
7

WaitSuite: Productive Use of Diverse Waiting Moments

CARRIE J. CAI, ANJI REN, and ROBERT C. MILLER, MIT CSAIL

The busyness of daily life makes it difficult to find time for informal learning. Yet, learning requires significant
time and effort, with repeated exposures to educational content on a recurring basis. Despite the struggle
to find time, there are numerous moments in a day that are typically wasted due to waiting, such as while
waiting for the elevator to arrive, wifi to connect, or an instant message to arrive. We introduce the concept of
wait-learning: automatically detecting wait time and inviting people to learn while waiting. Our approach is
to design seamless interactions that augment existing wait time with productive opportunities. Combining
wait time with productive work opens up a new class of software systems that overcome the problem of
limited time.

In this article, we establish a design space for wait-learning and explore this design space by creating
WaitSuite, a suite of five different wait-learning apps that each uses a different kind of waiting. For one of
these apps, we conducted a feasibility study to evaluate learning and to understand how exercises should
be timed during waiting periods. Subsequently, we evaluated multiple kinds of wait-learning in a two-week
field study of WaitSuite with 25 people. We present design implications for wait-learning, and a theoretical
framework that describes how wait time, ease of accessing the learning task, and competing demands
impact the effectiveness of wait-learning in different waiting scenarios. These findings provide insight into
how wait-learning can be designed to minimize interruption to ongoing tasks and maximize engagement
with learning.

Categories and Subject Descriptors: H.5.m. [Information Interfaces and Presentation (e.g., HCI)]:
Miscellaneous

General Terms: User Interfaces, Design

Additional Key Words and Phrases: Micro-learning, wait-learning, microtasks, attention management,
productivity

ACM Reference Format:
Carrie J. Cai, Anji Ren, and Robert C. Miller. 2017. WaitSuite: Productive use of diverse waiting moments.
ACM Trans. Comput.-Hum. Interact. 24, 1, Article 7 (March 2017), 41 pages.
DOI: http://dx.doi.org/10.1145/3044534

1. INTRODUCTION

Competing priorities in daily life makes it difficult for those with a casual interest in
learning to find time for practice. For those who would like to learn a foreign language
or study for a standardized exam, the busyness of daily life makes it challenging to
schedule regular time for these activities. Despite having the initial desire or choice
motivation to learn, learners often lack the executive motivation to actually practice
vocabulary and concepts on a repeated basis [Dornyei and Ottó 1998]. Dropout rates
in adult education are as high as 70% [Park and Choi 2009], despite an initially high
starting motivation.

This work was funded by Quanta Computer and the National Science Foundation award SOCS-1111124.
Authors’ addresses: C. J. Cai, A. Ren, and R. C. Miller, MIT CSAIL, Cambridge, MA 02139; emails: {cjcai,
aren, rcm}@mit.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2017 ACM 1073-0576/2017/03-ART7 $15.00
DOI: http://dx.doi.org/10.1145/3044534

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 1, Article 7, Publication date: March 2017.

http://dx.doi.org/10.1145/3044534
http://dx.doi.org/10.1145/3044534

7:2 C. J. Cai et al.

Despite the difficulty of finding time for learning, there are numerous moments in a
day spent waiting, which are often wasted because these moments are not perceived
to be useful for doing meaningful work. Recent work on micro-learning has explored
ways to distribute language study into micro-moments throughout a person’s daily life,
such as at moments when users return to their computers [Gassler et al. 2004]. In our
work, we extend micro-learning and introduce wait-learning, a particular kind of micro-
learning that targets waiting moments as timely triggers for learning. Wait-learning is
motivated by evidence that people need well-timed triggers to sustain desired behav-
iors, even if they are already motivated to perform the behavior [Fogg 2009]. Whereas
micro-learning traditionally occurs during live time, or moments when a different task
(the primary task) could conceivably continue, wait time is particularly promising be-
cause it takes place when the primary task is temporarily blocked, a situation in which
users may be more receptive to a secondary task [Jin and Dabbish 2009]. Using wait
time as a trigger for micro-learning, we hope to engage users in learning at times when
they are more likely to be available.

Because waiting occurs within the context of existing activities, a core challenge of
wait-learning is designing interactions in a way that minimizes interruption to the
ongoing tasks. In particular, wait-learning involves understanding when and how to
trigger the learning task, so that switching from the primary task to the learning task
and back is as seamless as possible. We leverage a large body of existing theory in
the domains of attention management and multi-tasking, and consider issues such
as attentional capacity and switch costs in our design process. We establish a design
space for wait-learning, charting design dimensions that characterize both the waiting
moment and the learning interaction.

To understand which factors make wait-learning more effective, we created Wait-
Suite, a multi-app infrastructure that supports wait-learning across a diversity of
waiting moments. Waiting occurs for a variety of reasons, such as procedural delays
(e.g., waiting in line), software inefficiencies (e.g., waiting for email to load), and social
delays in communication (e.g., waiting for an instant message reply). We selected five
kinds of waiting that span a range within the design space, and then designed and
implemented an app for each one to be integrated into WaitSuite:

(1) ElevatorLearner: The user learns while waiting for the elevator.
(2) PullLearner: The user learns after pulling to refresh mobile app content, while

waiting for the content to load. Pull-to-refresh is a touchscreen gesture that involves
dragging the screen downward, and then releasing it to trigger a refresh.

(3) WifiLearner: The user learns while waiting for their computer to connect to wifi.
(4) EmailLearner: The user learns while their email is being sent.
(5) WaitChatter: The user learns while awaiting instant message (IM) responses.

The research questions we seek to answer are as follows:

—How can wait-learning systems be designed to maximize learning engagement and
minimize disruption to ongoing tasks?

—To what extent can people learn during waiting moments?

We first conducted a feasibility study on WaitChatter. We found that people are
able to learn vocabulary during wait time, and that wait-learning is more effective
when triggered at the start of waiting periods, compared to at random times or in
the middle of waiting. Second, we evaluated the design space of wait-learning in a
two-week, in-situ study of WaitSuite. We found that wait time, ease of accessing the
learning exercise, and competing demands were key factors affecting engagement
with learning. In a supplementary analysis, we also discovered that most participants
regularly used more than one wait-learning app, supporting a need for wait-learning

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 1, Article 7, Publication date: March 2017.

WaitSuite: Productive Use of Diverse Waiting Moments 7:3

across diverse waiting contexts. We end with design implications and a theoretical
framework for wait-learning that extends existing work on attention management.
The framework illustrates a combination of constraints (wait time, ease of access, and
competing demands) that is more effective for wait-learning. Taken together, our work
provides insight into how future wait-learning systems can be designed to enhance
learning engagement during wait time while minimizing disruption to ongoing tasks.

This article makes the following contributions:

—A design space for wait-learning and a suite of five different wait-learning apps
(WaitSuite) that explores the design space.

—An in-situ evaluation of WaitSuite.
—Design implications and a theoretical framework for wait-learning.

2. RELATED WORK

Our work on wait-learning draws on existing research related to micro-learning. It
is also informed by a large body of work on attention and interruption management,
motivations behind multi-tasking, and the waiting experience.

2.1. Micro-Learning

A rich thread of research on micro-learning [Gassler et al. 2004] aims to distribute
learning into small units throughout a person’s day-to-day life. Micro-learning is moti-
vated by strong evidence that retention of new content is enhanced when that content
is presented in a spaced [Dempster 1987] and repeated [Webb 2007] manner. Given
that humans exhibit a negatively exponential forgetting curve [Ebbinghaus 1913],
content should be presented in increasingly spaced intervals, so that it is encoun-
tered just before it is likely to be forgotten. Several approaches, such as the Pimsleur
method [Pimsleur 1967] and the Leitner algorithm [Godwin-Jones 2010], automate the
scheduling of flashcards based on the history of prior exposures.

Existing systems for micro-learning have clustered around methods for teaching for-
eign language vocabulary that is relevant to the learner’s context. Mobile applications
such as MicroMandarin [Edge et al. 2011] and Vocabulary Wallpaper [Dearman and
Truong 2012] present location-related vocabulary so that users can learn words in con-
text while on the go. Other mobile applications also teach vocabulary that is related to
nearby objects [Beaudin et al. 2007]. These systems for contextual learning have tend
to focus more on what and where the user is learning rather than when to present these
learning opportunities. Moreover, because these systems typically displayed exercises
passively, users still needed to make a self-motivated, conscious decision to learn, a
level of activation energy that is often too high. For example, in MicroMandarin, users
learned more vocabulary in the non-contextual version than in the contextual version
due to greater time availability while using the non-contextual version [Edge et al.
2011]. Given that learners may have a high initial motivation to learn, but lack the ex-
ecutive motivation to practice on a repeated basis [Dornyei and Ottó 1998], the timing
of learning opportunities may be critical to a user’s ultimate engagement with learning.

To address the issue of motivation, several systems have embedded learning into
daily routines to help users form a regular habit. For example, Lernschoner [Gassler
et al. 2004] activates a learning program when a user’s computer becomes idle, and
asks users to answer a flashcard before they resume activity on their computer screen
[Gassler et al. 2004]. ALOE translates words within web articles a user is reading and
displays them in a foreign language [Trusty and Truong 2011]. FeedLearn augments
Facebook newsfeeds with inserted flashcard exercises, so that users can learn while
casually browsing social media [Kovacs 2015]. However, in these micro-learning
systems, engagement with learning was sometimes dampened because learning

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 1, Article 7, Publication date: March 2017.

7:4 C. J. Cai et al.

delayed higher-priority tasks. For example, some users disabled in-place translation of
webpages because they felt it decreased the speed at which they could perform tasks on
the Web [Trusty and Truong 2011]. Similarly, asking the user to answer a Lernschoner
flashcard before resuming computer activity could delay the user’s next task, and
potentially lead to abandonment of learning. While micro-learning traditionally
targets times when the primary task could conceivably continue, wait-learning instead
encourages users to learn during times when they would otherwise be waiting for a
primary task to resume.

2.2. Theories on Attention Management and Multitasking

Because waiting occurs amidst existing tasks, the timing and manner in which learn-
ing exercises are presented may have an impact on cognitive workload and user en-
gagement. In the following section, we present several theories surrounding attention
management as a basis for understanding and designing for wait-learning.

2.2.1. Peripheral Interaction. Peripheral interaction aims to enable everyday interac-
tions that can meaningfully and effortlessly blend into daily routines, by supporting
shifts between the periphery and the center of attention [Bakker et al. 2015; Edge and
Blackwell 2016]. Facilitating peripheral interactions requires taking into account the
user’s context and understanding the mental resources required in existing routines.
In particular, peripheral interactions should be easy-to-initiate and easy-to-discard.
In other words, the interaction should involve minimal start-up time, and should not
require extra effort to abandon. More recently, some have proposed designing more
adaptive systems to support casual interactions, by allowing users to decide how much
they would like to engage [Pohl and Murray-Smith 2013], or implicit human computer
interaction, by automatically sensing a user’s situational context and adapting to it
[Schmidt 2000].

2.2.2. Attentional Capacity. There have been multiple theories surrounding how atten-
tion is managed and allocated across tasks. Kahneman’s resource theory posits that
there is a single pool of attentional resources that can be freely divided among multiple
tasks [Kahneman 1973]. According to resource theory, our minds dynamically allocate
and release resources throughout task execution, resulting in fluctuating levels of at-
tentional capacity. Different activities receive different amounts of attentional resource
depending on factors such as arousal, task complexity, and effort. For example, as a
task is practiced and automatized over time, it requires less effort and less attentional
capacity. In contrast to single resource theories, multiple resource theory proposes that
several different pools of resources can be tapped simultaneously, such as different
input modalities and stages of processing [Wickens 1984].

Some theories characterize attention as a bottleneck or selective filter. According to
Broadbent’s Filter Model, a filter selects which of many competing messages ultimately
receives attention [Broadbent 1958], separating incoming messages into those that
are attended and those that are not. Only messages that pass through the filter
are attended to and stored in short-term memory. Some posit that the filter makes
its selection based purely on the physical characteristics or modality of the input
[Broadbent 1958], while others show that the meaning of the input is also a factor
[Deutsch and Deutsch 1963; Treisman 1960]. For example, overhearing one’s own
name during a cocktail party can turn one’s attention toward input that was initially
unintended [Conway et al. 2001].

Because attentional capacity is finite, attempting to perform two or more tasks si-
multaneously can be costly. Research shows that the way in which a secondary task is
presented matters. The timing of a secondary task relative to the user’s ongoing task
has significant effects on interruption cost, task performance, and levels of frustration

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 1, Article 7, Publication date: March 2017.

WaitSuite: Productive Use of Diverse Waiting Moments 7:5

[Bailey and Iqbal 2008; Adamczyk and Bailey 2004]. Many studies have shown that
mental workload decreases at the boundaries between subtasks [Miyata and Norman
1986], and decreases more between larger chunks of a task [Bailey and Iqbal 2008].
Therefore, presenting secondary tasks during coarse-grained boundaries, or boundaries
between larger chunks of a task, is less disruptive than doing so during fine-grained
boundaries [Bailey and Iqbal 2008], because there are fewer demands for mental re-
sources. Computational frameworks have been developed for modeling and predicting
performance during the concurrent execution of multiple tasks [Salvucci and Taatgen
2008].

2.2.3. Task Switching and Interference. Beyond the simultaneous completion of tasks, a
related line of research focuses on the effects of switching between tasks. A large
body of evidence shows that there is a switch cost associated with switching between
tasks. Task switching results in slower and more erroneous performance compared to
continuing on the same task [Monsell 2003; Wylie and Allport 2000]. This cost is due
to the time required to inhibit the carry-over of activation from the previous task, as
well as the time required to reconfigure to the new task. Due to the passage of time,
reactivation of that task may also be more error-prone.

Recently, researchers found that the need to remember a problem state affects the
disruptiveness of secondary tasks because it adds to the execution time of task switch-
ing [Borst et al. 2015]. Problem state refers to the temporary, intermediate information
necessary to perform a task. For example, during multi-column addition, one might
need to remember the problem state of whether to carry a one. Under this framework,
interruption effects are stronger when both the primary and secondary tasks have a
problem state. Because only one chunk of information can be stored in the problem
state module at a time, the problem states have to be swapped in and out frequently
if multiple tasks require problem states [Anderson 2005; Borst et al. 2010]. Moving
a problem state to and from declarative memory requires processing time, adding to
the cost of switching tasks. The overhead of problem state retrieval can be decreased
if the state is encoded in the user’s environment. For example, driving directions can
externalize problem state by displaying arrows for intermediate turns so that the user
does not need to remember which steps they’ve already taken.

2.3. Multitasking and Motivation

In light of the cognitive costs associated with multitasking, an emerging body of work
has examined the motivational reasons behind why people multitask.

2.3.1. Multitasking as Emotional Fulfillment. Recent studies suggest that much of task
switching is driven by emotional or motivational goals, rather than cognitive or per-
formance goals [Lang 2006; Wang and Tchernev 2012]. This motivation is driven by a
drive to maximize positive affect through strategic activation of the appetitive system,
and avoid negative affect through the aversive system. For example, self-interruptions
can function as a desirable break from frustration, fatigue, or boredom with a primary
task [Jin and Dabbish 2009]. Students might exchange texts with friends to balance
against the tedium of doing homework. Similarly, someone waiting in line might check
their email to offset boredom and cope with their aversion to waiting. People may
welcome or even seek out a secondary task if it helps them establish homeostasis
or maintain internal equilibrium [Mark et al. 2015; Neuberg et al. 2011]. According
to Wickens et al.’s computational decision model, people are more likely to switch to
secondary tasks that have high salience and low difficulty [Wickens et al. 2015].

2.3.2. The Waiting Experience. There is strong evidence that waiting has a measurable
effect on user satisfaction, mood, and level of frustration [Dellaert and Kahn 1999].

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 1, Article 7, Publication date: March 2017.

7:6 C. J. Cai et al.

The longer the wait time relative to the expected waiting time, the lower the customer
satisfaction [Dellaert and Kahn 1999; Maister 1984]. Due to the negative experiences
associated with waiting, many approaches have been proposed to improve the waiting
experience. Some minimize actual wait time using optimization algorithms [Lin and
Raghavendra 1996], while others seek to improve subjective experience. Based on
evidence that occupied time feels shorter than unoccupied time, and finite waits feel
shorter than uncertain waits [Maister 1984], a large number of approaches have been
used to help improve the waiting experience. These range from filling wait time with
music [Hul et al. 1997], content [Alt et al. 2012; Katz et al. 1991; Niida et al. 2011],
and wait time estimates [Katz et al. 1991], to redesigning progress bars that alter the
perception of time [Harrison et al. 2007].

While these approaches primarily seek to increase satisfaction with the service
provider, our work on wait-learning seeks to benefit the users themselves, by en-
abling personal productivity during waiting periods. Because filled waiting periods
are perceived to be shorter than unfilled waiting periods [Maister 1984; Nah 2004],
wait-learning could enhance a user’s subjective experience while waiting, in addition
to helping a user make progress on learning goals. Indeed, people naturally task switch
while waiting because they are temporarily unable to make progress on the primary
task [Jin and Dabbish 2009]. Given the motivational underpinnings for task switching,
wait-learning may be more engaging if learning exercises are presented during types
of waiting that are particularly frustrating or boring.

2.4. Implications for Wait-Learning

Taken together, existing work suggests that there is a cost to switching from a primary
task to a secondary task and back, and that the interruption cost is higher if the ongoing
task utilizes substantial attentional resources or demands memory of a problem state
at the moment the second task is introduced. Furthermore, waiting is a state in which
users may feel motivated to switch to another task, given the inability to make progress
on the primary task.

Thus, wait-learning may be most engaging if users perceive a waiting period, and
if the expected benefits of learning while waiting offset the cost of task switching. To
minimize switch cost, wait-learning should be designed to take advantage of moments
when problem state is low and attentional resources are high. Low attentional capacity
can potentially be offset by longer waiting times, during which there is not only more
time available to switch, but also more waiting to endure and more opportunity to
learn. In the following sections, we enumerate the design space of wait-learning, the
systems we built to explore the design space of wait-learning, and our evaluations of
those systems.

3. DESIGN SPACE

Designing wait-learning interactions involves decisions surrounding both the waiting
moment (which kind of waiting to use) and wait-learning interaction (how the user
interacts with learning exercises during wait time). In this section, we describe the
possible design space of waiting moments and wait-learning interactions, and explain
our rationale for narrowing down each dimension of the design space to a subspace
that is more suitable for wait-learning. Some decisions were based on existing research
literature on attention management and learning, whereas others were informed by
feedback on early design iterations.

3.1. Waiting Moment

To chart the space of waiting options, we first brainstormed a list of 20–30 waiting
opportunities (Figure 1). Observing that these waiting moments varied widely with

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 1, Article 7, Publication date: March 2017.

WaitSuite: Productive Use of Diverse Waiting Moments 7:7

Fig. 1. A diverse set of brainstormed waiting moments, displayed by wait time and frequency. Some waiting
moments occur in ubiquitous contexts, while others are due to software inefficiencies or delays in social
communication.

respect to both wait time (duration of waiting) and frequency (how often the waiting
occurs), we then further sorted each kind of waiting by wait time and frequency. These
wait types are not intended to be exhaustive, but rather give a general sense of different
categories of waiting that may exist. In this section, we describe various dimensions
of waiting moments and explain why we focused on particular subsets within each
dimension.

3.1.1. Wait Time. Wait times can range from a few seconds to several hours. To make
the benefits of wait-learning offset the switch costs, wait time should be at minimum
several seconds long to give the user enough time to switch into a learning activity.

From our initial brainstorm, we noticed that longer waits tend to occur in ubiquitous
contexts (e.g., waiting in line), whereas shorter waits often happen as a result of in-app
inefficiencies (e.g., app loading). During waiting in ubiquitous contexts, the physical
switch cost may be high despite high attentional resources being available. For example,
someone in line at a grocery store might not be mentally occupied, but may instead be
holding items in their hands, and not attending to their device. Switching to learning
would require the physical effort of pulling out the device and transferring one’s gaze.
Conversely, technical inefficiencies tend to occur while a user is already on a device
or inside an app. Thus, switching into a digital learning activity could require less
physical effort. However, users might also be more mentally consumed by existing
activities on their device, and moreover have less time to task switch during short
waits. Given these tradeoffs, we explore both ends of the spectrum, from short, in-app
waits to longer periods of waiting during ubiquitous activities. We do not explore hour-
long waits, as these tend to be waits that are activities in and of themselves (e.g., eating
lunch).

We additionally explored a class of situations where wait time is negligible, but
competing mental demands may be low. In early iterations, we found that the moment
after pressing Send on an email, form submission, or social media post is a time when
users may have just completed one task (sending an email) before formulating a new

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 1, Article 7, Publication date: March 2017.

7:8 C. J. Cai et al.

goal. Many interfaces display a throbber while the item is being sent, causing a moment
of waiting as the user watches the screen to ensure that the item in fact got sent or
submitted. In this case, we do not expect the fleeting moment of waiting itself to be long
enough for completing the exercise. However, if the moment coincides with a coarse-
grained task boundary, with little need for remembering a problem state, the user
could notice the learning opportunity while waiting, and then completes the exercise
between tasks.

3.1.2. Frequency. Some wait times occur regularly, whereas others are encountered
only occasionally, e.g., movie previews, or only by certain groups of people, e.g., code
compiling. A considerable body of research has shown that spaced, repeated exposure
to educational content aids memory retention [Dempster 1987]. Therefore, we limit our
exploration only to the subspace of wait types that occur at least once a day on average
in order to have a meaningful impact on learning since users will likely only respond
to a subset of these opportunities.

3.1.3. Competing Demands. As described in related work (Section 2), secondary tasks
are less likely to be disruptive if delivered at the boundary of coarser-grained tasks,
or if the primary task demands low attentional capacity and low memory of problem
state. For example, waiting for code to compile may consume high attentional capacity
because a user must remember which bug they were trying to fix, which files and lines
they are working on, and may also be contemplating how else to fix the bug. Conversely,
taking the elevator tends to consume less attentional resources. The process of pressing
the button and entering the elevator is almost automatic, and the user simply needs
to remember where they were going next.

We filter out waiting situations that typically occur amidst tasks requiring high
attentional capacity. Competing demands can also be higher during work-related or
urgent tasks, because a user may devote more attentional resources to activities for
which more is at stake. Therefore, we also filter out waiting scenarios that usually
occur within a work-related setting.

3.1.4. Main Task Resumption. A problem with secondary tasks is the switch cost asso-
ciated with resuming the primary task once the secondary task ends. As described in
related work (Section 2), the user needs to inhibit activation of the secondary task,
activate the primary task, and in some cases, retrieve the problem state of the primary
task from memory [Monsell 2003; Wylie and Allport 2000; Altmann and Trafton 2004;
Borst et al. 2015]. To minimize the effort required to retrieve problem state, we exclude
waiting moments that do not display the intermediate state of the main task to the
user, in cases where the main task has a strong problem state that must be retrieved.
For example, a user who is learning while waiting for a phone call to connect might
forget the purpose of the phone call in the absence of visual reminders. In contrast,
instant messaging applications typically show a chat history that visually reminds the
user what was last said. In cases where the original task intent cannot be externalized
or visually conveyed, such as after wifi connects, the main task ought to be one that
demands low problem state to begin with.

While prior work on interruptions prioritized primary task resumption, in our work
we also balance against interruptions to the learning task. An abrupt resumption of
the primary task could disrupt the learning process. It could also interrupt the flow
state [Csikszentmihalyi 1990] in cases where users are completing multiple flashcards
in a row. To support the completion of the learning task, we exclude primary tasks
that resume abruptly or demand the user’s immediate attention when they resume.
For example, a user waiting for a phone call to connect must promptly attend to the
conversation once the waiting ends. Conversely, a user receiving an instant message

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 1, Article 7, Publication date: March 2017.

WaitSuite: Productive Use of Diverse Waiting Moments 7:9

reply can delay responding, because the other party is usually not aware of when
messages are received [Nardi et al. 2000]. In the case of elevator waiting, a user can
continue doing more learning exercises after waiting and during the elevator ride,
allowing for a gradual rather than abrupt transition back to the primary task.

Absorption into the secondary task could also delay resumption of the primary task.
For example, a user waiting for an instant message reply might switch browser tabs
to Facebook, and become so absorbed in Facebook activities that the chat conversation
is abandoned or delayed. This behavior occurs not only in cases when a user has
overestimated wait time [Jin and Dabbish 2009] but also when monitoring the primary
task is made difficult because it is no longer in view. Hence, rather than occluding the
main task, the learning task should appear in a multiplexed manner [Böhmer et al.
2014], so that people can continue to view and monitor the main task even while
completing the learning task.

3.2. Wait-Learning Interaction

3.2.1. Learning Task. In theory, wait-learning tasks could range from bite-sized pieces
of knowledge to a full curriculum with complex concepts. However, according to instruc-
tional research, instructional elements with a few interdependent parts are easier to
learn in isolation [Sweller et al. 1998]. For example, the study of vocabulary, special
terminology, and chemical symbols imposes a lower cognitive load in comparison to
learning algebra, which has more interdependent parts [Sweller et al. 1998]. Further-
more, as described in a related work (Section 2), interruption costs are lower when
the secondary task does not require maintaining an intermediate problem state [Borst
et al. 2015]. Therefore, while more complex concepts could in theory be learned during
longer wait times, in this article, we focus on the task of vocabulary learning, which has
low problem state because each word can reasonably be learned in isolation [Sweller
et al. 1998].

3.2.2. Manner of Appearance. Peripheral interactions should be designed so that they
are easy-to-initiate and easy-to-discard [Bakker et al. 2015]. Thus, the learning task
should appear subtly at the periphery of the user’s attention, and should also require
little effort to ignore.

A learning exercise could be displayed as a hard notification, soft notification, or static
notification. Prior work defined soft notifications as ones that appear gradually [Wilson
2006]. In this work, we distinguish these categories more concretely as follows: Hard
notifications involve both animated panels and animated text (e.g., pop-up notification),
soft notifications keep the panel static but animate only the text (e.g., news ticker), and
static notifications keep both panel and text static (e.g., banner ads). Prior research
has shown that hard notifications interrupt users suddenly, tend to increase user
annoyance [Bailey et al. 2001], and can result in a severe loss of productivity [Bailey
and Iqbal 2008]. On the other hand, a completely static notification may result in the
user becoming habituated to the display over time [Jordan and Tipper 1998], leading
to low engagement and potential abandonment.

After feedback from pilot studies, we decided on a soft notification that keeps a static,
always-present panel containing text that subtly changes appearance. To minimize
disruption while encouraging learning, the text should gently change its appearance
but stay within its static, dedicated space. If ignored, the text returns to its default
state after a period of time so that no user action is required to dismiss it. In the designs
we implemented, the text changes from a default string to the vocabulary prompt (e.g.,
“cat”) when waiting is detected. We show the prompt so that the user can immediately
see the word and decide whether to engage, without leaving the main task. In cases

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 1, Article 7, Publication date: March 2017.

7:10 C. J. Cai et al.

where this is not possible, an actionable phrase (i.e., “Translate a word!”) could be
displayed instead.

To maximize the ease of both initiating the learning task and resuming the primary
task, the learning component should be positioned near the most likely locus of at-
tention, such as below the last line of chat, or in dead space near a loading icon. If
requiring manual interaction, it should also be physically easy to reach, near where
the user’s hands already are during the main task.

3.3. Selecting Waiting Scenarios

Within the design space defined above, we selected a set of reasonable waiting scenarios
in an iterative process. Because the design space has high dimensionality, and the
dimensions are already constrained by existing interactions during waiting, we could
not manipulate each dimension in a controlled way without fundamentally changing
the primary task. Instead, we explored a variety of wait-learning opportunities that
met the criteria we defined above while spanning a range of wait times, frequencies,
and likelihood of competing demands.

3.3.1. Tallying the Frequency of Waits. While some kinds of waiting occur multiple times
per day, even within a single conversation (e.g., waiting for IM replies), for other types
of waiting the frequency of occurrence may be much lower. To determine which kinds of
waiting occur at least once a day, we conducted two rounds of data collection. Ten users
(round 1) and eight users (round 2) tallied the daily frequency of each of the following
situations: slow mobile internet, in-app pulls-to-refresh, computer wifi-seeks, emails
sent, and elevator rides. We also collected usage logs with the number of outgoing
phone calls, file downloads, and videos watched (as an upper bound on waits for video
ads). The participants were students and faculty at a university.

In cases where waiting moments could not be captured in usage logs, we needed
a low-fidelity approach to collect data from users without implementing full in-app
extensions. Short waiting moments may not be salient enough for users to remember
to record them. As a solution, we asked users to place and mark a piece of tape on
the part of their screen where they are most likely to be looking during the wait, such
as over the progress icon during a pull-to-refresh, as shown in Figure 2. Users took
a timestamped screenshot to tally their waiting moment in a single action without
leaving their current task.

Situations encountered at least once a day on average included computer wifi seeks
(1.6, σ = 1.2), pulls-to-refresh (6.24, median = 1.8, σ = 11.5), elevator rides (3.0, σ =
2.1), and sending emails (10.6, σ = 6.5). Outgoing phone calls were made about once a
day (0.94), but only 4 of the 10 users regularly made phone calls. Slow mobile internet,
slow file downloads, and video ads were encountered less than once a day.

4. USER INTERFACE DESIGN

Based on these design decisions and tallying results, we selected five instances of
waiting within the design subspace we have defined. We created one user interface
for each: ElevatorLearner, PullLearner, WifiLearner, EmailLearner, and WaitChatter.
Figure 3 shows the design space we considered, the subspace (highlighted in blue) that
we believe to be appropriate for wait-learning, and our initial estimates of where the
five waiting scenarios lie on those spectrums.

4.1. Selected Waiting Scenarios

The five waiting scenarios vary with respect to wait time, frequency, likelihood of
competing demands, and waiting reason. Wait time ranges from several minutes, e.g.,
elevator waiting, to a few seconds or less, e.g., pull-to-refresh and email. The frequency

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 1, Article 7, Publication date: March 2017.

WaitSuite: Productive Use of Diverse Waiting Moments 7:11

Fig. 2. For each waiting scenario, users pre-marked the screen location where they were most likely to
be looking during the wait so that they could remember to record the wait. To tally the wait, users took a
timestamped screenshot.

Fig. 3. The design space of wait-learning applications. Our design choices are highlighted in blue. The five
waiting scenarios we selected vary in wait time, frequency, competing demands, and waiting reason. For the
dimensions listed below the line, we required all five scenarios to meet the requirement shaded in blue. Due
to its exploratory nature, the class of situations with wait time shorter than a second is shaded in a lighter
shade of blue. We consider these situations only when they happen to mark the end of a task, e.g., email
sending or form submitting.

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 1, Article 7, Publication date: March 2017.

7:12 C. J. Cai et al.

Fig. 4. Components of WaitSuite vocabulary exercises.

of these interactions ranges from waiting that could happen very frequently, e.g., in-
stant messaging, to those that occur only a few times a day, e.g., elevator waiting. With
regards to competing demands, we filtered out tasks that were necessarily high-stakes
or work-intensive, e.g., code compiling, to keep mental workload low, but included set-
tings that are sometimes work-related and sometimes not, e.g., instant messaging and
email sending. The waiting reason also varies across waiting scenarios. Some occur
in ubiquitous contexts, e.g., elevator waiting, while others are due to social delays,
e.g., instant messaging, or software inefficiencies, e.g., wifi, email-sending, and pull-
to-refresh. While not directly a result of ubiquitous waiting, pull-to-refresh might also
occur in ubiquitous settings while mobile. Last, for reasons discussed earlier, we keep
the learning task bite-sized and design the appearance of exercises to use soft notifica-
tions for all five kinds of waiting. For practical reasons, we did not investigate scenarios
where waiting could not be easily detected automatically, e.g., computer start-up, app-
loading, and water boiling, or where we were unable to programmatically create dead
space within the task environment, e.g., browser page loads.

4.2. Example Usage

WaitSuite integrates these wait-learning situations into a unified system. The range
of contexts in which they occur leads to varying physical and mental constraints, and
thus unique interaction experiences. Below is an example of how someone might use
WaitSuite in the course of a day.

Judy is a college student looking to learn some French vocabulary before her trip to
Paris next year. She decides to try WaitSuite because she is already juggling five classes
and cannot keep up the habit of reviewing flashcards on her own. In the morning, Judy
enters the building where her History class is located. While waiting for the elevator,
she receives a WaitSuite notification on her phone and starts doing flashcards. During
the elevator ride, she continues answering flashcards until she arrives at her floor.

After sitting down in class, she puts her phone away and opens her laptop. While
waiting for her laptop to connect to WiFi, she continues doing a few flashcards where
she left off. During the few minutes before class starts, she instant messages her friend
Wilma, asking to meet up for lunch. While waiting for Wilma’s reply, she completes
some more flashcards. She then remembers to ask Bob for lecture notes. After sending
Bob an email, she completes more flashcards before going on Facebook. Later, while
standing in the lunch line, Judy pulls to refresh email on her phone. While email is
loading, she does one more flashcard.

4.3. Vocabulary Exercises

WaitSuite supports the learning of second language vocabulary, though it could be
extended to other flashcard-style learning tasks. A word is displayed in study mode the
first time it is presented, and in quiz mode during subsequent exposures. In study mode,
the L2 (second language) is shown as the prompt (Figure 4(a)) and the user presses
Reveal to see the L1 (native language) translation target (Figure 4(b)). After revealing
the new word, the user indicates whether they already knew that word (Figure 4(c)). If
not, the word is added to the user’s vocabulary list and later repeated for learning. In

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 1, Article 7, Publication date: March 2017.

WaitSuite: Productive Use of Diverse Waiting Moments 7:13

Fig. 5. ElevatorLearner user interface.

quiz mode, exercises are displayed at either the easy or difficult level. At the easy level,
the user is shown the L2 prompt and types L1 (Figure 4(d)). On a mobile interface, the
user self-grades by pushing Reveal, followed by Right or Wrong. At the difficult level,
the prompt is L1 instead (Figure 4(e)). On desktop interfaces, users can submit a blank
response if they do not remember the word.

After the user completes an initial exercise, a follow-up one can be fetched by clicking
an arrow or hitting the Enter key (Figure 4(f)). Fetching follow-up exercises can lead
to chains of consecutive exercises.

4.4. ElevatorLearner

ElevatorLearner is an iPhone app that notifies the user to learn when it detects the user
is near an elevator. ElevatorLearner detects elevator proximity by sensing Bluetooth
iBeacons placed next to each elevator. This may become unnecessary in the future as
indoor localization becomes more precise. When an iBeacon is detected, the app sends
the user a notification with the message “Translate a word!” (Figure 5(a)). The notifica-
tion appears either on the lock screen or, if the phone is unlocked, as a notification that
slides in from the top. The user can swipe the lockscreen notification or manually open
the app to access it (Figure 5(b)). To avoid sending the user a notification while exiting
an elevator, we prevented any additional notifications from firing within 3 minutes of
a notification, which we found was longer than a typical elevator ride. As described
in Section 4.3, the user sees the vocabulary prompt in L2 at the easy level, and L1 at
the difficult level (Figure 5(c)). The translation is displayed after the user hits Reveal,
at which point he or she self-grades by pressing the buttons below the translation
(Figure 5(d)). After self-grading, the next flashcard is shown, which the user can either
engage with or ignore by leaving the app.

4.5. PullLearner

PullLearner was built on top of K9Mail, an open-source Android email client. It aug-
ments the existing pull-to-refresh mechanism with vocabulary exercises that display
when users swipe down to refresh their email. The learning panel appears in the dead
space above the inbox, where normally a “Loading...” label appears after the user pulls
(Figure 6(a)). The exercise remains visible to the user for 15 seconds, during which it
is dismissed if the user swipes up or views an email. The learning panel retracts after
the exercise is dismissed or completed. Pulling again fetches the next exercise but also

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 1, Article 7, Publication date: March 2017.

7:14 C. J. Cai et al.

Fig. 6. PullLearner user interface.

Fig. 7. WifiLearner user interface.

triggers another email refresh. This design was informed by an exploratory study on a
prototype built using animation software [Ren 2015]. Similar to ElevatorLearner, the
user presses Reveal to see the translation (Figure 6(b)), then presses right or wrong to
self-grade (Figure 6(c)), after which the learning panel retracts. The user can optionally
fetch a follow-up exercise by pulling again.

4.6. WifiLearner

WifiLearner is a Mac application that displays a learning prompt when it detects that
the computer is seeking a wifi connection. Since users typically glance at the wifi icon
to see when internet has connected, we place WifiLearner next to the wifi icon in the
menu bar. By default, WifiLearner displays “click to learn” (Figure 7(a)). When wifi is
seeking, this text changes to show the prompt, and a colored square simultaneously
blinks yellow and green to draw attention to the learning opportunity (Figure 7(b)). If
the user clicks to start an exercise, a learning panel appears directly below, where the
user can type the translation (Figure 7(c)). If the user ignores the prompt, WifiLearner
returns to its default state once wifi is connected. The learning panel disappears if the
user clicks anywhere else on the screen.

4.7. EmailLearner

EmailLearner is a Gmail Chrome extension that appears when the user hits Send on an
email. In many email clients, a status label indicates the state of the email being sent. In
Gmail, it appears in the form of “Sending...” followed by “Your message has been sent,”
which users often watch to make sure the email is sent. Thus, EmailLearner is placed
in the dead space next to this status label. To minimize obtrusiveness, the learning
panel displays a transparent background and the text “click to learn” in its default state
(Figure 8(a)). Once the user sends an email, the panel displays the learning exercise
(Figure 8(b)). If the user does not interact with the learning panel within 15 seconds,

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 1, Article 7, Publication date: March 2017.

WaitSuite: Productive Use of Diverse Waiting Moments 7:15

Fig. 8. EmailLearner interface.

the panel returns to its default state of being transparent, displaying “click to learn”
once again. Keyboard shortcuts were added to maximize efficiency.

4.8. WaitChatter

We developed WaitChatter as a Chrome extension of Google Chat that runs in the
Web browser when a Gmail page is in view.1 Through early iterations, we found that
placing the learning panel directly below the chat input box minimized the visual and
motor effort of switching between chatting and learning activities. Like EmailLearner,
WaitChatter displays “Click to learn” in its default state. When waiting is detected, the
vocabulary exercise appears and remains in the learning panel for 15 seconds, during
which the user can either do the exercise or ignore it by doing nothing. If the user
has not interacted with the exercise within 15 seconds, it fades away. After the user
completes an initial exercise, he can fetch a follow-up one by clicking the right arrow
(Figure 4(f)) or hitting the Enter key on the keyboard. This functionality allows the
user to continuously learn more words during longer wait times.

Because IM conversations provide text that can be used for in-context learning,
WaitChatter not only draws words from a built-in word list, but also extracts words
on-the-fly from the IM conversation. To indicate that a word is contextual to the conver-
sation, WaitChatter displays “in recent chat” directly below the exercise (Figure 9(a)).
To prevent user concern over whether the other person can view WaitChatter content,
we keep learning exercises within the learning panel, and highlight a keyword inside
the chat history if it is selected and presented for learning (Figure 9(b)). Details about
contextual word extraction and automatic translation can be found in a previous report
on WaitChatter [Cai et al. 2015].

1https://people.csail.mit.edu/ccai/waitchatter.

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 1, Article 7, Publication date: March 2017.

https://people.csail.mit.edu/ccai/waitchatter

7:16 C. J. Cai et al.

Fig. 9. WaitChatter contextual interface.

Fig. 10. Detection of waiting opportunities in WaitChatter.

4.8.1. Detecting Waiting Moments. We identified two situations in which a user may be
waiting during an instant messaging conversation: (1) while waiting for the conversant
to start responding, and (2) while waiting for the conversant to finish responding.
Figure 10 shows these two types of waiting opportunities in the flow of a typical
conversation.

The first case (i_sent) occurs after a user has sent a chat message and is waiting to
see whether the other person will respond. Because a common IM behavior is to type a
sequence of short chat messages as part of one conversational turn [Isaacs et al. 2002;
Ling and Baron 2007], an exercise that is naively delivered immediately after a chat

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 1, Article 7, Publication date: March 2017.

WaitSuite: Productive Use of Diverse Waiting Moments 7:17

is sent may interrupt a follow-up message that the user is in the midst of composing.
For this reason, WaitChatter waits for 1.5 seconds of hesitation time after a message is
sent, and subsequently triggers a learning exercise only if the user has not typed more.
We keep the hesitation time short to balance against users leaving the chat window
altogether. According to a prior study [Avrahami et al. 2008], the message window is
substantially less likely to still be in focus the longer a user waits for a response.

The second case (you_typing) occurs when the conversant has started typing a re-
sponse but has not yet sent the message. In instant messaging applications, users
typically see an indicator (e.g., “Corinne is typing...”) which signals that the conversant
has started typing. WaitChatter triggers an exercise when the indicator appears in
the user’s chat window and the user is not typing. Under both i_sent and you_typing
conditions, the exercise is only triggered if the cursor focus is inside the chatbox.

5. MULTI-APP SYSTEM IMPLEMENTATION

WaitSuite is a common infrastructure that allows these apps to work together by
synchronizing learning progress across apps. In this section, we describe the challenges
we encountered while implementing multi-app functionality in WaitSuite and how we
addressed these challenges.

5.1. Vocabulary Scheduling Algorithm

We use the Leitner schedule [Godwin-Jones 2010] for determining the order of
learning exercises. The Leitner schedule is based on the principle of spaced repetition
[Baddeley 1997]. Given that humans exhibit a negatively exponential forgetting curve
[Ebbinghaus 1913], repetitions should occur at increasingly spaced intervals so that
they are reviewed again just as they are about to be forgotten. In WaitSuite, a flashcard
is an L1/L2 vocabulary pair. WaitSuite maintains a set of five unlearned flashcards and
a correct count for each flashcard, which represents the number of correct responses
to that flashcard. This count is incremented when the learner answers the flashcard
correctly and decremented if not. Flashcards with a correct count of n are displayed
every nth Leitner session, so that better known cards are reviewed less frequently. In
our implementation, flashcards are displayed at the easy level when the correct count
is below three, and at the difficult level otherwise. When the correct count reaches four,
a flashcard is considered learned, and retired, opening up a slot for a new card to be
added.

5.2. Data Synchronization

So that users can continue to make learning progress on the same set of vocabulary
when switching from one app to another, we used Firebase2 to store and synchronize
user data across the five platforms and devices. For apps like WifiLearner, which
specifically target internet delays, it was necessary to support operations when network
was not available. Firebase caches data on the client side so that the user can continue
to complete flashcard exercises while offline. Data is automatically synchronized once
an app regains connectivity.

5.3. Resolving Staleness and Cross-App Conflicts

In some cases, a concurrency conflict may occur due to progress being made in one
or more apps while offline. To handle such situations, we push updates as an atomic
transaction using Firebase. In the case of a conflict, the system selects the value re-
flecting the furthest progress, which we define as the number of exercises completed.
During pilot testing, we found that WifiLearner’s exercises tended to be consistently

2https://www.firebase.com/.

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 1, Article 7, Publication date: March 2017.

https://www.firebase.com/

7:18 C. J. Cai et al.

stale because it usually fetched an exercise only when wifi was disconnected. We thus
modified WifiLearner to force-synchronize to the server every time the internet con-
nects. Because wifi tends to connect and disconnect frequently on laptops, we found
that even when the device was not in use, this synchronization kept data reasonably
fresh.

6. STUDY 1: WAITCHATTER

To evaluate the extent to which people can learn while waiting, we first implemented
WaitChatter. We ran a two-week field study in which participants used WaitChatter
in Google Chat on their personal computers, during their normal instant messaging
activities. We reported on WaitChatter in previous work [Cai et al. 2015], but here we
summarize the study and our main findings.

The questions our study sought to answer are as follows:

(1) Learning: To what extent can users learn vocabulary using WaitChatter?
(2) Timing: What is the best time to present learning exercises within a waiting period?

6.1. Vocabulary

For ease of user recruitment, our implementation of WaitChatter teaches Spanish and
French, but could easily be extended to other languages. The vocabulary was drawn
from high-frequency English nouns as measured in the British National Corpus.3 The
words were translated to Spanish and French using Google Translate. Two native
speakers manually reviewed the word list for inaccurate translations, and removed
highly ambiguous words. The final word lists consisted of 446 words in each language.
In addition to these word lists, contextual words were also automatically extracted
from the conversation and translated on-the-fly, as described in Section 4.8.

6.2. Procedure

Each participant used WaitChatter for two weeks, after which they completed a post-
study questionnaire, interview, and vocabulary quiz. Participants were asked to inter-
act with WaitChatter exercises as little or as much as they pleased. During the study,
WaitChatter prompted participants to indicate whether or not they already knew a
word the first time it appeared, and only unknown words were repeated for learning.
The post-study quiz tested all vocabulary the user indicated they did not already know.
Participants first translated from L1 to L2, and then from L2 to L1.

6.2.1. Timing Conditions. Different moments during a waiting period involve different
levels of cognitive resource expenditure. To better understand how the timing of ex-
ercises may affect the learner’s capacity to engage in learning, we exposed each par-
ticipant to two versions of our application. The detected_wait version uses the i_sent
and you_typing waiting opportunities as described above. The random version displays
prompts at random whenever WaitChatter determines that a user is actively instant
messaging.

We expect that at moments when attentional capacity is high, the user’s likelihood
of engaging with the exercise (engagement rate) will be higher, and the time taken to
initiate interaction with an exercise (response time) will be lower, due to lower switch
cost. We measured engagement rate as the percentage of exercises that the learner
responded to and response time as the time between a prompt being displayed and
the user’s cursor entering the answer box. Each participant used the detected_wait and
random versions on alternating days. To ensure that users were exposed to WaitChatter

3http://www.natcorp.ox.ac.uk/.

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 1, Article 7, Publication date: March 2017.

http://www.natcorp.ox.ac.uk/

WaitSuite: Productive Use of Diverse Waiting Moments 7:19

prompts at approximately equal frequencies on the detected_wait and random versions,
the desired frequency on a random condition day was determined by calculating the
total number of exercises shown on all previous detected_wait days, divided by the total
seconds of user chat activity on those days. This gives us the probability of showing an
exercise in a given second on a random condition day. To capture subjective impressions,
users were asked to complete a daily survey with two 7-point Likert scale questions:
(1) “In the past day, [WaitChatter] exercises appeared at good moments within the flow
of my daily activities” and (2) “I enjoyed using [WaitChatter] today.” The survey was
sent via email every evening, instructing users to complete it once they finish chatting
at the end of the day.

6.3. Participants

A total of 21 participants were recruited by emails sent through university department,
dorm, and foreign language course email lists. We selected only those who were regular
users of Google Chat in the web browser, and desired to learn or were currently learning
Spanish or French. One participant was dropped midway through the study because
that participant stopped instant messaging and completing the daily surveys after the
sixth day. Participants were given a $30 gift card for their time and were also entered
into a raffle for one $100 gift card. The 20 participants who completed the study
included 12 males and 8 females, ages 19–35 (mean=25.5). Most participants were
undergraduate and graduate students (17 out of 20), as well as two alumni working in
industry, and one research scientist. Participants chose to learn French (11) or Spanish
(9). Ten users had prior formal education in the language, including elementary school
(2), middle or high school (6), and university-level (2) classes. Eight of the participants
had studied the language informally through language learning software, travel in a
foreign country, or conversation with friends. Six participants had never studied the
language before, either formally or informally. The participants typically use Google
Chat on their computers “Several times an hour” (9) or “Several times a day” (11),
mostly for social reasons or to chat casually with coworkers.

6.4. Results and Lessons Learned

Overall, we observed 47,393 instant messages exchanged by the 20 participants, who
communicated with a total of 249 friends. Each participant exchanged an average of
170 chats per day.

6.4.1. Evidence of Learning. During the study, WaitChatter prompted participants to
indicate whether or not they already knew a word the first time it appeared. Known
words were neither added to the user’s vocabulary list, nor were they quizzed. In post-
study quizzes, users translated 57.1 words (66%) correctly to L2 and 80.2 words (92%)
correctly to L1. 15% of wrong answers appeared to be spelling errors or near-misses.
Thus, in two weeks of casual usage, participants learned approximately 4 new words
per day, or 57 words over two weeks. Overall, these results suggest that wait-learning
can serve as a viable channel for learning, at least for bite-sized information.

6.4.2. Evidence of Learning While Waiting. In post-study interviews, users reported behav-
ior that resembled episodes in which they were learning while waiting. For example,
users said they tended to complete exercises “while waiting for people to respond,” or
“while the other person is thinking.” Users indicated that they were more likely to
engage when the conversation was casual and when chatting was their main task, so
that there was frequent back-and-forth waiting. High-usage participants said that they
frequently used the “fetch more” feature (Figure 4(f)) to do a long sequence of exercises
if the conversation was particularly sporadic.

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 1, Article 7, Publication date: March 2017.

7:20 C. J. Cai et al.

Fig. 11. Histogram of intermessage time: the time between the user sending a message and receiving a
message from the conversant. Bin size is 1 second.

To understand the extent to which exercises could be feasibly completed during
wait time, we measured the intermessage time: the amount of time after the user
sent a message before receiving a reply (Figure 11). Some intermessage times are
short because the conversant had started composing a message before the user sent a
message. Results show that the time taken to complete an exercise was short (median
1.83 seconds) and within the intermessage time (median 11 seconds). However, because
intermessage time is short (mode = 4 seconds), particularly during conversations with
frequent exchanges, it is important that the exercise be lightweight, as described in
Section 3.2.1.

6.4.3. Waiting Behavior. Feedback from users supported existing motivational theories
about task switching as a means of coping with boredom while waiting. Users described
existing habits of interleaving instant messaging with compulsive technology use, such
as browsing social media or checking email. When well-timed, wait-learning served as
a more productive replacement for other digital activities. As one user put it, “Maybe
I’m just chatting and looking at Facebook. Instead I would use WaitChatter because it’s
more productive.” Given existing tendencies to task switch, the timing of a learning task
is critical not only for identifying moments of low cognitive load, but also for capturing
the user’s peripheral attention before they switch to an alternative secondary task.

Given the academic nature of flashcards, we were surprised that multiple users liked
WaitChatter to mini-games they could “play with” in spare time. For example, users
said “It’s like playing any of those low-stakes games”, “I just wanted to play with it
because whatever was on TV was really boring,” or “I was just bored and I wanted to
play.” Because exercises were quick to do and also optional, users found wait-learning
to be casual and low commitment. Some users also found the contextual vocabulary
surprising when shown in context of their conversation, which may have made the sys-
tem feel more playful. The potential for wait-learning to entertain, stimulate, or amuse
is a direction worth exploring, particularly given the well-known negative experience
associated with waiting [Maister 1984].

6.4.4. Overcoming Limited Time. The most commonly reported benefit of WaitChatter
was that it felt less time consuming compared to existing learning channels because

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 1, Article 7, Publication date: March 2017.

WaitSuite: Productive Use of Diverse Waiting Moments 7:21

Fig. 12. Mean response times for i_sent, you_typing, and random. Error bars show SE of the mean.

it offloaded the burden of setting aside time for learning. As one user stated, “The key
thing is that I didn’t feel like I was taking extra time out of my day to dedicate to
learning vocabulary words. It was just sort of time that would be wasted otherwise.”
Users contrasted WaitChatter to language courses and other mobile apps, which they
felt required a conscious effort to schedule time for learning: “With this I never had to
make time or put away things to the future. Whereas learning from Rosetta Stone, you
have to schedule time.” Most who had used vocabulary-learning mobile applications in
the past indicated that they eventually gave up, citing lack of time as a major factor.

6.4.5. Evidence of Sensitivity to Timing. To understand how the user’s capacity to wait-
learn could be affected by timing, we evaluated the engagement rate (whether the user
responded to the exercise) and response time (the time taken before the cursor focused
inside the exercise) on exercises within the three timing conditions described above:
i_sent, you_typing, and random.

We found that engagement rate was highest for i_sent (49.1%), followed by ran-
dom (44.5%) and you_typing (41.2%). A logistic mixed effects analysis with Bonferroni
correction found that users were significantly more likely to respond when exercises
appeared just after the user sent a chat message (i_sent) relative to the you_typing con-
dition (p < 0.01), with an odds ratio of 1.4. Furthermore, a repeated measures ANOVA
with Bonferroni correction found that users were significantly faster to respond in the
i_sent condition (mean = 3.63s, σ = 0.64) than in the random condition (mean = 4s,
σ = 0.79) (F(2,38) = 4.00, p < 0.05, η2

p = 0.18). Figure 12 shows response times by con-
dition. The response time benefit of i_sent over you_typing was marginally significant
(p = 0.05) after Bonferroni correction.

Results suggest that the best time to present learning exercises may be at the
start of a waiting period, when mental workload may be lower because the user has
just completed one subtask (sending a chat) before beginning the next [Miyata and
Norman 1986]. Users were slower to respond to randomly timed exercises and
you_typing exercises. It is possible that, during those times, users are already in the
midst of planning their next message, or concentrating on what their friend will say
in their response. The mental resources available may be small due to an intermedi-
ate state being actively maintained in short-term memory, which is characteristic of
low-level task boundaries or non-boundaries [Bailey and Iqbal 2008]. In the you_typing

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 1, Article 7, Publication date: March 2017.

7:22 C. J. Cai et al.

condition, it is also possible that seeing the typing indicator makes users believe they
are about to receive a response, particularly given fast typing speeds in desktop envi-
ronments. Thus, the expected wait time becomes so short that it no longer justifies the
switch cost.

At the beginning of a waiting period, users are also more likely to be in a state where
peripheral interaction is better supported. In the i_sent condition, the exercise appears
soon after the user sends a message, so the likelihood that the user is still visually and
cognitively attending to the chatbox is high. Conversely, you_typing exercises appear
further into the waiting period, when users may already be focused elsewhere. In cases
where the user is looking at another screen or away from their computer, the learning
task may be too far away to enter the periphery of attention. Or, if they have simply
shifted focus to another part of the page (e.g., Gmail), it would be too costly to transition
the learning task from the periphery to the center of attention, a process that is critical
for facilitating peripheral interaction [Bakker et al. 2015].

6.4.6. Importance of Non-Intrusiveness. Despite the differences we found between tim-
ing conditions, users indicated during interviews that they did not notice systematic
differences in the timing of exercises. In the 7-point Likert scale questions sent daily
(1=strongly disagree, 7=strongly agree), users on average felt that the exercises “ap-
peared at good moments within the flow of my daily activities” (mean = 5.45, σ = 1.05)
and that they “enjoyed using WaitChatter today” (mean = 5.61, σ = 1.02). A Wilcoxon
signed-rank test found no significant difference between user ratings on detected_wait
versus random condition days, for either question (p = 0.71 and p = 0.57).

We posit that the use of soft notifications (static learning panel, dynamic text) was key
to minimizing intrusiveness during poorly timed exercises. During interviews, users
indicated that, because the exercise did not occlude any other tasks they were doing
and did not require any extra action to dismiss, they could easily ignore the exercises
without feeling interrupted. For example, one participant said, “It was just a matter
of choice. Subconsciously I would see that a word has appeared. Sometimes it would
pique my interest and I would look at it, but if not I just wouldn’t look at it so it wasn’t
really disrupting anything.”

These findings are consistent with prior research showing that interruptions which
do not occlude the primary task are perceived to be less mentally demanding and less
annoying [Böhmer et al. 2014]. Unlike hard notifications, which often appear on top of
existing tasks and immediately draw attention, the learning panel was in a persistent
self-allocated space, making it potentially less distracting even in cases when timing
was sub-optimal.

However, some users reported feeling frustrated when they could not attend to the
exercise in time because they were still typing a long message. Hence, while users did
not perceive the appearance of an exercise to be intrusive, they may be less tolerant of
the premature disappearance of an exercise. As a result, some wished WaitChatter had
a feature for self-triggering an exercise at any time. Since the version of WaitChatter
tested in the study lacked this feature, we added it for Study 2.

In conclusion, results from this study show that bite-sized learning is feasible during
wait time, and that a good time to present learning opportunities is at the start of the
waiting period.

7. STUDY 2: WAITSUITE

In Study 2, we expand our analysis to the suite of five wait-learning apps and eval-
uate them in the context of the design dimensions we have described, i.e., wait time,
frequency, competing demands. To assess WaitSuite in a real-world setting, we ran a
field study in which participants used multiple wait-learning apps on their personal

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 1, Article 7, Publication date: March 2017.

WaitSuite: Productive Use of Diverse Waiting Moments 7:23

devices during their regular activities for a period of two weeks. Since a core goal of
wait-learning is to allow busy people to regularly engage in learning practice, we focus
on user engagement as a key metric in our evaluation. To keep exercises consistent
across apps, all five apps used second language vocabulary exercises.

Study 2 explored the following research questions:

(1) RQ1: To what extent do users engage with learning during different waiting situ-
ations, and which factors are instrumental to engagement?

(2) RQ2: How does wait-learning impact perception of mental workload?

7.1. Procedure

To answer these questions, we deployed WaitSuite on the participants’ own devices for
a two-week study. Each participant met with a researcher to install the apps and com-
plete a pre-study questionnaire. In order to capture natural usage, we told participants
to use the apps as little or as much as they pleased. During the study, interaction with
the apps was logged extensively, including metrics such as wait time and completion
of learning exercises. Participants returned after two weeks to complete a post-study
questionnaire, semi-structured interview, and vocabulary quiz. The quiz format and
languages studied were the same as that of Study 1. As before, the words were trans-
lated from high-frequency English nouns taken from the British National Corpus.
There were 446 words in each language.

To evaluate the extent to which wait-learning affected the perceived mental workload
of existing activities (RQ2), e.g., riding the elevator, we included NASA TLX questions
in the pre-study and post-study questionnaires before and after the learning apps were
used. The NASA TLX questions were measured on a 7-point scale. These questions
have been used to measure effects of secondary tasks in prior studies [Iqbal and Bailey
2005].

7.2. User Interface Modifications

Based on timing results from Study 1, we modified WaitChatter to automatically trigger
exercises only after the user sends a chat message, the i_sent condition from Study 1.
To be consistent with the other four apps, we also turned off WaitChatter’s contextual
feature which detects words within conversations.

Because users in Study 1 expressed that wait-learning helped them identify other
moments when they wished they could trigger additional exercises on their own, we
added a feature in WaitSuite for users to self-trigger exercises at any time. In addition
to system-triggered exercises that are presented automatically by the system, each
interface also allows the user to self-trigger exercises. Depending on the app, users can
fetch an exercise by opening the app (ElevatorLearner), pulling again (PullLearner),
or interacting with the learning panel (WifiLearner, EmailLearner, and WaitChatter).

7.3. Participants

A total of 27 participants were recruited through university email lists. Users were
selected based on the platforms they already used so that we could examine natural
usage. Early on, it became clear that it was unlikely for any one person to encounter
all five waiting scenarios regularly, due to existing habits. Thus, we selected only users
who indicated they were regular users of at least three of the WaitSuite app plat-
forms: Android (PullLearner), Mac (WifiLearner), Gmail (EmailLearner), and GChat
(WaitChatter). For ElevatorLearner, this meant owning an iPhone and working in the
building where iBeacons were located. Two participants were dropped from the study
at the time of installation because we discovered they met fewer than three of the
requirements. Participants were given a $40 gift card for their time.

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 1, Article 7, Publication date: March 2017.

7:24 C. J. Cai et al.

Table I. Summary of Results Across the Five WaitSuite Apps

App (# users) % Days present System-triggers/day % Engaged
System-triggered
submissions/day

ElevatorLearner (12) 60 (11) 1.5 (1.2) 46.7 (21.3) 5.8 (5.6)
PullLearner (8) 82 (29) 5.9 (5.6) 62.5 (12.1) 4.8 (4.8)
WifiLearner (19) 90 (14) 4.2 (2.5) 17.5 (14.2) 2.8 (3.1)
EmailLearner (23) 89 (15) 4.1 (4.3) 39.8 (31) 5.9 (8.1)
WaitChatter (16) 61 (28) 20.7 (34.8) 13.4 (11) 6.6 (10.9)

Exercise submissions (System-triggered submissions/day) depended on both the frequency of waiting mo-
ments (System-triggers/day) and the user’s engagement rate (% Engaged). the highest engagement rate
was observed on PullLearner and ElevatorLearner, and the lowest on WaitChatter. However, the greatest
number of system-triggered exercises was completed on WaitChatter, and the lowest on WifiLearner. Unless
stated otherwise, numbers report the mean and standard deviation across users.

Table II. For Each App, the Engagement Rate (% Engaged) was Related to the Ease of
Accessing the Exercise (Estimated as Response Time), the Waiting Duration (Wait Time),

and the Likelihood of Competing Demands

App (# users) Wait time (seconds) Response time (seconds) % Engaged
ElevatorLearner (12) med=52.9 (21.3) med=10.0 (11.3) 46.7 (21.3)
PullLearner (8) med=2.3 (1.9) med=1.6 (0.2) 62.5 (12.1)
WifiLearner (19) med=6.8 (3.1) med=7.3 (3.3) 17.5 (14.2)
EmailLearner (23) med=0.7 (0.5) med=2.7 (1.6) 39.8 (31)
WaitChatter (16) med=10.2 (13.1) med=2.9 (2.7) 13.4 (11)

Engagement was highest when response time was lower then wait time (low access-to-
wait ratio), and when competing demands were low. The table shows the median for time
values (wait time and response time), and the mean for engagement rate, with standard
deviation in parentheses.

The 25 participants (11 females) who completed the study were ages 19–47
(mean=25.8), consisting of students and staff at a university. Sixteen chose to learn
French and nine chose to learn Spanish. Eleven had prior formal education in the
language. Thirteen had studied the language informally through language learning
software, traveling in a foreign country, or talking to friends in the language. Eight
participants had never studied the language before.

7.4. Data Analysis

Before analyzing interaction data, we excluded the first day of the study to discount
novelty effects, and times when a user reported technical difficulty. We also excluded
PullLearner data for three users who stopped using PullLearner due to email for-
matting problems on the K9 email client, which prevented rich text from displaying
properly. Last because one user’s pre-study questionnaire data was lost, we only report
questionnaire results from 24 of the 25 participants.

Tables I and II present a summary of results across apps. The metrics shown were
computed using data from event logs, as follows:

—% Days present: The percentage of days that the user was present on the app plat-
form. For example, on any given day, a user can only encounter EmailLearner and
WaitChatter system-triggers if they happen to be using Gmail in their web browser.

—System-triggers/day: The number of system-triggers per day. A system-trigger occurs
when the app triggers an exercise due to automatically detected waiting.

—% Engaged: The percentage of system-triggered exercises that the user responded
to.

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 1, Article 7, Publication date: March 2017.

WaitSuite: Productive Use of Diverse Waiting Moments 7:25

—System-triggered submissions/day: The number of exercises submitted per day that
were either system-triggered, or within the chain of exercises fetched by the user
following a system-triggered exercise.

—Wait time: The waiting duration. Depending on the app, this refers to the time
between pulling and email loading (PullLearner), the time taken for wifi to connect
(WifiLearner), the time between a user hitting Send and the email finishing being
sent (EmailLearner), and the time between the user sending a chat and receiving
a chat from the same friend (WaitChatter). For ElevatorLearner, wait time was
estimated using the time between iBeacons on two different floors triggering, an
upper bound which may include the elevator ride time.

—Response time: The time taken for a user to start interacting with an exercise, after
it appears.

7.5. Results: Engagement with System-Triggered Exercises (RQ1)

7.5.1. Overview. The rate at which exercises are completed depends on both the fre-
quency of waiting opportunities (frequency of system-triggered exercises) and the like-
lihood that the user engages with an exercise given that one is triggered (engagement
rate). We first computed the engagement rate on each app, measured as the percentage
of system-triggered exercises that the user responded to. We found that engagement
rates varied substantially between apps, with the highest engagement on PullLearner
(62.5%, σ = 12.1%), followed by ElevatorLearner (46.7%, σ = 21.3%), EmailLearner
(39.8%, σ = 31%), WifiLearner (17.5%, σ = 14.2%), and WaitChatter (13.4%, σ = 11%).
A generalized linear mixed effect analysis with the App as the fixed effect and the
Participant as a random effect found a significant effect of app on engagement rate.
Post-hoc analysis found that engagement was significantly different between all apps
(p < 0.001), with the exception of PullLearner and ElevatorLearner whose difference
was not significant (p = 0.997).

Next, we observed the total number of exercises completed per day that were part
of any system-triggered exercise chain. A system-triggered chain consists of an initial
exercise triggered by the system, as well as follow-up exercises that the user might
have fetched after completing a system-triggered exercise. The greatest number of ex-
ercises was submitted on WaitChatter (6.6 per day), and the lowest on WifiLearner (2.8
per day). Despite a relatively low engagement rate, many exercises were submitted on
WaitChatter due to a high frequency of system-triggers (20.7), resulting from the fre-
quent back-and-forth waiting that occurs while chatting. Conversely, ElevatorLearner
was system-triggered only 1.5 times per day on average. Users sometimes took the
stairs instead of the elevator, and were often not at work on weekends, which lim-
ited their exposure to the specific elevators where we had placed bluetooth iBeacons.
Nevertheless, the number of exercises completed on ElevatorLearner was still reason-
ably high (5.8), due to a high engagement rate (46.7%). Last, WifiLearner triggered a
reasonable number of exercises (4.8 times per day) due in part to regular computer
usage (observed on 90% of days). However, it had the fewest submissions (2.8 per day)
because engagement rate was low (17.5%).

These engagement results can be explained with respect to the switch cost of wait-
learning in different situations. Aside from the design dimensions already enumerated
(e.g., wait time and competing demands), we found that the physical ease of accessing an
exercise was an important factor that contributed to switch cost, but was not explicitly
enumerated in our design space. Although we had designed each app to maximize ease
of access, the inherent constraints of different waiting contexts meant that the effort
required to access an exercise naturally varied between apps. For example, pulling out
and unlocking a phone (ElevatorLearner) took much longer than hitting Tab to focus
into a textbox (WaitChatter).

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 1, Article 7, Publication date: March 2017.

7:26 C. J. Cai et al.

Fig. 13. A summary of important dimensions. For each app, the table displays wait time, ease of access
(measured as response time), and competing demands in relation to user engagement. WifiLearner is further
subdivided into reliable internet and spotty internet, and WaitChatter is subdivided into cases where chatting
is the primary task or secondary task.

The ease of accessing an exercise relative to the wait time had an important impact
on user engagement. We define this relationship between ease of access and wait time
to be the access-to-wait ratio. If the access-to-wait ratio is low, there is sufficient time for
the user to switch to the learning task and back, so the value gained in learning and the
emotional fulfillment gained in occupying wait time justify the switch cost. However,
if the access-to-wait ratio is high, the time taken to switch exceeds the waiting period,
so the motivation to fill the waiting period no longer exists. However, if competing
demands are low, a user might still engage if they are highly motivated to learn. Last,
if the access-to-wait ratio is high and competing demands are also high, then not only
is there little benefit to switching, but the potential harm to the primary task is also
high.

In the following sections, we describe user engagement and switch cost on each app
with respect to wait time, ease of access, and competing demands. Figure 13 shows a
summary of dimensions for each app. We estimate ease of access using response time,
or the time taken to begin interacting with an exercise after it appears. In the case
of EmailLearner and WaitChatter, we also discuss how frequency may have affected
engagement.

7.5.2. ElevatorLearner. Relative to other apps, ElevatorLearner had a high engagement
rate (46.7%, σ = 21.3%), likely because the access-to-wait ratio was low and compet-
ing demands were low. From usage logs, we observed that ElevatorLearner had the
longest response time (median=10 seconds), but also the longest wait time (median =
52.9 seconds). Even though it took some time to pull out and unlock the phone, there
was enough time to complete several exercises within the waiting period. The time
taken to access an exercise was substantially less than the wait time.

Furthermore, competing mental demands were low while waiting for and riding the
elevator. Users described elevator waits as times when they tended to have more mental
space, as they were “not doing anything else” or “looking for a distraction.” Waiting for
the elevator involves planning where to go, pressing a button, and standing until the

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 1, Article 7, Publication date: March 2017.

WaitSuite: Productive Use of Diverse Waiting Moments 7:27

elevator arrives, which are steps that typically require low attentional resources. The
intermediate problem state is also low because, in normal circumstances, the user
simply needs to remember where they are headed next. Thus, the low switch cost kept
the engagement level high.

Although competing mental demands were low, many participants described physical
demands that prevented them from engaging. For example, exercises were sometimes
triggered while they were holding food or clothing in their hands, walking in a rush,
or talking to others. In these cases, low ease of access and social costs were not worth
the learning gains. In some cases, notifications felt disruptive when they did not match
user expectations. Two users reported feeling disappointed when they expected the
notification to be a text message, but got an ElevatorLearner notification instead:
“It’s that feeling of oh, it’s not actually important.” For some who kept their phones
inside purses, the exercises were often not noticed until after the elevator ride. In
these cases, users saw the notification only after getting back to their desk or while
walking elsewhere, at which point they felt that the notifications had lost their intended
purpose.

Because the elevator is often located in transitional areas, some users reported do-
ing exercises even when ElevatorLearner falsely triggered during other low-attention
activities, such as while walking to the bathroom or the water fountain. Although false
triggers stand the risk of surprising or frustrating users, in these cases, they were
welcomed because users were not only mentally available, but also able to reason why
the notification happened: “I went to the water fountain to get water, so I think the
bluetooth was close enough [to get triggered].” Thus, wait-learning triggers in ubiqui-
tous contexts may be more effective if they are situated near other areas associated
with low-attention activities, so that false triggers can fail softly.

7.5.3. PullLearner. PullLearner also exhibited a high engagement rate (62.5%,
σ=12.1%). Even though wait time was very short (median email loading time = 2.3
seconds), response time was the lowest across all apps (median = 1.6 seconds). Unlike
other apps, PullLearner exercises appear only upon a user-initiated action of pulling.
Thus, when the exercise appears, the user is already looking at the learning panel with
their thumb on the phone nearby, making the exercise easy to access.

Although the response time was not substantially shorter than wait time, competing
demands were typically low, which contributed to the high engagement rate. Users
reported that they often pull-to-refresh when they have nothing to do, such as while
bored waiting in line or sitting on the toilet. As one user put it: “Most of the time I
don’t have to check my email but I check it anyway. Even if I see new emails coming
in, I still pull just to make sure.” According to user logs, 89% of pulls resulted in no
new mail. The tendency to pull without a clear goal in mind, combined with the lack of
email arrival, meant that competing mental demands were relatively low.

7.5.4. WifiLearner. Although wifi took a moderate amount of time to connect (median =
6.8 seconds), engagement rate was overall low on WifiLearner (17.5%). Through inter-
views, we found that engagement with learning varied depending on whether internet
delays were expected by the user.

For the majority of users who had reliable internet, low ease of access, lack of per-
ceived waiting, and moderate competing demands dampened engagement. First, the
time taken to access an exercise (median = 7.3 seconds) was typically as long as the
wait time itself (median = 6.8 seconds). Many users said that because their wifi usually
connected automatically once they opened their laptops, they had little reason to click
near the wifi icon, where WifiLearner was situated. Responding to WifiLearner would
have required extra effort to access the top of their screen. Second, because these users
expected internet to connect automatically, they had developed the habit of spending

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 1, Article 7, Publication date: March 2017.

7:28 C. J. Cai et al.

the connection time opening a browser, typing in a url, or plugging in their computers,
which helped them get set up for their next task and already filled the wait time:
“The time is spent typing something into the address bar already, and by then it’s al-
ready connected.” The habit of setting up for the next task during this time meant that
competing mental demands may have also been higher. It is possible that users were
already planning what they were going to do next, leaving fewer attentional resources
available for wait-learning and increasing the switch cost.

Although engagement was low for most WifiLearner users, three participants who
regularly experience internet delays reported that they engaged frequently with
WifiLearner. Because they expected wifi delays, these users had an existing habit
of clicking on the wifi icon after opening their laptops: “I’m one of those people that
keeps clicking the wifi button. Rationally I know it’ll connect on its own, but for some
reason I’ll check anyway.” Thus, not only was the wait time longer, but accessing the
exercise also took less physical effort, because they were already clicking on the wifi
icon. Compared to users with reliable internet, competing demands might also be lower
because they were less likely to have initiated set-up tasks: “When it’s still connecting,
you can’t get anything else without internet, so learning a couple new words made it
more fun.”

In contrast to expected internet delays, unexpected delays may impose greater com-
peting demands due to the effort required to resolve or come to terms with the delay.
For example, one user described being very preoccupied while looking for internet at
an airport: “You see which one isn’t locked, go through all these steps to join. It’s a
very active process, when you’re desperately looking for wifi.” The multiple steps taken
to find internet, combined with the need to keep track of intermediate problem states
(e.g., remembering which networks one has tried), consume attentional resources and
increase the cost of task switching. Thus, unexpected waiting may be less effective for
wait-learning compared to regularly encountered waiting.

7.5.5. EmailLearner. According to user logs, the time taken for email to send was neg-
ligible (median = 0.7 seconds). Since wait time was negligible, user engagement was
largely determined by the user’s attentional capacity at the time an email was sent.
We observed a moderate negative correlation between the frequency of system-triggers
per day and the user’s engagement rate (Figure 14, Pearson’s correlation = 0.3). Users
who encountered fewer system-triggered exercises had higher engagement, a trend we
did not observe in the other four apps.

These results support existing theories on attentional capacity: The more frequently
exercises are triggered, the less likely they occur at the conclusion of a coarse-grained
task and the more likely some will occur while the user still needs to remember an
intermediate problem state. For example, one user described an instance in which he
sent an email to plan a party, which involved juggling multiple logistics. He ignored the
learning task because he needed to make a restaurant reservation after sending the
email. Doing the learning task would delay the restaurant reservation task, and also
require him to remember to book the reservation afterward. In other words, it would
require him to store and retrieve an intermediate problem state. Aside from the need
to remember intermediate states, other users described their decisions in the context
of efficiency: “The way I do email, it very much feels like a to-do list going from one to
the next.” Some described having a habit of sending emails in batches, and thus did
not engage with EmailLearner until the last email in the batch. This behavior makes
sense in the context of switch cost: Sending multiple emails in a row is more efficient
than switching to a learning task and back.

Despite the lack of waiting, EmailLearner had a moderate engagement rate (39.8%,
σ = 31%) because, in some cases, exercises did coincide with moments of higher

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 1, Article 7, Publication date: March 2017.

WaitSuite: Productive Use of Diverse Waiting Moments 7:29

Fig. 14. On EmailLearner, there was a mild negative correlation between frequency of exposure to system-
triggered exercises and likelihood of engaging with an exercise.

attentional capacity. For example, some reported that they answered an exercise before
transitioning from email to a new task, a moment when greater attentional resources
may be available and problem state is low. Others said they sent emails while waiting
for long-running job-related tasks to complete, in which case emailing was itself a long
wait time activity. However, on the whole users did not perceive the time taken to
send email itself to constitute wait time. In the absence of waiting, user engagement
may be particularly sensitive to the mental demands of the primary task because the
motivations for filling wait time no longer exist.

7.5.6. WaitChatter. Last, WaitChatter had a relatively low engagement rate (13%), even
though wait time was moderate (median = 10.2 seconds, σ = 13.1) and response time
was short (median = 2.9 seconds, σ = 2.7). However, WaitChatter users submitted
the highest number of system-triggered exercises per day among all apps (6.6). Upon
further analysis, we found that engagement varied depending on whether instant
messaging was a primary or secondary task.

In cases where chatting was itself a secondary task amidst a primary work-related
task, low engagement may be due to a lack of perceived waiting and high-competing
demands. In interviews, some users described chatting as a sporadic, secondary activity
that interleaved with a work-related primary activity they were doing. In these cases,
wait time was already being filled by a more important primary activity. In cases where
chatting was already secondary, learning was a tertiary task, meaning that attentional
capacity would be particularly low. For example, if the user is doing homework while
instant messaging with friends, attentional resources are already being dedicated to
problem solving, composing a homework solution, switching to instant messaging, re-
calling the state of the instant message thread, and recalling the state of the homework
problem. Switching to learning while instant messaging would add to the already high
cognitive expenditure.

WaitChatter was more effective during prolonged conversations during which instant
messaging was the primary task. In these scenarios, there were likely more attentional
resources available and also more waiting involved: “It’s the perfect little gap where I
know they’re going to respond within a minute. Without the app I would probably just
sit there and wait.” Frequent chatters may have been more likely to chat as a primary

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 1, Article 7, Publication date: March 2017.

7:30 C. J. Cai et al.

task. Whereas 10 users chatted fewer than half of the study days, the four most frequent
chatters sent an average of 222 chats per day. Engagement rates were slightly higher
among frequent chatters (17%) than infrequent chatters (11%). Frequent chatters also
completed a very high volume of exercises per day (23), much higher than infrequent
chatters (1.8).

For frequent chatters, some exercises may have still been ignored due to an unusually
high frequency of opportunities. One user said it felt natural to ignore a large number
of exercises because she knew she would have another opportunity within a few sec-
onds: “I knew it would show up very soon again.” Beyond a certain frequency, users
may feel content in the number of exercises they have already completed, so the desire
to learn more did not justify the switch cost. During particularly rapid conversations,
engagement may have also been tempered by short wait times. In the future, smarter
heuristics could be used to approximate whether chatting is in fact the primary task.
For instance, future iterations of WaitChatter could compute the intermessage time on
the fly and trigger exercises only when intermessage frequency is moderate: low fre-
quency could indicate that chatting is not the main task, whereas very high frequency
could suggest that the wait time is too short for wait-learning.

7.5.7. Self-Triggered Exercises. Although our wait-learning apps were designed to detect
waiting automatically, we found that some users eventually developed a habit of self-
triggering exercises even if they did not receive a system-trigger: “Maybe one or two
times I was at the elevator and didn’t get a notification, I would go in. I guess as
part of the habit.” Others eventually identified waiting moments that were not already
handled by WaitSuite, such as during elevator rides in other buildings, or while in the
bathroom, “Even when I wasn’t near the elevator – when I was walking or getting coffee,
I would realize oh, I could learn some words.” Interestingly, for some users, system-
triggers may have helped facilitate the eventual adoption of self-triggers: ”Near the
beginning I would do more of the prompted ones. Over time, I would also seek it out on
my own without the prompts.”

Users were more likely to self-trigger exercises if the learning panel was positioned in
always-present dead space that was easily noticed during moments when the user was
waiting or bored. We found that EmailLearner had the highest number of self-triggered
submissions per day (mean = 9.4), followed by ElevatorLearner (5.8), WifiLearner
(2.7), and WaitChatter (0.7). We did not include PullLearner in this analysis because
we were unable to distinguish between system-triggered and self-triggered exercises
since exercises are always triggered when a user pulls. Users indicated that because
EmailLearner is in view for a large part of the day, they often self-triggered exercises
while waiting for other tasks to complete: “When I was running an experiment that
was going to take like one minute to finish...I would do a couple of them.” WifiLearner
also received some self-triggers (2.7 per day) despite being peripherally located on the
screen, because it was situated near other status-management tools in the menu bar:
“It’s near my dropbox and bluetooth icon. I’m always looking at the bluetooth to see if
my keyboard or speakers are connected, or I’m checking the dropbox syncing.” Hence,
the location of WifiLearner may have helped users identify other moments that could
be used more productively. In contrast, WaitChatter was in view only when a chat box
was open, and received very few self-triggers (0.7 per day).

7.6. Results: Perceived Workload (RQ2)

Examining NASA TLX results, we found no evidence that users perceived an additional
workload with wait-learning enabled. Because exercises were purely optional, it may
be that users engaged only when the switch cost was sufficiently low. Alternatively, the
additional workload could have been too small to be noticeable or measured. Regardless,

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 1, Article 7, Publication date: March 2017.

WaitSuite: Productive Use of Diverse Waiting Moments 7:31

Fig. 15. A two-day snapshot of exercises submitted by each user. Most users (i.e., users 1–17) interleaved
between different apps within a single day. We label these users generalists. The remaining users (i.e., users
18–25) could be considered specialists, submitting more than 75% of exercises in just one app. These usage
patterns suggest that there are multiple kinds of waiting in a day that may not be captured by a single app
alone. The graph shows days at the midpoint of the study (days 7 and 8) as they were most representative
of user activity overall.

these findings support our design goals of keeping exercises both bite-sized and easy
to ignore.

Additionally, we saw evidence that wait-learning can reduce the frustration of wait-
ing in certain situations. In Wilcoxon signed-rank tests, we found that WifiLearner
users rated the wifi-connecting process significantly less irritating (pre = 3.68,
post = 2.19, p < 0.05, r = 0.43) and less hurried (pre = 3.75, post = 2.3, p < 0.05,
r = 0.41) with WifiLearner (measured post-study), than without it (measured pre-
study). One participant commented: “Waiting for wifi to load is something I get really
annoyed by, and having something to pass the time by was very nice.” Unlike other
kinds of waiting (e.g., elevator waiting, instant messaging), waiting for internet may
be particularly frustrating because other digital tasks are necessarily delayed.

7.7. Supplementary Findings: Using Apps in Combination

As our aim is to extend wait-learning beyond any one waiting scenario, we conducted a
supplementary analysis to understand the extent to which WaitSuite apps were used
in combination. Overall, we found that WaitSuite provided benefits beyond being a
collection of five isolated apps. A majority of participants interleaved between multiple
apps, whereas a smaller fraction focused primarily on one app. Users reported benefits
such as seamless synchronization of learning progress across diverse kinds of waiting,
the ability to make productive use of multiple kinds of waiting moments, and the
ability to sustain learning progress even on days when a specific kind of waiting was
not encountered.

7.7.1. Multi-App Usage. Analysis of our log data showed that a majority of users inter-
leaved usage between apps, even within a single day (Figure 15). For example, users
1–17 could be described as generalists, using a combination of different apps, whereas

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 1, Article 7, Publication date: March 2017.

7:32 C. J. Cai et al.

Fig. 16. For each user, the number of vocabulary words whose exercises appeared across 1, 2, 3, and 4
systems. Users are sorted from most (left) to least (right) number of exercises completed.

Fig. 17. For each user, the number of exercise submissions that were completed on the user’s most common
app, compared to the user’s remaining apps. Users are ordered from the lowest (left) to highest (right)
percentage of exercises completed on the most common app. Averaged across all users, 65% of exercises were
completed on the most common app, and 35% were completed on the remaining apps.

the remaining eight users (users 18–25) could be considered specialists, completing
more than three quarters of all exercises in one app. In addition, all five apps had
specialists, suggesting that no single wait-learning situation was redundant.

For each user, we also observed the portion of vocabulary exercises appearing on
multiple apps. We found that 65% of vocabulary words for each user appeared in
three or more apps, and 77% of words appeared in two or more apps (Figure 16). These
usage patterns resemble behavior that is shaped by fleeting moments of waiting within
different kinds of daily activities, rather than deliberate engagement within a single
app.

Last, to understand the potential impact of leveraging multiple wait-learning op-
portunities, for each user we determined the most common app, used most heavily by
that user, and computed the proportion of exercises completed on that app compared to
the other apps. Figure 17 shows the relative portions of exercises completed per user,
ordered by the percentage of exercises completed on the most common app. Across all
users, a non-trivial portion of exercises (35%) was completed on apps that were not the
most common app, ranging from 68% (user 1) to 2% (user 25). These usage patterns

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 1, Article 7, Publication date: March 2017.

WaitSuite: Productive Use of Diverse Waiting Moments 7:33

suggest that there are multiple kinds of waiting in a day that may not be captured by
a single app alone.

7.7.2. Unified Progress. Many described wait-learning during multiple kinds of waiting
as a novel experience: “It felt kind of cool there are all these different things that fit into
these gaps and they were all unified.” In contrast to previous single-app platforms they
had used, users felt that WaitSuite offered a unique experience because progress carried
over from one app to another, yet the moments used for learning were themselves
diverse. Several also indicated that the apps served complementary learning needs.
For example, one user said that pressing buttons on his phone was better for seeing
new words, while typing in translations on his computer was more effective for testing
his memory.

Although one user said that he encountered the same new word on two different
apps, indicating stale data, the vast majority of users described progress as flowing
naturally between apps. Since vocabulary was repeatedly presented according to the
flashcard scheduling algorithm, it is possible that even a stale flashcard could seem
fresh, being simply another repetition.

7.7.3. Resilience to Absence. In interviews, users reported that they naturally seg-
mented their usage of different platforms for different purposes, and some also faced
unusual circumstances that prevented usage on particular apps. By targeting multiple
kinds of waiting, WaitSuite enabled them to continue learning in these situations: “If
you don’t use the certain app that day, you might forget everything by the next day.
But by having four, they help each other to increase the frequency of you being exposed
to the word.” This varied exposure was not an anomaly, but rather part of the natural
fluctuation of user activities. For example, some did not ride elevators on days they
had lunch with co-workers, and others used Google Chat only to communicate with
family. Despite recruiting participants who reported to be regular users of multiple
platforms, we found that six users kept non-Gmail accounts in addition to Gmail ac-
counts; three kept their laptops only at work and one kept it only at home; six used
desktop computers instead of their laptops at work. Several also encountered unusual
circumstances during the study, such as travel, deadlines, and illness, but the combi-
nation of apps allowed them to continue learning. For example, a user was unable to
use her phone while in a foreign country, but continued learning using her desktop
apps. Another actively limited email usage due to a significant deadline, but continued
learning on ElevatorLearner: “This week was pretty rough, so I decided to concentrate
as much as possible so only checked email once a day. The elevator app was unaffected,
because being right by the elevator that didn’t count as work anyway.” Over weeks and
months, the unavoidable existence of such circumstances necessitates multi-faceted
approaches.

7.7.4. Security and Privacy Concerns. WaitSuite may be less suitable for those who are
concerned with a transfer of information across apps. Although all users were informed
pre-study that only learning-related activities would be recorded, one indicated post-
study that he was concerned with privacy: “I like to have my applications isolated, I’m
afraid things I do in Gmail can be logged in some other part of my life.”

7.7.5. Learning Across Apps. During the study, participants were exposed to 88 (σ =
101) words on average, 61 (σ = 70) of which they did not already know. After two
weeks, participants translated 50 words (86%, σ = 11%) correctly to L1 and 35 (60%,
σ = 18%) words to L2. User 23 (Figure 17) ended the study one day early because he
had completed all words available. Some users wished stale words could be revived
even after having been “learned” as defined by the Leitner algorithm. Because the
Leitner algorithm retires a flashcard after a number of successful repetitions, a user

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 1, Article 7, Publication date: March 2017.

7:34 C. J. Cai et al.

Fig. 18. Wait-learning is more engaging and less disruptive when the time taken to access an exercise is
shorter than the wait time, and when competing mental demands are low. In situations where the access-
to-wait ratio is high, competing demands ought to be even lower. This depiction assumes that the learning
task is short and bite-sized.

could forget words that were rehearsed early in the study. A spacing algorithm that
incorporates temporal effects, such as that described in [Edge et al. 2012] and Pavlik
and Anderson [2008], should be used in the future to improve long term retention.

In analyzing quiz results, we found that the average number of words retained in
Study 2 (35) was not as high as that of Study 1 (57), even though in Study 2, participants
used multiple apps. Whereas Study 1 recruited all regular users of Google Chat, Study 2
required participants to be regular users of at least three of the five platforms, which
meant that some were not regular Google Chat users. As instant messaging triggered
substantially more exercises than on any other app, it is possible that users in Study 1
simply had more opportunities to learn. Furthermore, even though our recruitment
required that participants be regular users of the indicated platforms, we found it was
difficult for some participants to accurately estimate their usage a priori. For instance,
one user discovered only during the study that he used Gmail primarily on his phone,
and thus rarely encountered EmailLearner and WaitChatter, which were desktop apps.
We believe these discoveries to reflect real-world circumstances that a wait-learning
platform could face.

8. DISCUSSION AND LESSONS LEARNED

Our work aims to overcome the problem of limited time by engaging people in educa-
tional activities during diverse waiting scenarios. We have presented a design space of
options for wait-learning, and then narrowed it to a subspace that is more effective for
wait-learning. In this section, we discuss how our findings can be used by researchers
and practitioners to design future wait-learning systems.

8.1. Theoretical Framework: Balance Between Wait Time, Ease of Access,
and Mental Demands

We present a theoretical framework that illustrates a combination of constraints un-
der which wait-learning is more engaging and less disruptive (Figure 18). The frame-
work is based on our findings that wait time alone did not account for fluctuations in

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 1, Article 7, Publication date: March 2017.

WaitSuite: Productive Use of Diverse Waiting Moments 7:35

engagement, and that ease of access and competing demands were also instrumental
because they affected switch cost.

Under this framework, the time taken to access the secondary task should be suffi-
ciently less than the wait time, so that the user can expect to spend enough time on
the secondary task to justify the cost of task switching. In this situation, wait time is
also perceived to be long enough to motivate task switching as a way of averting the
boredom and frustration of waiting. Conversely, when the access-to-wait ratio is high,
the waiting period may have ended by the time the user has switched. This makes
the secondary task less attractive because primary task resumption might interfere
with the learning task, and the motivation to avoid waiting also no longer exists. Thus,
competing mental demands ought to be even lower so that the expected benefits of
switching outweigh the switch cost. This theoretical framework combines existing the-
ories on attention management [Kahneman 1973; Monsell 2003], motivation [Lang
2006], and the waiting experience [Maister 1984] to characterize when wait-learning
is most engaging and least disruptive.

Although ease of access can often be improved through good design practices, it may
be equally constrained by the main task and existing platforms within which waiting
occurs. Thus, in addition to the design of seamless interactions, the effectiveness of wait-
learning systems also depends heavily on the selection of appropriate waiting moments.
In certain cases, it may also be necessary to analyze these dimensions separately
for different types of users. For example, in Study 2, we found that wait time, ease
of access, and competing demands varied substantially depending on whether users
habitually experienced wifi delays. These observations suggest that engagement with
wait-learning depends on a complex interaction of factors, and that it is necessary
to consider both the existing waiting behavior and the feasibility of embedding an
easy-to-access learning exercise.

8.2. Make Use of Frustrating Waits that are Habitual

In our study, we found that wait-learning can potentially reduce perceived mental
workload during particularly frustrating waiting situations, such as during wifi con-
nections. However, this was only true if waiting was habitual and somewhat expected.
Those who only seldom encountered wifi delays were too preoccupied with resolving
the delay, making wait-learning less suitable in those situations. Hence, wait-learning
is most appropriate for those who regularly experience the frustration of waiting, and
have encountered it frequently enough so as not to be preoccupied with resolving it
when it occurs.

8.3. Consider Nearby Tasks and User Expectations in Ubiquitous Scenarios

Systems using location detection for ubiquitous wait-learning should consider the na-
ture of nearby tasks, and the physical limitations users might have. Compared to
on-device waiting, we found that users were more mentally available during ubiqui-
tous waiting, but also less physically available. Thus, wait-learning apps should avoid
targeting activities in which people almost always have their hands full. To accommo-
date false triggers, apps for ubiquitous wait-learning should also select waiting areas
that also happen to be situated near other activities involving low mental workload.

Because ubiquitous waiting often occurs when the user is not already on their device,
wait-learning notifications could lead to surprise or disappointment if a user expected
a different notification. Future systems should consider what the user might expect
when receiving a wait-learning notification, and prevent surprises as much as possible.
For example, the wait-learning notification could be customized to have a different
sound or vibration from that of other apps, so that the user is aware of what they are
receiving before opening their device. Overall, ubiquitous wait-learning is a particularly

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 1, Article 7, Publication date: March 2017.

7:36 C. J. Cai et al.

promising area to explore further, given a paucity of mental demands versus physical
demands.

8.4. Customization

Although many participants used a combination of apps, several focused primarily on
one app. Some waiting moments also coincided with very different levels of mental
demand in different situations, e.g., instant messaging. Future implementations of
wait-learning could consider a casual interaction design [Pohl and Murray-Smith 2013]
that enables a spectrum of interactions, depending on how much the user is able to
engage at the moment. Or, it could also allow a user to customize or toggle apps based on
personal circumstances. However, this introduces the risk that users may forget to turn
an app back on after turning it off, and also adds an additional layer of management
that could ultimately diminish engagement with learning. Alternatively, a contextually
aware system could attempt to infer availability using sensors, or detect user patterns
over time coupled with probes for the user to acknowledge if a certain pattern is true.
For example, it may detect that a user never engages in wait-learning while instant
messaging with a particular person, or always self-triggers exercises on Tuesdays at
2pm while walking to class. Given the day to day variations we observed during the
study, these pattern suggestions should be made conservatively, to avoid unnecessarily
reducing opportunities for learning.

8.5. Integrate Multiple Wait-Learning Opportunities

In our study, we found that the extent to which a user encounters any particular waiting
moment varies, and that this varied exposure is very common. Despite recruiting users
who indicated they were regular users of the platforms required, in practice we found
remarkable variation in the kinds of waiting that were encountered from one day to
another. Some were due to temporary constraints, e.g., deadlines or illness, while others
were byproducts of existing habits, e.g., taking the elevator only on specific days of the
week. For the most part, users were not practicing on one dedicated app, but were
instead engaging in micro-moments of learning shaped by the diverse constraints of
existing activities. A system would be naive to assume that users encounter the same
set of activities to the same extent on a daily basis. Hence, a combination of wait-
learning approaches should be used to increase exposure to learning opportunities.

Because our evaluation sought to understand engagement within different kinds of
waiting, we preserved the same flashcard-style exercises across apps to avoid intro-
ducing additional factors and confounds. However, future work could explore learning
exercises that are tailored to different waiting scenarios. For example, systems might
use longer waiting periods, e.g., elevator waiting, for the presentation of more complex
exercises that take longer to complete. Future systems could also integrate diverse
wait-learning apps in complementary ways by capitalizing on the form factors avail-
able, such as allocating quiz-style exercises to typing-based interfaces and introducing
new words in mobile settings.

8.6. System-Triggers and Habit Formation

In Study 2, our intent for supporting both system-triggers and self-triggers was to
improve WaitSuite as a system: Self-triggers acted as a safeguard if a user happened
to be unavailable during a system-trigger, but still wanted to retrieve the exercise
later. One limitation of this design was that we were unable to make study conclusions
regarding the specific value of system-triggers over that of self-triggers since WaitSuite
supported both simultaneously. However, given qualitative feedback from users and
existing research on habit formation, we have reason to believe that system-triggers
were instrumental to engagement.

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 1, Article 7, Publication date: March 2017.

WaitSuite: Productive Use of Diverse Waiting Moments 7:37

First, multiple users described system-triggers as something that helped them form
a habit. For example, some learned over time to associate system-triggers with the
idea of learning, such as thinking “the elevator is the time to learn French” when
approaching the elevator (ElevatorLearner), or “turning my focus to under the box,
because now I expect [the learning task] to show up” (WaitChatter) after sending a
chat. Some felt they would eventually forget to do exercises if system-triggers were
removed, but indicated that system-triggers helped facilitate the eventual adoption of
self-triggering: “I think the reminder is key. I think I need the reminders. When you
get the reminder, then you’re used to getting a reminder, then all of sudden you’re like
oh I should do it on my own.” This is in line with existing evidence that automatic
triggers help people sustain desired habits better than passive applications [Bentley
and Tollmar 2013]. Future work could investigate how to support habit formation more
systematically, such as understanding how system triggers can facilitate self-triggers
over time, or gradually reducing the frequency of system-triggers to see if self-triggers
increase.

Second, user feedback in both studies support existing theories that well-timed trig-
gers are key to sustaining a habit [Fogg 2009]. For example, some contrasted the timing
of WaitSuite system-triggers to that of daily app reminders they had received in the
past: “One app sent me a daily notification at 8pm. I learned to ignore it after a while
because the timing was just not convenient. But with these, at least I would open them
because I had nothing else to do at the time.” In future systems, it would be useful to
explore how system-triggers can better complement daily reminders, given variation
of exposure to system-triggers.

8.7. Wait-Learning and Well-Being

A potential downside of wait-learning could be the inadvertent replacement of time
spent reflecting or resting. Wait-learning is less appropriate for users who already
make effective use of wait time, or who do not already engage in technology use while
waiting. In our studies, however, most users had existing habits of engaging with
technology use during wait time. Many described wait-learning as a timely replacement
for their existing compulsive waiting habits, such as browsing social media, playing
Candy Crush, or checking email repeatedly. Some also described WaitChatter as being
playful and game-like, similar to other games they would play on their phones while
waiting. Hence, for them, wait-learning did not actually fill unused time, but rather
replaced existing digital activities with more productive ones.

Although we used vocabulary learning as one example of productivity, wait-learning
could potentially be extended to other domains and applications, such as encouraging
healthier habits. For example, wait time could be an opportune moment to provide
timely reminders to stretch, plan, meditate, relax, or reflect. We envision the design
dimensions and theoretical framework established in this article to form the basis for
future work to help people wait-learn healthier habits in general.

8.8. Limitations

We arrived at our conclusions not through a controlled study, but rather through an
inductive analysis and iterative design process. Because wait-learning augments ex-
isting interactions, the unique constraints of those existing interactions meant that
controlled study would be challenging to perform without fundamentally disrupting
the nature of the existing tasks. For example, the dead space uncovered by pull-to-
refresh made wait-learning feasible despite the short wait time; moving the learning
panel elsewhere would have changed the very essence of pull-to-refresh. Likewise, ar-
tificially increasing wait time or introducing competing demands would not allow us to
capture the naturalistic interactions one would have in real-world waiting moments.

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 1, Article 7, Publication date: March 2017.

7:38 C. J. Cai et al.

Due to the wide spectrum of platforms we wished to explore, it was infeasible to re-
cruit participants who met all five waiting scenarios. Thus, each participant installed
only a subset of the apps. For example, no user installed both ElevatorLearner and
PullLearner because one was implemented on iPhone to maximize compatibility with
iBeacons, and the other on Android to make use of an open source email client. The
statistical analyses used in our evaluation are intended to provide some grounding to
our insights, but should not be interpreted in isolation.

Our results are also limited to the demographics of participants in our studies,
which were primarily young adults in an academic setting. In the future, our design
space could be expanded to include waiting scenarios commonly encountered by other
demographics, such as adult professionals juggling work and caregiving, waiting for
their children at soccer practice or for their older parents at medical appointments.
Wait-learning should be evaluated within these broader contexts of use. Lastly, the
users in our studies were primarily beginning and intermediate language learners. This
meant that, while using WaitSuite, users typically marked only a minority of words
as already known. To avoid filling wait time with a large quantity of known words,
WaitSuite could be modified for more advanced learners, by automatically filtering out
vocabulary according to the user’s language level or pre-study vocabulary quiz.

9. CONCLUSION

In this article, we described a design space for wait-learning, and created five
wait-learning applications targeting a variety of waiting scenarios, each with unique
interaction constraints. In two evaluations, we found that wait-learning is effective
for bite-sized learning, and that exercises timed at the start of waiting periods re-
ceive higher engagement and faster response time than alternative timing conditions.
We also found no evidence that wait-learning increased the perceived workload of
the primary task, and it alleviated frustration during internet waiting. Furthermore,
the availability of multiple kinds of wait-learning helped sustain learning progress
during absence on particular apps. Finally, we presented a theoretical framework that
describes how the combination of wait time, ease of access, and competing demands
affects learning engagement and interruption. Taken together, these findings provide
important implications for designing effective wait-learning systems, extending
wait-learning beyond any single situation.

ACKNOWLEDGMENTS

We are very grateful to the entire User Interface Design and Haystack groups at MIT CSAIL for their help
pilot testing WaitSuite, and for providing feedback on drafts. In particular, we would like to thank Elena
Glassman, Katherine Fang, Max Goldman, Shamsi Iqbal, William Li, and Ramesh Sridharan for their help
on this project, and Tom Buehler for help on the video.

REFERENCES

Piotr D. Adamczyk and Brian P. Bailey. 2004. If not now, when? The effects of interruption at different
moments within task execution. In Proceedings of CHI’04. ACM, 271–278.

Florian Alt, Alireza Sahami Shirazi, Albrecht Schmidt, and Richard Atterer. 2012. Bridging waiting times
on web pages. In Proceedings of the 14th International Conference on Human-Computer Interaction with
Mobile Devices and Services. ACM, 305–308.

Erik M. Altmann and J. Gregory Trafton. 2004. Task Interruption: Resumption Lag and the Role of Cues.
Technical Report. DTIC Document. In Proceedings of CogSci, 2004.

John R. Anderson. 2005. Human symbol manipulation within an integrated cognitive architecture. Cognitive
Science 29, 3 (2005), 313–341.

Daniel Avrahami, Susan R. Fussell, and Scott E. Hudson. 2008. IM waiting: Timing and responsiveness in
semi-synchronous communication. In Proceedings of CSCW’08. ACM, 285–294.

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 1, Article 7, Publication date: March 2017.

WaitSuite: Productive Use of Diverse Waiting Moments 7:39

Alan D. Baddeley. 1997. Human Memory: Theory and Practice. Psychology Press.
Brian P. Bailey and Shamsi T. Iqbal. 2008. Understanding changes in mental workload during execution of

goal-directed tasks and its application for interruption management. ACM Transactions on Computer-
Human Interaction 14, 4 (2008), 21.

Brian P. Bailey, Joseph A. Konstan, and John V. Carlis. 2001. The effects of interruptions on task performance,
annoyance, and anxiety in the user interface. In Proceedings of INTERACT, Vol. 1. 593–601.

Saskia Bakker, Elise van den Hoven, and Berry Eggen. 2015. Peripheral interaction: Characteristics and
considerations. Personal and Ubiquitous Computing 19, 1 (2015), 239–254.

Jennifer S. Beaudin, Stephen S. Intille, Emmanuel Munguia Tapia, Randy Rockinson, and Margaret E.
Morris. 2007. Context-sensitive microlearning of foreign language vocabulary on a mobile device. In
Ambient Intelligence. Springer, 55–72.

Frank Bentley and Konrad Tollmar. 2013. The power of mobile notifications to increase wellbeing logging
behavior. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM,
1095–1098.

Matthias Böhmer, Christian Lander, Sven Gehring, Duncan P. Brumby, and Antonio Krüger. 2014. Inter-
rupted by a phone call: Exploring designs for lowering the impact of call notifications for smartphone
users. In Proceedings of CHI’14. ACM, 3045–3054.

Jelmer P. Borst, Niels A. Taatgen, and Hedderik van Rijn. 2010. The problem state: A cognitive bottleneck in
multitasking. Journal of Experimental Psychology: Learning, Memory, and Cognition 36, 2 (2010), 363.

Jelmer P. Borst, Niels A. Taatgen, and Hedderik van Rijn. 2015. What makes interruptions disruptive? A
process-model account of the effects of the problem state bottleneck on task interruption and resumption.
In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems. ACM,
2971–2980.

D. E. Broadbent. 1958. Perception mid communication. Oxford: Pergamon.
Carrie J. Cai, Philip J. Guo, James Glass, and Robert C. Miller. 2015. Wait-learning: Leveraging wait time

for education. In Proceedings of CHI’14. ACM.
Andrew R. A. Conway, Nelson Cowan, and Michael F. Bunting. 2001. The cocktail party phenomenon revis-

ited: The importance of working memory capacity. Psychonomic Bulletin & Review 8, 2 (2001), 331–335.
M. Csikszentmihalyi. 1990. Flow: The Psychology of Optimal Experience. Harper and Row, New York.
David Dearman and Khai Truong. 2012. Evaluating the implicit acquisition of second language vocabulary

using a live wallpaper. In Proceedings of CHI’12. ACM, 1391–1400.
Benedict G. C. Dellaert and Barbara E. Kahn. 1999. How tolerable is delay? Consumers evaluations of

internet web sites after waiting. Journal of Interactive Marketing 13, 1 (1999), 41–54.
Frank N. Dempster. 1987. Effects of variable encoding and spaced presentations on vocabulary learning.

Journal of Educational Psychology 79, 2 (1987), 162.
J. Anthony Deutsch and Diana Deutsch. 1963. Attention: Some theoretical considerations. Psychological

Review 70, 1 (1963), 80.
Zoltan Dornyei and István Ottó. 1998. Motivation in action: A process model of L2 motivation. Working

Papers in Applied Linguistics (1998), 43–69.
Hermann Ebbinghaus. 1913. Memory: A Contribution to Experimental Psychology. Number 3. Teachers

College, Columbia university.
Darren Edge and Alan F. Blackwell. 2016. Peripheral tangible interaction. In Peripheral Interaction. Springer,

65–93.
Darren Edge, Stephen Fitchett, Michael Whitney, and James Landay. 2012. MemReflex: Adaptive flashcards

for mobile microlearning. In Proceedings of the 14th International Conference on Human-computer
Interaction with Mobile Devices and Services. ACM, 431–440.

Darren Edge, Elly Searle, Kevin Chiu, Jing Zhao, and James A. Landay. 2011. MicroMandarin: Mobile
language learning in context. In Proceedings of CHI’11. ACM, 3169–3178.

Brian J. Fogg. 2009. A behavior model for persuasive design. In Proceedings of the 4th International Confer-
ence on Persuasive Technology. ACM, 40.

Gerhard Gassler, Theo Hug, and Christian Glahn. 2004. Integrated micro learning–An outline of the basic
method and first results. Interactive Computer Aided Learning 4 (2004), 1–7.

Robert Godwin-Jones. 2010. Emerging technologies from memory palaces to spacing algorithms: Approaches
to second language vocabulary learning. Language, Learning & Technology 14, 2 (2010), 4–11.

Chris Harrison, Brian Amento, Stacey Kuznetsov, and Robert Bell. 2007. Rethinking the progress bar. In
Proceedings of the 20th Annual ACM Symposium on User Interface Software and Technology. ACM,
115–118.

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 1, Article 7, Publication date: March 2017.

7:40 C. J. Cai et al.

Michael K. Hul, Laurette Dube, and Jean-Charles Chebat. 1997. The impact of music on consumers’ reactions
to waiting for services. Journal of Retailing 73, 1 (1997), 87–104.

Shamsi T. Iqbal and Brian P. Bailey. 2005. Investigating the effectiveness of mental workload as a predictor
of opportune moments for interruption. In Proceedings of CHI’05 Extended Abstracts. ACM, 1489–1492.

Ellen Isaacs, Alan Walendowski, Steve Whittaker, Diane J. Schiano, and Candace Kamm. 2002. The char-
acter, functions, and styles of instant messaging in the workplace. In Proceedings of CSCW’02. ACM,
11–20.

Jing Jin and Laura A. Dabbish. 2009. Self-interruption on the computer: A typology of discretionary task
interleaving. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM,
1799–1808.

Heather Jordan and Steven P. Tipper. 1998. Object-based inhibition of return in static displays. Psychonomic
Bulletin & Review 5, 3 (1998), 504–509.

Daniel Kahneman. 1973. Attention and Effort.
Karen L. Katz, Blaire M. Larson, and Richard C. Larson. 1991. Prescription for the waiting-in-line blues:

Entertain, enlighten, and engage. MIT Sloan Management Review 32, 2 (1991), 44.
Geza Kovacs. 2015. FeedLearn: Using facebook feeds for microlearning. In Proceedings of the 33rd Annual

ACM Conference Extended Abstracts on Human Factors in Computing Systems. ACM, 1461–1466.
Annie Lang. 2006. Using the limited capacity model of motivated mediated message processing to design

effective cancer communication messages. Journal of Communication 56, s1 (2006), S57–S80.
Hwa-Chun Lin and C. S. Raghavendra. 1996. An approximate analysis of the join the shortest queue (JSQ)

policy. IEEE Transactions on Parallel and Distributed Systems 7, 3 (1996), 301–307.
Rich Ling and Naomi S. Baron. 2007. Text messaging and IM linguistic comparison of American college data.

Journal of Language and Social Psychology 26, 3 (2007), 291–298.
David H. Maister. 1984. The Psychology of Waiting Lines. Harvard Business School.
Gloria Mark, Shamsi Iqbal, Mary Czerwinski, and Paul Johns. 2015. Focused, aroused, but so distractible:

Temporal perspectives on multitasking and communications. In Proceedings of the 18th ACM Conference
on Computer Supported Cooperative Work & Social Computing. ACM, 903–916.

Yoshiro Miyata and Donald A. Norman. 1986. Psychological issues in support of multiple activities. User
Centered System Design: New Perspectives on Human-computer Interaction (1986), 265–284.

Stephen Monsell. 2003. Task switching. Trends in Cognitive Sciences 7, 3 (2003), 134–140.
Fiona Fui-Hoon Nah. 2004. A study on tolerable waiting time: How long are Web users willing to wait?

Behaviour & Information Technology 23, 3 (2004), 153–163.
Bonnie A. Nardi, Steve Whittaker, and Erin Bradner. 2000. Interaction and outeraction: Instant messaging

in action. In CSCW’00. ACM, 79–88.
Steven L. Neuberg, Douglas T. Kenrick, and Mark Schaller. 2011. Human threat management systems:

Self-protection and disease avoidance. Neuroscience & Biobehavioral Reviews 35, 4 (2011), 1042–1051.
Sumaru Niida, Satoshi Uemura, Hajime Nakamura, and Etsuko Harada. 2011. Field study of a waiting-

time filler delivery system. In Proceedings of the 13th International Conference on Human Computer
Interaction with Mobile Devices and Services. ACM, 177–180.

Ji-Hye Park and Hee Jun Choi. 2009. Factors influencing adult learners’ decision to drop out or persist in
online learning. Journal of Educational Technology & Society 12, 4 (2009), 207–217.

Philip I. Pavlik and John R. Anderson. 2008. Using a model to compute the optimal schedule of practice.
Journal of Experimental Psychology: Applied 14, 2 (2008), 101.

Paul Pimsleur. 1967. A memory schedule. Modern Language Journal (1967), 73–75.
Henning Pohl and Roderick Murray-Smith. 2013. Focused and casual interactions: Allowing users to vary

their level of engagement. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. ACM, 2223–2232.

Anji Ren. 2015. Pull-to-refresh and learn: Leveraging mobile email load time for education. In Proceedings
of CHI’15 Extended Abstracts. ACM.

Dario D. Salvucci and Niels A. Taatgen. 2008. Threaded cognition: An integrated theory of concurrent
multitasking. Psychological Review 115, 1 (2008), 101.

Albrecht Schmidt. 2000. Implicit human computer interaction through context. Personal Technologies 4, 2–3
(2000), 191–199.

John Sweller, Jeroen J. G. Van Merrienboer, and Fred G. W. C. Paas. 1998. Cognitive architecture and
instructional design. Educational Psychology Review 10, 3 (1998), 251–296.

Anne M. Treisman. 1960. Contextual cues in selective listening. Quarterly Journal of Experimental Psychol-
ogy 12, 4 (1960), 242–248.

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 1, Article 7, Publication date: March 2017.

WaitSuite: Productive Use of Diverse Waiting Moments 7:41

Andrew Trusty and Khai N. Truong. 2011. Augmenting the web for second language vocabulary learning. In
Proceedings of CHI’11. ACM, 3179–3188.

Zheng Wang and John M. Tchernev. 2012. The myth of media multitasking: Reciprocal dynamics of media
multitasking, personal needs, and gratifications. Journal of Communication 62, 3 (2012), 493–513.

Stuart Webb. 2007. The effects of repetition on vocabulary knowledge. Applied Linguistics 28, 1 (2007),
46–65.

Christopher Wickens. 1984. D.(1984). Processing resources in attention. Varieties of Attention (1984), 63–102.
Christopher D. Wickens, Robert S. Gutzwiller, and Amy Santamaria. 2015. Discrete task switching in over-

load: A meta-analyses and a model. International Journal of Human-Computer Studies 79 (2015), 79–84.
Thomas Blake Wilson. 2006. Gradual Awareness Notification for the Desktop Environment. Ph.D. Disserta-

tion. Massachusetts Institute of Technology.
Glenn Wylie and Alan Allport. 2000. Task switching and the measurement of switch costs. Psychological

Research 63, 3–4 (2000), 212–233.

Received November 2015; revised December 2016; accepted December 2016

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 1, Article 7, Publication date: March 2017.

