
The HMAC construction: 
A decade later

Ran Canetti 

IBM Research



What is HMAC?

● HMAC: A Message Authentication Code based  on 
Cryptographic Hash functions                     
[Bellare-C-Krawczyk96].

● Developed for the IPSec standard of the Internet 
Engineering Task Force (IETF).

● Currently:

     - incorporated in IPSec, SSL/TLS, SSH, Kerberos,   
 SHTTP, HTTPS, SRTP, MSEC, ...

      - ANSI and NIST standards

      - Used daily by all of us. 



Why is HMAC interesting?

● “Theoretical” security analysis impacts the       
security of real systems.

● Demonstrates the importance of modelling and 
abstraction in practical cryptography. 

● The recent attacks on hash functions highlight    
the properties of the HMAC design and analysis.

● Use the HMAC lesson to propose requirements 
for the next cryptographic hash function.



Organization

● Authentication, MACs, Hash-based MACs 
● HMAC construction and analysis
● Other uses of HMAC:

● Pseudo-Random Functions 
● Extractors

● What properties do we want from a           
“cryptographic hash function”?



 Authentication 

The goal: Any tampering with messages should be detected.
“If B accepts message m from A then A has sent m to B.”
 
• One of the most basic cryptographic tasks 

• The basis for any security-conscious interaction over an open 
network
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 Elements of authentication 

The structure of typical cryptographic solutions:

• Initial entity authentication:
   The parties perform an initial exchange, bootstrapping 

from initial trusted information on each other. The result 
is a secret key that binds the parties to each other.

• Message authentication:
    The parties use the key to authenticate exchanged 

messages via message authentication codes. 
   



Message Authentication Codes

• A and B obtain a common secret key  K

• A and B agree on a keyed function F

• A sends t=FK(m) together with m

• B gets (m',t') and accepts m'  if  t'=FK(m').

A  
B  

m,t m',t'

t=FK(m) t' =? FK(m')



Message Authentication Codes:
A definition 

The MAC game:
• Key K chosen at random

• An attacker can adaptively ask queries m and get FK(m).

• F is a good MAC function if the attacker is unable to “predict” F, 
i.e. generate (m',FK(m')) for an unqueried m'. 

Definition can be quantified, counting: 
- Number and length of queries
- Local computation
- Probability of success.
Note: this is a weaker requirement than pseudorandom functions.

Adv FK
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IPSec



The IP Security effort (1993-)

• An initiative of the Internet Engineering Task 
Force (IETF)

• Goal: provide a ubiquitous mechanism for 
securing internet traffic:

– Common to all Internet traffic

– Sits in the OS kernel, thus always available   
(but also hard to deploy and modify)

– Can be easily used by network components 
(routers, NAT boxes, firewalls, etc.)



A central challenge in 1995: 
Find a good Message Authentication Code

Requirements:
• Very fast on a variety of platforms 

• Ubiquitously available

• Not susceptible to US export controls

• Secure...



MACs for IPSec: Available options

● DES in CBC-MAC mode:

– Relatively slow in software 

– Only 64-bit MACs

– Export controls limit to 40-bit keys

• MACs based on “cryptographic hash functions (CHF)” 
such as MD5, SHA1, RIPEMD.

– CHFs  are anyway incorporated in most libraries

– Very fast in software

– Not susceptible to export controls

– “Nice” security properties

The choice was clear. But, how to do it securely?



Cryptographic Hash Functions



Basics: The common structure of CHFs 

● Iterated applications of a basic element, the “compression 
function” h, using  the Merkle-Damgard (“cascade”) structure.

● Initialize via a fixed s-bit value IV.
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Security properties of CHFs

Main design goal was collision resistance:

     Infeasible to find x,y with H(x)=H(y).

  Theorem [Damgard89]: 
   If hk is collision resistant on b-bit inputs, then

   Hk is collision resistant for any input length.

But:
● Used in many situations that require different,          

“ad-hoc” security properties. 
● Treated like “magic functions”:  Output is assumed to 

be random and completely uncorrelated with the input. 



MACs from CHFs

Main question:

How to incorporate a secret key in a public function?



MACs from CHFs

Main question:

How to incorporate a secret key in a public function?

● Proposal 1- Prepend the key:    Prepk(m) = H(k|m)

     - If H is a “random function” then Prep is a secure MAC.

     - But,  Prep is susceptible to “extension attacks”:
        let |m1|=|m2|=b. Then obtain t=Prepk(m1), and               

    compute Prepk(m1|m2)=ht(m2).

      - Still, the proposal was quite popular.                      

        (“Packet headers always include the length,                
     thus the attack is not practical.”)



MACs from CHFs

● Proposal 2 - Append the key:
                                 Appk(m) = H(m|k)

     

     - Prevents extension attacks. 

     - if h is a “random function” then App  is secure MAC.

     - But,  strongly depends on collisions resistance of H.

       (k enters the computation only at the very end.)

       Can we do better?

      



MACs from CHFs

● Proposal 3 -  Prepend and append the key:
                         Envk(m)=H(k|m|k)         [RFC 1828, Aug95]

     -To align or not to align? [Preneel-VanOorschot95]

     -What are the assumptions on H/h?

● Proposal 4:  Start with Env, and add key-related 
operations to h  [Preneel-VanOorschot95]

None of the above had sound security analysis...



HMAC



Towards HMAC: The NMAC construction

             
                       NMACk1,k2(m)= Hk1(Hk2(m))

● Idea 1: Incorporate the key via the IV.                    
Better for modeling and analysis. Follows the design of 
the underlying CHF.

● Idea 2:  Use two independent keys. Indeed, each key 
has a different role in the analysis.
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Performance of NMAC

● Internal application of H: Same as plain hashing of the 
message

● Extrnal application of H: Single run of  h.

The overhead of the external application is negligible for 
long messages (packets), and tolerable even for small 
packets.



Security of NMAC (I)

Approach: reduce to weak properties of h.

Assume an attacker A that  breaks NMAC. That is:
● A asks sees NMACk1,k2(m1), NMACk1,k2(m2),...        

for adaptively chosen m1,m2,... .
● A generates  m',NMACk1,k2(m') for a new m'.

Then:
● If  Hk2(m')=Hk2(mi) for some i, then A has found a 

collision in Hk2, with an unknown k2.
● Else, A managed to “predict” hk1, without either 

knowing k1 nor directly seeing the input.

More precisely...



Weak collision resistance

● H is weak collision resistant (WCR) if, given oracle 
access to Hk for a random k, it is infeasible to find x,y 
such that Hk(x)=Hk(y).

By itself, equivalent to finding collisions with a known random key.  
(First get k'=Hk(m) for a random m, and then find a collision in Hk'().)

● H is very WCR if, given oracle access to Hk1(Hk2()) for a 
random k1,k2, it is infeasible to find x,y such that           
Hk2(x)=Hk2(y).



Security of NMAC (II)

NMAC is a secure MAC as long as:
● hk is a secure MAC on b-bit messages.

● Hk is very weak collision resistant.

Note: Analysis is quantitatively tight.
●  No increase in  # queries or running time, 
● Adversarial success probability is at most the     

sum of the assumed success probabilities.



Downsides of NMAC:

● Need to change the IV, thus change 
existing libraries that include CHFs.

● Key is long (256 or 320 bits).

HMAC gets around these, at the price of an 
additional mild assumption on h.



The HMAC construction

               HMACk(m)=H( k⊕opad | H(k⊕ipad |m) )

|k|=s (128 or 160)
opad = 0x36  repeated to make b bits
ipad  = 0x5c  repeated to make b bits
⊕ is bitwise exclusive or

Note:
-key is short
-keying is only via the input, so no change in existing code.
-Performance: 2 additional applications of h.



Security of HMAC

By reduction to the security of NMAC.
                                     Recall: HMACk(m)=H(k⊕opad | H(k⊕ipad |m))

                                                                  NMACk1,k2(m)= Hk1(Hk2(m))

Notice:  HMACk(m)=NMACk1,k2(m),            

       where  kk1=H(k⊕opad), kk2=H(k⊕ipad).

 Thus, assuming that:
 
                        G(k)=H(k⊕opad),H(k⊕ipad)

  is a pseudorandom generator from s bits to 2s bits,
  we have that HMAC is a MAC function if NMAC is. 



Looking back: HMAC as a tradeoff

  HMAC is a tradeoff between “theoretical elegance” and 
practical needs:

● The underlying assumptions on the CHF are not the 
most “elegant” possible.

● Construction is not the most efficient possible.

But:

● Provides convincing and sound arguments that breaking  
HMAC would mean a complete break of the CHF.

● Design is simple and does not require change of existing 
code.



Other uses of HMAC

Once HMAC became readily available, people started to use it  
in different ways... e.g.:

● Pseudorandom function (PRF):  
    for “key expansion”: generate multiple PR keys from            

a single short key. In IPSec, TLS, SSH, KERBEROS...

● “Collision-resistant PRF”: In TESLA (stream authentication 
for the MSEC secure multicast standard).

● “Computational randomness extractor”: For deriving pseudo- 
random keys from somewhat random keying material. 

Will talk on the uses as a PRF and an Extractor.



Pseudo-random functions

 PRFs are keyed functions that behave like random functions as 
long as the key is random and secret.

More formally, PRFs are defined via a game:

• Oracle O is fixed to either  FK for a random key K, or                
a random function R with the same domain and range.

• An attacker can adaptively ask queries m and get O(m).
• F is a good PRF if the attacker is unable to tell whether it 

interacts with R or with FK.

Adv R / FK

m

O(m)

R / FK?



HMAC as a PRF

Fact 1:  If the compression function hK is a PRF on b-bit inputs  
then the cascade HK is  a PRF on variable size inputs,              
as long as no query is a prefix of another [Bellare-C-Krawczyk97].

Fact 2:   If hK is a PRF on b-bit inputs and HK is  Almost Universal 
(AU) on v-size inputs, then NMACK is  a PRF on v-size inputs 
[Bellare05].  (HK is AU if for any x,y  ProbK(HK(x)=HK(y)) is negl.) 

Fact 3: If hK is a PRF on b-bit inputs  then NMACK is AU [Bellare05].

→ If hK is a PRF on b-bit inputs then NMACK is a PRF on v-size inputs.

→ If in addition  G(k)=H(k⊕opad),H(k⊕ipad) is a PRG then HMACK is a 
PRF on v-size inputs.



The extraction problem

Some key exchange protocols generate 
“defective keys”:
● Have much “computational entropy”, but
● Are not pseudorandom.

Goal: Extract a pseudorandom key.



Main example: Diffie-Hellman exchanges

A B

Choose x in [1..|G|] gx

Choose y in [1..|G|]gy

Output (gx ) y  = gxy   
output (gy ) x  = gxy

Public: Algebraic group G, generator g



Properties of the generated key (gxy) 

The Decisional Diffie-Hellman (DDH) assumption implies:  

           (g, gx, gy, gxy )  ~  (g, gx, gy, gr )

But:

● DDH is a strong assumption.

● Even under DDH, gxy is pseudorandom only in the group G,  which 
is often embedded in a much larger group (eg, Zp) 

● Even in best case, when |G|=q,  p=2q+1,  we only have that          
gxy  is pseudorandom in a small subset of {0,1}k .

● When the exchange is not authenticated by external mechanisms 
(e.g., in the MQV or HMQV protocols) the guarantees are even 
weaker.



Common practice

Hash  using a CHF and hope for the best... 

If the CHF is modeled as a random oracle then 
everything is ok.

But, can we do better? 



Randomness extractors
  
Input:
● A  “defective random source”, namely a value drawn from a 

distribution with substantial entropy,
● A short truly random value.
Output:
● A value that is statistically close to random. 

A computational variant [Dodis-Gennaro-Hastad-Krawczyk-Rabin05]:
Input:
● A  (secret) value drawn from a distribution with substantial 

“computational entropy”,
● A  (public) truly random value.
Output:
● A (secret)  pseudorandom value 

 



HMAC as an extractor

Assume the compression function hk is a c-extractor from b-bit 
inputs to s-bit outputs, with an s-bit public random input.

Then:
● The cascade Hk is a c-extractor from v-length input to s-bit 

outputs, as long as each input block has sufficient c-entropy 
given all subsequent blocks [DGHKR05,CG88].

● NMAC  and HMAC behave similarly, when assuming in 
addition that h is a PRF from s-bits to s-bits with b-bit key.
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Using HMAC as an extractor

Applicable when the parties have some trusted public 
randomness (e.g., the protocol involves exchanging  
public authenticated random nonces).  

Here do:            k = HMACr(g
xy)

where r is the public randomness (eg, concatenation of 
nonces).

K is guaranteed to be pseudorandom as long as gxy has 
enough c-entropy.

● Indeed, HMAC is used this way in IPSec's IKE.



Open question:

What to do when there is no trusted public 
randomness?

Here the best we know today is to model the 
CHF as a random oracle. 

Can we do better?



HMAC as a Random Oracle

HMAC was designed to get away from unnecessary 
random oracle modeling.

Still, it turns out that the HMAC/NMAC constructions 
can be used to extend Random Oracles           
[Coron-Dodis-Malinaud-Punya05]:

● If h is a random oracle on b-bit inputs, then:
● The cascade H of h is a random oracle on 

variable-length inputs, as long as queries are 
prefix-free.

● The HMAC/NMAC constructions are Random 
Oracles on variable-length inputs. 



Recent attacks on CHFs

The [Wang-Yu-Yin05] collision attacks againt            
MD5 and SHA1 imply:

● Can find collisions in current functions in time 2O(60).

● Same approach seems to work for a random,   
public IV (but needs a “human in the loop” for     
each new IV).   



Implications on HMAC:

● Another reminder that H is not a Random Oracle       
(and not even h). 

● Weak collision resistance (with secret IV) is 
somewhat affected, due to the extension attack.

● Very weak collision resistance does not seem to be 
affected.

● Neither the PRF nor the MAC assumptions on h 
seem to be affected.

● The c-extraction assumption on h seems unaffected.

In contrast, other suggestions of hash-based MACs are 
seriously affected.



Lessons for a new CHF:
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Lessons for a new CHF:

● Make the IV part of  the interface.  
    (OK to fix a single IV for interoperability, but explicitly allow 

applications to choose their own IV.)
● The compression function should be designed to be:

● A PRF when keyed via the chaining variable
● A PRF when keyed via the input

● The compression function should be a good extractor 
● The cascade design is a good one: preserves important properties 
● Make the output length parameterizable:

● For collision resistance larger ouput is easier
● For PRF, extractor  smaller output is easier

Perhaps we want different functions for different applications?



Summary: Why is HMAC interesting?

● An example where “theoretical” security analysis 
has impact on acceptability and practical security.

● Demonstrates the importance of modeling and 
abstraction in practical cryptography:  Different 
models of  the same construction bring different 
results, all useful.

● The recent attacks on hash functions highlight    
the properties of the HMAC design and analysis.

● Can use the HMAC lesson to propose 
requirements for the next cryptographic hash 
function.





Basic structure of the IPSec protocol:

• Key exchange: Two peers obtain a common 
secret key in an authenticated way.  
(Application layer protocol)

• Data protection: Encryption and authentication. 
(IP layer protocol: Each packet encoded and 
decoded individually.)

• Per-packet transforms:
– Authentication header (AH): Authentication only

– ESP: Authentication and/or encryption

Seems simple enough. But turns out to be far from that...



IP: the common denominator of the 
Internet
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HMAC as a standard

After much discussion and debate, HMAC was accepted as the 
mandatory-to-implement MAC function for IPSec (RFC 2104). 

● Rare example of a security standard where “theoretical” 
modeling and analysis has helped acceptance as standard. 

Other IETF standards that incorporate HMAC:
TLS, SHTTP, SSH, HTTPS, KERBEROS, SRTP,...

NIST standard: FIPS 198
ANSI standard: X9.71

Incorporated in practically any browser and OS  today.


