Phrase Recognition by Filtering and Ranking with Perceptrons

Xavier Carreras and Lluís Màrquez

TALP Research Center

Software Department

Techical University of Catalonia

RANLP 2003

Borovets, September 10, 2003

Outline

- Introduction
- Phrase Recognition Model
- Global Learning Algorithm
- Experimental Evaluation
- Conclusions and Current Work

A very general definition of phrase:

A sequence of contiguous lexical items that forms a unit of a certain type (e.g., named entities, syntactic chunks, clauses, etc.)

Phrase Recognition Problems₍₁₎

Chunking

[NP He] [VP reckons] [NP the current account deficit] [VP will narrow] [PP to] [NP only 1.8 billion] [PP in] [NP September] .

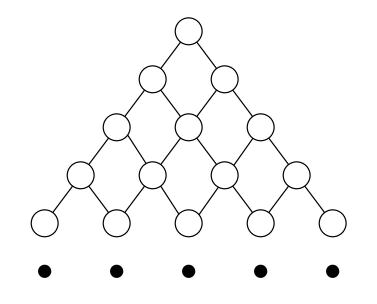
Named Entity Recognition

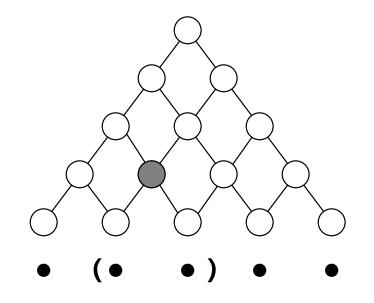
[PER Wolff], currently a journalist in [LOC Argentina], played with [PER Del Bosque] in the final years of the seventies in [ORG Real Madrid].

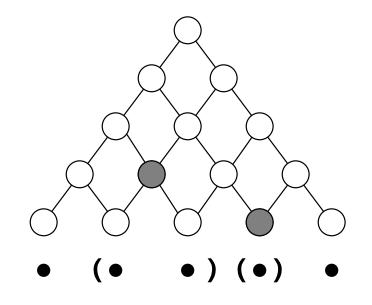
Phrase Recognition Problems₍₂₎

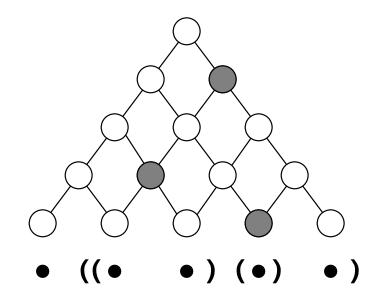
Clausing

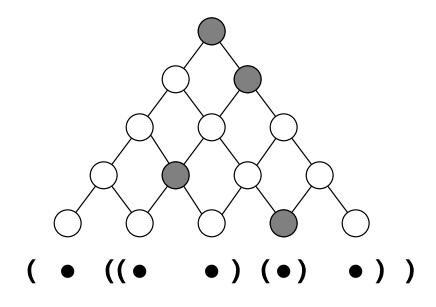
(S The deregulation of railroads and trucking companies (SBAR that (S began in 1980)) enabled (S shippers to bargain for transportation).









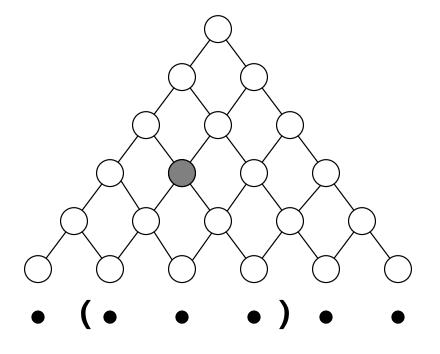


A solution is a coherent set of (embedded) phrases

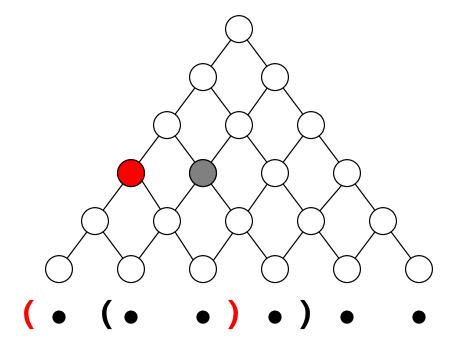
$$x = x_0, x_1, x_2, x_3, x_4$$

$$y = \{(1, 2), (3, 3), (1, 4), (0, 4)\}$$

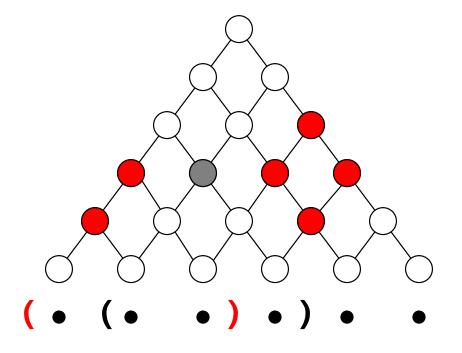
Phrase Overlapping

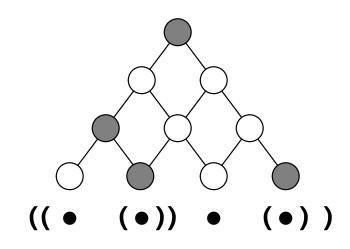


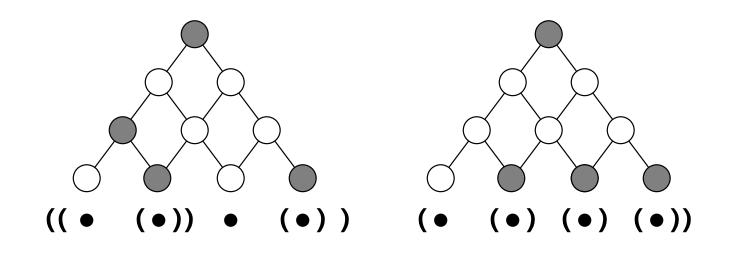
Phrase Overlapping

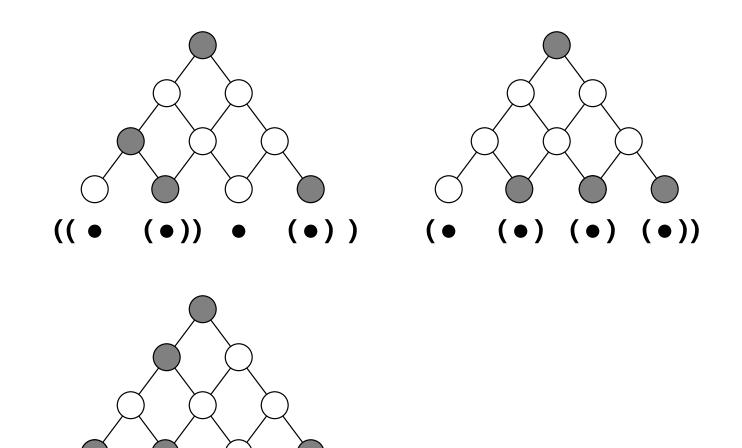


Phrase Overlapping

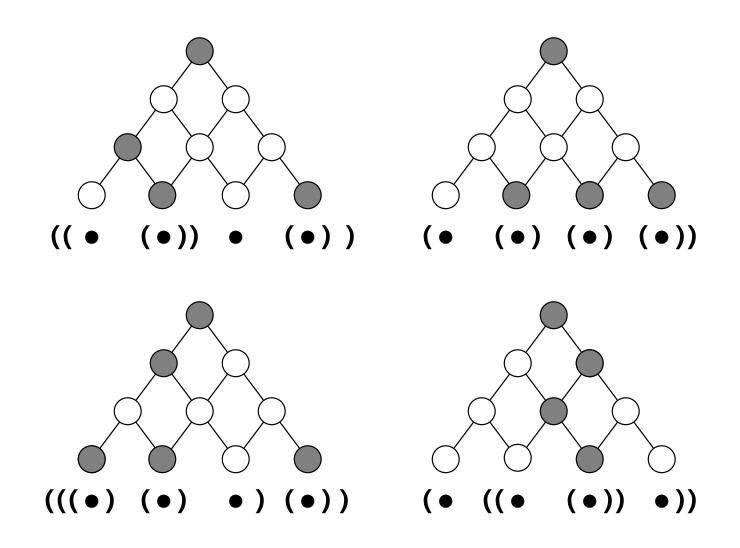








 $(((\bullet) (\bullet) \bullet) (\bullet))$



Framework

- General algorithm for phrase recognition
 - * Machine Learning on local decisions/contexts
 - * 1st layer: filtering at word level
 - * 2nd layer: ranking at phrase level
 - \star Inference Process to obtain the global solution

Framework

- General algorithm for phrase recognition
 - Machine Learning on local decisions/contexts
 * 1st layer: filtering at word level
 * 2nd layer: ranking at phrase level
 * Inference Process to obtain the global solution
- Usually, learning components are trained independently.
 In this work a global training strategy is proposed

Outline

- Introduction
- Phrase Recognition Model
- Global Learning Algorithm
- Experimental Evaluation
- Conclusions and Current Work

Phrase Score

We learn to score phrases. $\forall k \in \mathcal{K}$:

 $\operatorname{score}_k(s, e) \to \mathbb{R}$

Given the score of (s, e):

- The sign tells whether (s, e) is a k-phrase or not.
- The magnitude indicates the confidence of the decision.

Phrase Recognition Model

 \mathcal{Y} : solution space, i.e. set of all coherent phrase sets.

$$PhRec(x) = \arg \max_{y \in \mathcal{Y}} \sum_{(s,e)_k \in y} score_k(s,e)$$

Phrase Recognition Model

 \mathcal{Y} : solution space, i.e. set of all coherent phrase sets.

$$PhRec(x) = \arg\max_{y \in \mathcal{Y}} \sum_{(s,e)_k \in y} score_k(s,e)$$

- Sequential case: $O(n^2)$ Dynamic Prog. search
- Hierarchical case: $O(n^3)$ Dynamic Prog. search

Phrase Recognition Model: Start-End Candidates + Phrase Scoring

 \mathcal{Y} : solution space, i.e. set of all coherent phrase sets. \mathcal{Y}_{SE} : practical solution space, filtered at word level.

$$PhRec(x) = \arg \max_{y \in \mathcal{Y}_{SE}} \sum_{(s,e)_k \in y} \operatorname{score}_k(s,e)$$

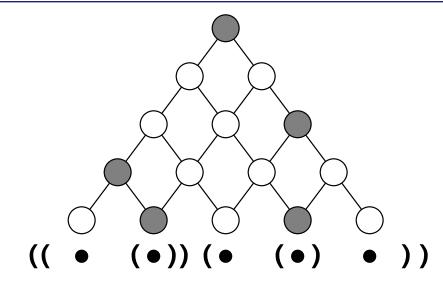
Phrase Recognition Model: Start-End Candidates + Phrase Scoring

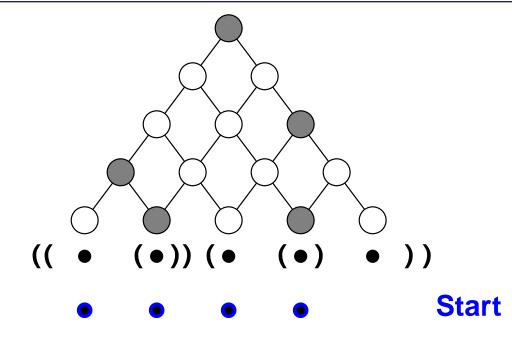
 \mathcal{Y} : solution space, i.e. set of all coherent phrase sets. \mathcal{Y}_{SE} : practical solution space, filtered at word level.

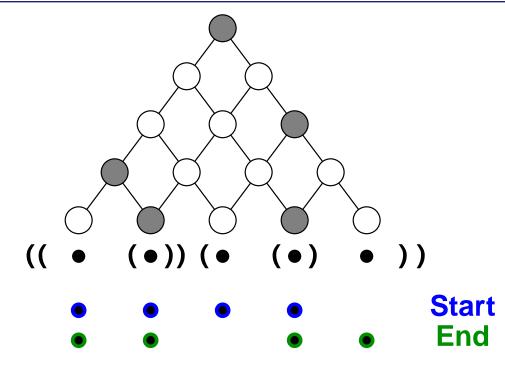
$$PhRec(x) = \arg \max_{y \in \mathcal{Y}_{SE}} \sum_{(s,e)_k \in y} \operatorname{score}_k(s,e)$$

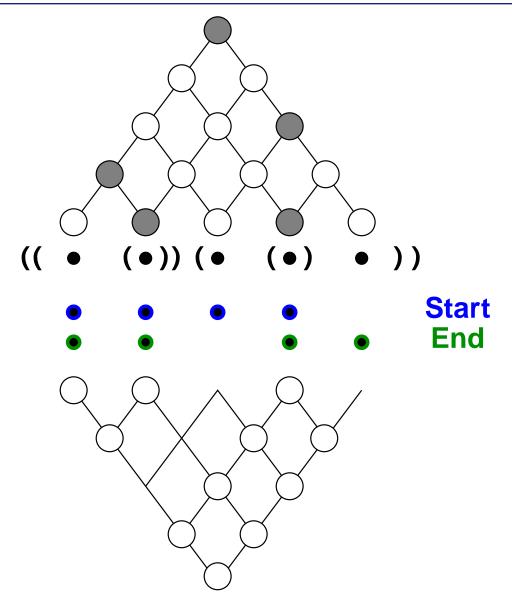
start and end binary classifiers perform filtering

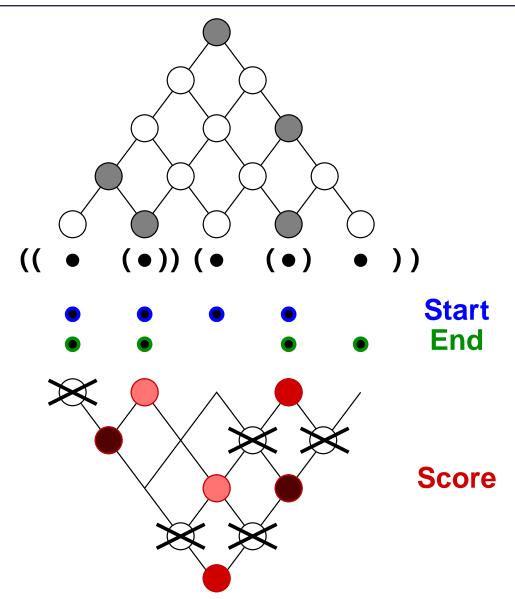
$$\mathcal{Y}_{SE} = \{ y \in \mathcal{Y} \mid \forall (s, e)_k \in y \; \operatorname{start}_k(s) \land \operatorname{end}_k(e) \}$$

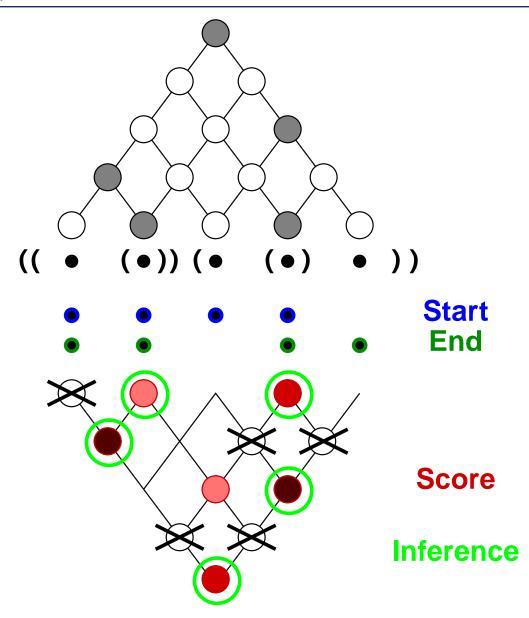












Outline

- Introduction
- Phrase Recognition Model
- Global Learning Algorithm
- Experimental Evaluation
- Conclusions and Current Work

Learning Challenges

• Learn all functions (start_k, end_k, score_k) so as to maximize the F₁ measure on the recognition of phrases

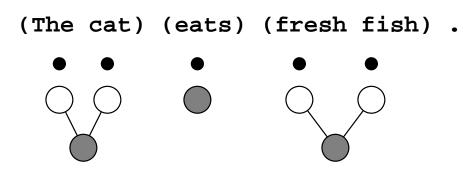
Learning Challenges

- Learn all functions (start_k, end_k, score_k) so as to maximize the F_1 measure on the recognition of phrases
- Start-End:
 - \star As filters, rather than default classifiers
 - \star They define the input space to the score functions

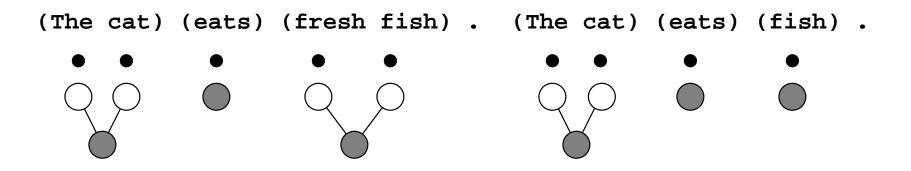
Learning Challenges

- Learn all functions (start_k, end_k, score_k) so as to maximize the F₁ measure on the recognition of phrases
- Start-End:
 - \star As filters, rather than default classifiers
 - \star They define the input space to the score functions
- Score functions:
 - \star The space of negative examples is too big $\sim O(n^2)$
 - ★ We need to know about Start-End behavior
 - \star As rankers, rather than default classifiers

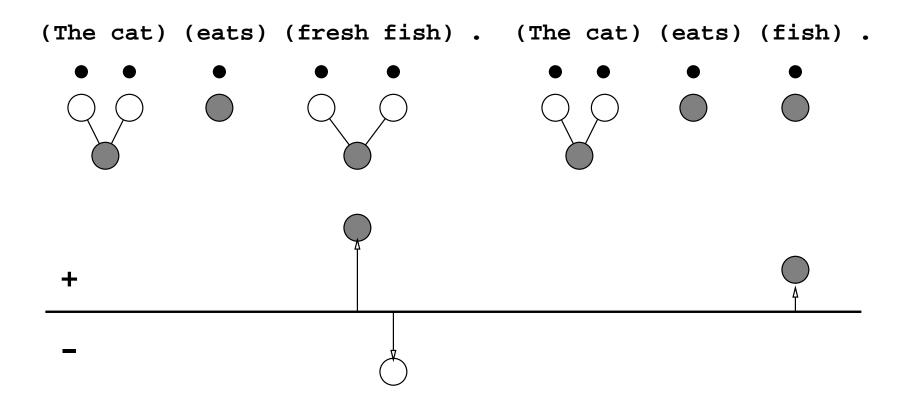
Motivation for the ranking



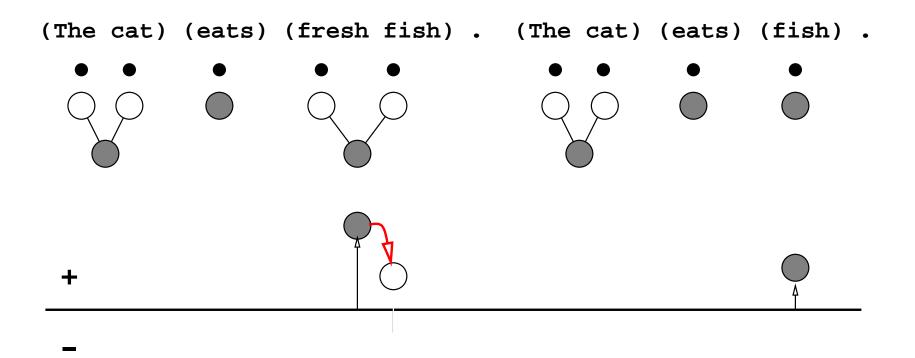
Motivation for the ranking



Motivation for the ranking



Motivation for the ranking



Perceptron-based Learning

- Linear discriminant function, $h_w : \mathbb{R}^n \to \mathbb{R}$, parametrized by a weight vector **w**
- Classification rule: $h_{\mathbf{w}}(\mathbf{x}) = sign(\mathbf{w} \cdot \mathbf{x}) = \hat{y}$
- On-line error-driven training algorithm
- Additive updating rule: $\mathbf{w}_{t+1} = \mathbf{w}_t + y\mathbf{x}$

Perceptron-based Learning

- Linear discriminant function, $h_w : \mathbb{R}^n \to \mathbb{R}$, parametrized by a weight vector **w**
- Classification rule: $h_{\mathbf{w}}(\mathbf{x}) = sign(\mathbf{w} \cdot \mathbf{x}) = \hat{y}$
- On-line error-driven training algorithm
- Additive updating rule: $\mathbf{w}_{t+1} = \mathbf{w}_t + y\mathbf{x}$
- Representation function $\Phi: \mathcal{X} \to \mathbb{R}^n$ to map sentence instances x into n-dimensional feature vectors

Perceptron Learning Algorithm

Input: $\{(x^1, y^1), \ldots, (x^m, y^m)\}$, x^i are sentences, y^i are solutions Define: $W = \{\mathbf{w}_{\mathrm{S}}, \mathbf{w}_{\mathrm{E}}\} \cup \{\mathbf{w}_{k} | k \in \mathcal{K}\}$ Initialize: $\forall \mathbf{w} \in W \ \mathbf{w} = \mathbf{0}$; for $t = 1 \dots T$ for $i = 1 \dots m$ $\hat{y} = \operatorname{PhRec}_W(x^i)$ learning_feedback (W, x^i, y^i, \hat{y}) end-for end-for **Output**: the vectors in W

Learning $\mathsf{Feedback}_{(1)}$

• Phrases correctly identified: $\forall (s, e)_k \in y^* \cap \hat{y}$:

 \star Do nothing, since they are correct

Learning $Feedback_{(1)}$

• Phrases correctly identified: $\forall (s, e)_k \in y^* \cap \hat{y}$:

 \star Do nothing, since they are correct

- Missed phrases: $\forall (s, e)_k \in y^* \setminus \hat{y}$:
 - * Update misclassified boundary words: if $(\mathbf{w}_{\mathrm{S}} \cdot \Phi_{\mathrm{w}}(x_s) \leq 0)$ then $\mathbf{w}_{\mathrm{S}} = \mathbf{w}_{\mathrm{S}} + \Phi_{\mathrm{w}}(x_s)$ if $(\mathbf{w}_{\mathrm{E}} \cdot \Phi_{\mathrm{w}}(x_e) \leq 0)$ then $\mathbf{w}_{\mathrm{E}} = \mathbf{w}_{\mathrm{E}} + \Phi_{\mathrm{w}}(x_e)$

Learning $Feedback_{(1)}$

• Phrases correctly identified: $\forall (s, e)_k \in y^* \cap \hat{y}$:

 \star Do nothing, since they are correct

- Missed phrases: $\forall (s, e)_k \in y^* \setminus \hat{y}$:
 - * Update misclassified boundary words: if $(\mathbf{w}_{\mathrm{S}} \cdot \Phi_{\mathrm{w}}(x_s) \leq 0)$ then $\mathbf{w}_{\mathrm{S}} = \mathbf{w}_{\mathrm{S}} + \Phi_{\mathrm{w}}(x_s)$ if $(\mathbf{w}_{\mathrm{E}} \cdot \Phi_{\mathrm{w}}(x_e) \leq 0)$ then $\mathbf{w}_{\mathrm{E}} = \mathbf{w}_{\mathrm{E}} + \Phi_{\mathrm{w}}(x_e)$
 - * Update score function, if applied: if $(\mathbf{w}_{\mathrm{S}} \cdot \Phi_{\mathrm{w}}(x_s) > 0 \land \mathbf{w}_{\mathrm{E}} \cdot \Phi_{\mathrm{w}}(x_e) > 0)$ then $\mathbf{w}_k = \mathbf{w}_k + \Phi_{\mathrm{p}}(s, e)$

Learning Feedback(2)

• Over-predicted phrases: $\forall (s, e)_k \in \hat{y} \setminus y^*$:

* Update score function: $\mathbf{w}_k = \mathbf{w}_k - \Phi_p(s, e)$

Learning $Feedback_{(2)}$

• Over-predicted phrases: $\forall (s, e)_k \in \hat{y} \setminus y^*$:

* Update score function: $\mathbf{w}_k = \mathbf{w}_k - \Phi_p(s, e)$

* Update words misclassified as S or E: if (goldS(s) = 0) then $\mathbf{w}_{S} = \mathbf{w}_{S} - \Phi_{w}(x_{s})$ if (goldE(e) = 0) then $\mathbf{w}_{E} = \mathbf{w}_{E} - \Phi_{w}(x_{e})$

Learning Feedback(2)

- Over-predicted phrases: $\forall (s, e)_k \in \hat{y} \setminus y^*$:
 - * Update score function: $\mathbf{w}_k = \mathbf{w}_k \Phi_p(s, e)$
 - * Update words misclassified as S or E: if (goldS(s) = 0) then $\mathbf{w}_{S} = \mathbf{w}_{S} - \Phi_{w}(x_{s})$ if (goldE(e) = 0) then $\mathbf{w}_{E} = \mathbf{w}_{E} - \Phi_{w}(x_{e})$
- Note that we deliberately do not care about false positives, i.e., wrongly predicted start or end words which do not finally over-produce a phrase

Outline

- Introduction
- Phrase Recognition Model
- Global Learning Algorithm
- Experimental Evaluation
- Conclusions and Current Work

Experiments on NLP Problems

- CoNLL Benchmark Problems (public datasets):
 - * Syntactic Chunking (2000)
 - * Clause Identification (2001)
 - * Named Entity Recognition (2003)
- Features:
 - ★ Window-based features
 - ★ Phrase patterns
 - * Word forms, POS tags, chunk tags, affixes, orthography, etc.
 - \star Filtering of features ocurring less than 3 times

Experiments on NLP $Problems_{(2)}$

- Some details about learning/evaluation:
 - * Training/developing/test data sets
 - * Voted perceptron algorithm
 - * Dual version using a degree 2 polynomial kernel
 - \star Fixed number of epochs (15)
 - \star ...more details in the paper

$\mathbf{Results}_{(1)}$

		development			test		
	Т	Р	R	F_1	Р	R	F_1
Chunks	10	_	-	-	94.2%	93.3%	93.74
Clauses	11	89.8%	84.1%	86.8	88.0%	81.0%	84.36
NERC	12	89.6%	88.2%	88.9	83.9%	83.4%	83.68

• Chunks:

- ★ Best result at competition time
- \star Third best result ever published on this data set
- \star (Kudoh & Matsumoto, 01): F_1 =93.91
- \star (Zhang et al., 02): $F_1=94.17$

$\mathbf{Results}_{(2)}$

		development			test		
	Т	Р	R	F_1	Р	R	F_1
Chunks	10	_	-	_	94.2%	93.3%	93.74
Clauses	11	89.8%	84.1%	86.8	88.0%	81.0%	84.36
NERC	12	89.6%	88.2%	88.9	83.9%	83.4%	83.68

• Clauses:

- \star Best result ever published on this data set
- * (Carreras et al., 2002): F_1 =83.71

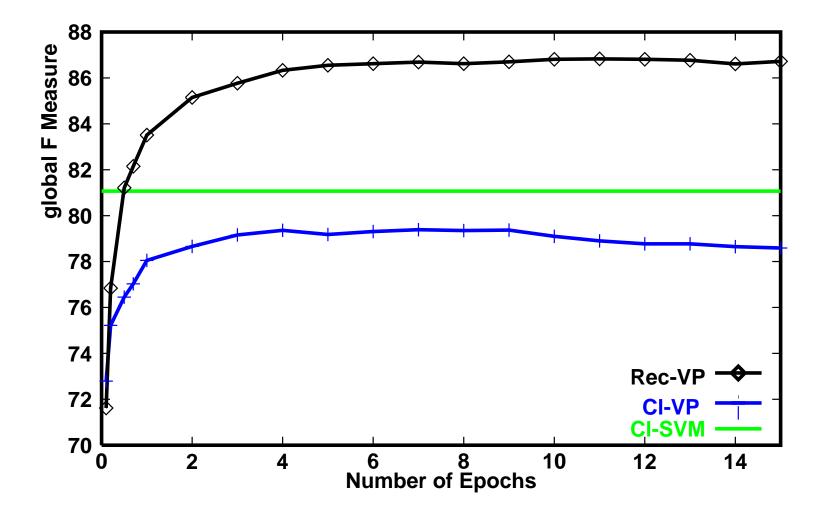
Results₍₃₎

		development			test		
	Т	Р	R	F_1	Р	R	F_1
Chunks	10	_	-	-	94.2%	93.3%	93.74
Clauses	11	89.8%	84.1%	86.8	88.0%	81.0%	84.36
NERC	12	89.6%	88.2%	88.9	83.9%	83.4%	83.68

• NERC:

- ★ Lower results but competitive
- NE recognition depends more on the features (also external knowledge) than on the structure

Does Global Learning Work Better?



Conclusions

• We have presented a general 2-layer perceptron-based learning architecture for phrase recognition problems, and an online learning algorithm to train all the perceptrons together

Conclusions

 We have presented a general 2-layer perceptron-based learning architecture for phrase recognition problems, and an online learning algorithm to train all the perceptrons together

• Some good properties:

- ***** Good results on several NLP problems
- \star The learning feedback takes into account the global solution
- Training the functions together is better than training them separately
- \star On-line fashion: deals with negative examples in a natural way
- * Simplicity and flexibility of the model
- * Rich features can be developed at phrase level

Current/Future Work

- Convergence proofs for the training algorithm and theoretical bounds on generalization: coming soon!
- Further study of the interaction between layers during training
- Solving several NLP tasks at the same time: POS tagging + chunking; chunking + clausing; full parsing; etc.

Thank you very much for your attention!