do when there is no trusted public
randomness?

Here the best we know today is to model the
CHF as a random oracle.

Can we do better?

HMAC as a Random Oracle

HMAC was designed to get away from unnecessary
random oracle modeling.

Still, it turns out that the HMAC/NMAC constructions
can be used to extend Random Oracles
[Coron-Dodis-Malinaud-Punya05]:

● If h is a random oracle on b-bit inputs, then:
● The cascade H of h is a random oracle on

variable-length inputs, as long as queries are
prefix-free.

● The HMAC/NMAC constructions are Random
Oracles on variable-length inputs.

Recent attacks on CHFs

The [Wang-Yu-Yin05] collision attacks againt
MD5 and SHA1 imply:

● Can find collisions in current functions in time 2O(60).

● Same approach seems to work for a random,
public IV (but needs a “human in the loop” for
each new IV).

Implications on HMAC:

● Another reminder that H is not a Random Oracle
(and not even h).

● Weak collision resistance (with secret IV) is
somewhat affected, due to the extension attack.

● Very weak collision resistance does not seem to be
affected.

● Neither the PRF nor the MAC assumptions on h
seem to be affected.

● The c-extraction assumption on h seems unaffected.

In contrast, other suggestions of hash-based MACs are
seriously affected.

Lessons for a new CHF:

Lessons for a new CHF:

● Make the IV part of the interface.
 (OK to fix a single IV for interoperability, but explicitly allow

applications to choose their own IV.)

Lessons for a new CHF:

● Make the IV part of the interface.
 (OK to fix a single IV for interoperability, but explicitly allow

applications to choose their own IV.)
● The compression function should be designed to be:

● A PRF when keyed via the chaining variable
● A PRF when keyed via the input

Lessons for a new CHF:

● Make the IV part of the interface.
 (OK to fix a single IV for interoperability, but explicitly allow

applications to choose their own IV.)
● The compression function should be designed to be:

● A PRF when keyed via the chaining variable
● A PRF when keyed via the input

● The compression function should be a good extractor

Lessons for a new CHF:

● Make the IV part of the interface.
 (OK to fix a single IV for interoperability, but explicitly allow

applications to choose their own IV.)
● The compression function should be designed to be:

● A PRF when keyed via the chaining variable
● A PRF when keyed via the input

● The compression function should be a good extractor
● The cascade design is a good one: preserves important properties

Lessons for a new CHF:

● Make the IV part of the interface.
 (OK to fix a single IV for interoperability, but explicitly allow

applications to choose their own IV.)
● The compression function should be designed to be:

● A PRF when keyed via the chaining variable
● A PRF when keyed via the input

● The compression function should be a good extractor
● The cascade design is a good one: preserves important properties
● Make the output length parameterizable:

● For collision resistance larger ouput is easier
● For PRF, extractor smaller output is easier

Lessons for a new CHF:

● Make the IV part of the interface.
 (OK to fix a single IV for interoperability, but explicitly allow

applications to choose their own IV.)
● The compression function should be designed to be:

● A PRF when keyed via the chaining variable
● A PRF when keyed via the input

● The compression function should be a good extractor
● The cascade design is a good one: preserves important properties
● Make the output length parameterizable:

● For collision resistance larger ouput is easier
● For PRF, extractor smaller output is easier

Perhaps we want different functions for different applications?

Summary: Why is HMAC interesting?

● An example where “theoretical” security analysis
has impact on acceptability and practical security.

● Demonstrates the importance of modeling and
abstraction in practical cryptography: Different
models of the same construction bring different
results, all useful.

● The recent attacks on hash functions highlight
the properties of the HMAC design and analysis.

● Can use the HMAC lesson to propose
requirements for the next cryptographic hash
function.

Basic structure of the IPSec protocol:

• Key exchange: Two peers obtain a common
secret key in an authenticated way.
(Application layer protocol)

• Data protection: Encryption and authentication.
(IP layer protocol: Each packet encoded and
decoded individually.)

• Per-packet transforms:
– Authentication header (AH): Authentication only

– ESP: Authentication and/or encryption

Seems simple enough. But turns out to be far from that...

IP: the common denominator of the
Internet

IP

Ethernet

TCP UDP

Telnet HTTP DNS audio/videoNTP

Token Ring

...

...

...

...

HMAC as a standard

After much discussion and debate, HMAC was accepted as the
mandatory-to-implement MAC function for IPSec (RFC 2104).

● Rare example of a security standard where “theoretical”
modeling and analysis has helped acceptance as standard.

Other IETF standards that incorporate HMAC:
TLS, SHTTP, SSH, HTTPS, KERBEROS, SRTP,...

NIST standard: FIPS 198
ANSI standard: X9.71

Incorporated in practically any browser and OS today.

