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Abstract 
Arcade-style games like Tetris and Pacman are often difficult 
to adapt for educational purposes because their fast-paced 
intensity and keystroke-heavy nature leave little room for 
simultaneous practice of other skills. Incorporating spoken 
language technology could make it possible for players to 
learn as they play, keeping up with game speed through 
multimodal interaction. To date, however, it remains 
exceedingly difficult to augment fast-paced games with speech 
interaction because the frustrating effect of recognition errors 
highly compromises entertainment. In this paper, we design a 
modified version of Tetris with speech recognition to help 
students practice and remember word-picture mappings. Using 
utterances collected from learners interacting with the speech-
enabled Tetris game, we present and evaluate several 
techniques for leveraging contextual cues to increase 
recognition accuracy in fast-paced game environments. 
Index Terms: speech recognition, education, serious games, 
user interfaces 

1. Introduction 
The pervasive spread of computer games has made a 
significant impact on game-based learning as a serious topic in 
the field of education. Research evidence has shown that fun 
and enjoyment are central to the process of learning because 
they increase learners’ intrinsic motivation [2,9]. Good games 
can motivate players to learn through repeatedly doing the 
game itself until they have virtually automatized the new skill 
[4]. 

Although the highly engaging, repetitive nature of existing 
arcade-style games makes them natural settings for embedding 
learning through rehearsal, most adaptations of existing games 
emerge from turn-based frameworks like card games [10] or 
from complex virtual environments [14], perhaps due to less 
time pressure on learners and greater amenability to structural 
changes. However, arcade-style games such as Tetris and 
Pacman are advantageous in that they are much simpler to 
manipulate by developers, have open source code bases, and 
allow a wider range of time commitment from players. Just as 
flashcards enable students to review vocabulary on the run, 
arcade games allow players to either indulge in short spurts or 
stay indefinitely. 

Augmenting games with speech interaction offers multiple 
advantages for adapting such games for learning. Not only 
does speech production strengthen memory by providing 
learners with phonological input back to the mind [8], but 
speech is also a typically unused input channel during 
traditional arcade gameplay. It could therefore enable users to 
keep up with the original game speed more so than text input. 
Previous work has further indicated that embedding motivations 
for retrieval practice, the act of repeatedly attempting recall from 
memory, could improve long-term retention in a speech-

augmented game environment [3]. However, fast-paced games 
offer an unusual challenge in that their motivational 
effectiveness depends heavily on the rhythm and flow of the 
game, along with clear accountability for progress [12]. The 
thrill of playing a fast-paced game could be seriously dampened 
by the frustrating effect of speech recognition errors, a reason that 
perhaps explains the limited adoption of speech technology in this 
area. 

Recent work has explored using dialogue context to 
enhance speech understanding, both in standard information-
access systems [13][16] and in dialogue systems for second 
language learning [15]. However, less research is devoted to 
enhancing speech recognition systems in time-sensitive 
settings for rapid gameplay. Fast-paced arcade style games 
may offer the advantage of providing even more fine-tuned 
contextual information, due to simpler game logic, fewer 
possible states, and a more granular trial-by-trial structure. 

In this paper, we investigate useful techniques for 
enhancing speech recognition performance by using in-game 
context to provide additional information to the recognizer. 
We use Tetris as a prototypical example for evaluating these 
approaches. Tetris is classic arcade-style video game in which 
players prevent falling blocks from stacking to the top by 
rotating and maneuvering the blocks to form rows. 

2. System Design 
Building on an existing open source web implementation of 
Tetris1, we modified traditional Tetris rules to offer an 
incentive for learning any set of associations, such as capitals 
and countries or names and faces. Our specific implementation 
teaches word-picture associations to help users learn and 
remember the meaning of words.  

Figure 1: Modified Tetris game interface. Saying the 
correct word unlocks block rotation. 

Each player sees a Tetris block attached to the picture and 
must correctly speak the word associated with the picture 
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before block rotation can be unlocked for the trial (Figure 1). 
As in traditional Tetris, a block can only be maneuvered while 
it is still falling. Once it has dropped, the next block with a 
new picture immediately appears. Although our specific 
implementation allows learners to rehearse word-picture 
associations, the framework is not limited to pictorial cues and 
can be applied to learning any set of paired associations, in 
either the first or second language. For example, learners could 
practice recalling historical events and the dates on which they 
occurred, or scientific terminology and their definitions. 

The game can furthermore be configured in three different 
modes: 1) In study mode, the word associated with the picture 
is presented each time the picture appears. 2) In retrieval 
mode, learners see the word-picture pair only the first time it 
appears, and in subsequent trials only see the picture 
displayed. The word is revealed if the learner says nothing 
after four seconds, or as soon as the learner records a response 
regardless of correctness. 3) Multiple choice mode is similar to 
retrieval mode, except in subsequent trials learners are aided 
by the display of two word options to choose between rather 
than having to exercise free recall.  In all three modes, the 
learner hears the pronunciation of the word when the word-
picture pair is first introduced. 

To recognize speech input, we used the WAMI (Web-
Accessible Multimodal Interface) software [6], a framework 
that allows audio to be captured at the web page and 
transmitted to the SUMMIT speech recognizer [5] running 
remotely. To enhance user input efficiency, we implement the 
voice recording functionality via a spring-loaded hold-to-talk 
spacebar (Figure 1) rather than the more traditional two step 
process of push-to-record followed by push-to-stop.  

3. Speech Data Collection  
We collected speech on Amazon Mechanical Turk by inviting 
remote participants to play the fully speech-enabled Tetris 
game multiple times, in different modes. Due to poor quality 
microphone hardware in many older computers, only 
participants who passed a pre-qualifier microphone test were 
allowed to complete the tasks. Within each game, learners 
were first introduced to a word-picture pair and then rehearsed 
the mapping four times, totaling 35 trials for the seven words 
per game. 

In real-life situations, a learner may wish to learn or review 
words that may be missing from the recognizer’s existing 
vocabulary, such as scientific terminology or proper nouns like 
peroxisome or Nowocin. To model these situations, our game 
presented an artificial vocabulary rather than existing words in 
the English language. The novel word-picture mappings also 
precluded any user from having a learning advantage due to 
prior exposure. We pre-generated the artificial vocabulary 
using a probabilistic model1 on English phonemes. The final 
vocabulary consisted of 28 English-like words (Table 1) 
mapped to pictures of familiar animals and household objects. 
The lexicon for speech recognition used an English letter-to-
sound model [1].  

During gameplay, each user’s utterances and game activity 
were logged to a database. In total, we collected 2584 
utterances, at a sample rate of 8 kHz, from 16 users (12 male, 
4 female) between the ages of 21 and 51 (mean=31.6). All 

                                                                    
 
1 ibbly.com/Pseudo-words.html 

participants were native English speakers located in the United 
States. Data for two sessions were not evaluated due to 
technical difficulties expressed in the user comments in a 
follow-up questionnaire. We thus perform evaluation on a total 
of 2351 utterances. 

 
Vocabulary Words 
wug blicket 
speff dax 

pimwit zigant 
nanose gazzer 
tusket toma 
intess fendle 
priole 
unty 
rint 

mata 
pos 

tranco 
musker 
henne 

moffer 
illo 
del 
blas 

omma 
atter 

corros 
barnel 

Table 1: The artificial vocabulary that users learned 
while playing the speech-enabled Tetris game. These 
words were randomly mapped to common animals and 
household objects. 

4. Evaluation of Static Recognizer 
The recognizer’s performance depends critically on its letter to 
sound (L2S) model used to generate lexical pronunciations for 
each out-of-vocabulary word. To evaluate the robustness of 
our L2S model, we utilized different pronunciation models 
ranging from one to twenty-best pronunciation hypotheses.   

 

 
Figure 2: Poorly ranked words (9 of 28) account for 
increased recognition accuracy when more 
pronunciations are included in the L2S. 

These N-best pronunciations were produced from the 
SUMMIT L2S model applied to the 28 artificial words. We 
configured a static recognizer with the full 28-word 
vocabulary and evaluated it on all utterances in which the 
speaker had produced any one of the 28 vocabulary words. 
When only one pronunciation per word was included in the 
L2S, recognizer performance was surprisingly low at 55%, but 
accuracy increased to 63% when 20 pronunciations were 



included per word. Although performance for the majority of 
words peaked at a small number of included pronunciations, 
for 9 of the 28 words the most common pronunciation was 
ranked very low, causing overall performance on the 28 words 
to suffer in lexicons using only a limited number of L2S 
pronunciations (Figure 2). Hence, the total corpus benefited 
from an expansion of the lexicon to include more N-best 
pronunciations. The high risk of missing a key pronunciation 
commonly produced by users thus appears to outweigh the 
diluting effect of including greater pronunciation variety. 

We also examined the extent to which performance could 
be enhanced by including L2S confidence scores for each 
pronunciation (Figure 3). Confidence scores [7] are used to 
weigh pronunciations based on their likelihood of being 
correct. For a benchmark comparison, we also evaluated the 
same corpus on a lexicon built using 1-best pronunciations 
manually created by an expert. Regardless of the number of 
pronunciations included, the expert lexicon performed better 
than an L2S lexicon with no confidence scoring, illustrating 
the disadvantage of poor pronunciations in the lexicon. 
However, the inclusion of L2S confidence scores produced a 
recognizer whose performance surpassed expert lexicon 
performance when the L2S model included at least ten-best 
pronunciations, illustrating some tangible benefit to including 
pronunciation variety on untrained words, particularly if 
confidence scores are available to down-weigh less likely 
pronunciation occurrences. In line with this notion, letter-to-
sound confidence scores kept performance relatively steady 
even at the inclusion of a high number of potentially irrelevant 
pronunciations – a point at which lexicon performance without 
confidence scores had begun to drop.  

 

 

Figure 3: Comparison of L2S performance with and 
without confidence scoring to an expert L2S.  

Although average recognition performance on a static 28-
word recognizer was surprisingly low, recognition accuracy 
for the highest performing speaker was 94%, and it was above 
85% for the top four speakers (Figure 4). As our user study 
was strictly a remote task, the remarkably wide spread among 
different speakers is partly due to substantial differences in 
microphone and hardware quality on different computers. To 
better understand the low average performance and high 
variance among speakers, we further categorized 
misrecognitions by false negative and false positive 
recognition errors. We found that the vast majority of errors 
were due to false negatives (85%), and only a small number 

were false positives (2%). The remaining errors (neither false 
positive nor false negative) were situations in which the 
learner produced the wrong utterance, but the recognizer 
hypothesized a third word that was neither the learner’s 
utterance nor the target word.   

Interestingly, the alarmingly high false negative rate was 
partially a function of in-game user behavior. Many users 
tended to repeat the same utterance multiple times upon 
experiencing a false negative error, in an attempt to resolve the 
recognizer’s mistake. These repeated false negatives widened 
the performance gap between speakers because a single false 
negative error would almost always be exacerbated by an 
ensuing sequence of more false negative errors. This behavior 
may manifest particularly strongly in fast-paced game settings 
with short target utterances; the urgency associated with game 
incentives (i.e. Tetris blocks dropping) is complemented by 
the fact that one-word utterances are easy to repeat incessantly 
and thus worth the attempt. To discover the impact of repeated 
false negatives, we re-evaluated the corpus without false 
negatives that had been purely due to repetition, and found a 
14% increase in overall recognition performance.  

 

 
Figure 4: Comparing recognizer performance across 
the 16 different speakers. 

False negative speech recognition errors also appeared to 
have an asymmetric impact on user enjoyment. In a post-study 
questionnaire on Mechanical Turk, some users reported that 
false negative errors inhibited their enjoyment of the game. 
For example, one user wrote that false negatives “made me 
less engaged, because I felt like [the game] was counting off 
for something I knew.”	
  On the other hand, false positive errors 
seemed to have a less detrimental effect on user enjoyment. 
Observations from local pilot testing revealed that false 
positive errors were more rare because users tended to speak 
only when they had some confidence or inkling of the correct 
answer. Moreover, because the target answer was revealed 
whenever the user succeeded, users often appeared amused 
rather than misdirected by the small number of false positives 
that they experienced. 

The combination of time pressure and playful exploration 
inherent in gameplay may also have contributed to more 
anomalous utterances, which further increased the number of 
recognition errors. Anomalous utterances (Figure 5) accounted 
for 15% of the speech corpus and 10% of all recognition 
errors. For example, because we had changed the input method 
to be spring-loaded to optimize efficiency, some recordings 



were partially cut-off due to the player releasing the record 
button prematurely. At other times, recordings were silent 
because the user hesitated to speak or accidentally pressed the 
record button. On occasion, game sounds such as row-
completion ringing tones were also captured in the recording, 
even though they were designed not to overlap temporally 
with recorded speech. Furthermore, some users uttered 
nonsense phrases or English labels for the pictures, perhaps in 
a playful attempt to test the recognizer or in order to trigger 
the display of a hint, which is designed to appear once the user 
has attempted any utterance in a trial. More rarely, users 
conflated two vocabulary words and spoke a hybrid of two 
words.  

 

 
Figure 5: Count of anomalous utterances by category. 

Overall, the most common anomalous cases were cut-off 
words and silent recordings (51% and 16% of anomalies, 
respectively).  Cut-off recordings could be addressed by 
having the system constantly listen for speech and pad 
recorded utterances with extra time on both ends before 
sending them to the recognizer.  Silent recordings could be 
better handled by incorporating silence into the recognizer’s 
language model such that silence is a competing hypothesis in 
addition to the existing vocabulary words. In cases where the 
recognizer hypothesizes silence, the game interface can give 
feedback to the user to try again or speak louder. We leave 
these improvements for future work and instead focus on 
improving overall performance regardless of anomalies. 

5. Strategies to Improve Performance 
The disheartening effect of false negative recognition errors on 
user enjoyment suggests that relaxing the constraints of speech 
recognition to be more lenient could benefit engagement. The 
difficulties inherent in optimizing a letter-to-sound model for 
out-of-vocabulary words might also be alleviated by training 
lexicons on user-produced pronunciations mid-game that are 
detected to be likely correct. To this end, game-based 
constraints could be leveraged to provide strong contextual 
clues for maintaining high recognition accuracy in the face of 
greater leniency. To explore the viability of this approach, we 
identify several potential techniques for modifying the speech 
recognizer and re-evaluate the collected speech corpus on 
alternative recognizer configurations.    

5.1. Dynamic vs. Static Vocabulary  

Effective educational approaches tend to focus the learner’s 
attention on only a few words or concepts at a time until their 
meanings have been internalized by the learner through 
repeated practice. In an intense and time-sensitive game 
setting, the gradual introduction of small sets of words is also 
critical for reducing the learner’s cognitive load imposed by 
existing simultaneous interactions. Unlike typical speech 
interactions in which the set of possible user utterances may be 
large and uncertain, speech interactions amidst a learning 
game have implicit constraints that can be leveraged for 
enhancing speech recognition. Specifically, the game 
environment enables us to both constrain the recognizer 
vocabulary size and dynamically add additional words to the 
vocabulary as they are introduced to the learner. Constraining 
the vocabulary size can hopefully decrease the likelihood of 
false negative errors by preventing the recognizer from 
hypothesizing a word that the learner is unlikely to produce. 

To determine the potential impact of this approach, we 
compare recognition accuracy between a static vocabulary of 
28 words and a dynamic vocabulary (Figure 6), at varying 
numbers of pronunciations included in the lexicon. In the 
dynamic condition, we add a new word to the vocabulary only 
once it has appeared in the game, and constrain the maximum 
vocabulary size to only the words that the learner has seen 
within any particular game session (seven words maximum). 
The dynamic vocabulary demonstrated a 27% increase in 
accuracy over the static vocabulary when 10-best L2S 
pronunciations were included, and this benefit appeared fairly 
consistent across different numbers of N-best pronunciations 
included.  The benefits were largely due to the substantial 
reduction in false negative errors, which were the source of 
most recognition errors. 

 

 

Figure 6: Performance of static vs. dynamic 
recognizer at 1, 10, and 20 included pronunciations. 
The advantage of the dynamic recognizer remains 
fairly consistent across different numbers of N-best 
pronunciations. 

5.2. Deepening N-best Hypotheses 

Game-based settings also provide strong contextual 
information about the target item on a trial-by-trial basis. 
Because the game keeps state of which target item is being 
presented to the user at every turn, a more lenient system 
could deem the learner correct if the target word appears in 
any of the top-N recognition hypotheses. This approach 



assumes that the recognizer has some room for error and that, 
because the learner is likely to have spoken the target word, it 
is safer to check the top few hypotheses for the correct 
response before deeming the utterance incorrect. Figure 7 
illustrates a substantial increase in overall word accuracy 
simply by expanding the N-best depth from one (59%) to four 
(73%), all with a static vocabulary of 28 words.  In practice, 
even though recognition accuracy can be further boosted with 
more hypotheses accepted, it would be preferable to set a limit 
on this number so that the user does not assume that the 
recognizer will accept any response. 

 

 

Figure 7: Recognition performance, varying the 
number of N-best hypotheses accepted. Utterance is 
deemed correct when any top-N hypothesis matches 
the target word. Uses 10-best L2S pronunciations. 

A primary concern surrounding N-best depth expansion is 
the increased risk of false positive recognition errors.  In the 
case of false positive errors, learners may mistakenly believe 
they have correctly recalled the word for a particular picture, 
with the consequence of strengthening an incorrect mapping. 
Hence, a trade-off may exist between decreasing frustration 
due to false negatives and increasing incorrectly learned 
mappings due to excessive leniency.  

 

 
Figure 8: Comparing the number of false negative and 
false positive utterances at an increasing number of N-
best hypotheses accepted.  

To examine this potential trade-off, we measure the 
number of misrecognized utterances due to false negative and 
false positive errors at increasing N-best depths. Figure 8 
shows that, as the number of accepted hypotheses increases, 

the number of false negative errors decreases dramatically, 
with only a minor increase in false positives. The significant 
decrease in false negatives is magnified by the elimination of 
repeated false negative errors due to learners re-attempting the 
same utterance after experiencing a false negative. 
Nevertheless, we find a very similar trend even after removing 
such repetitions from the dataset.  

We further analyze false negatives and false positives 
among anomalous utterances, and find that anomalous 
recordings account for a substantial 80% of all false positive 
errors, compared to only 24% of all false negative errors. 
Because the majority of false positives are anomalies, and 
because a sizeable number of those are due to users producing 
random utterances, learners may find false positives more 
transparent and potentially less impenetrable than false 
negatives. In general, false positives are also less frustrating 
because they do not unfairly hinder the player’s in-game 
progress. After a false positive, the player immediately focuses 
his or her attention on block rotation rather than being forced 
to re-attempt the utterance, making those experiences 
potentially more forgettable. These patterns lend support to the 
notion of adapting in-game speech recognition systems to be 
more lenient. 

5.3. Training on high confidence user utterances 

Lastly, out-of-vocabulary terminology can be detrimental to 
recognition accuracy and game enjoyment. Unlike acoustic 
and language models that learn the values of their parameters 
from training data, word pronunciations in a recognizer’s 
lexicon are typically specified manually, often by an expert. 
Hence, a user wishing to review out-of-vocabulary words 
might encounter frequent recognition errors due to a letter-to-
sound model that has been trained using only existing 
lexicons. 

Recent work on pronunciation mixture models (PMM) has 
made it possible for experts to specify a set of pronunciations, 
but leave the weighting of these pronunciations to the PMM 
using speech data collected on the fly [11]. Yet, in a game-
based learning context, it is unclear how unlabeled utterances 
can be used for training a PMM live, due to a chicken or egg 
problem of learners being unreliable agents for speaking the 
correct target item.  

Nonetheless, we make a key insight that players are first 
introduced to the word-picture pair before the word is withheld 
for memorization practice. Because the learner sees both the 
word and cue on the first trial by way of introduction, the first 
utterance the player produces for any word has a high 
likelihood of being correct. In the Tetris game we have 
designed, the learner also hears the word pronounced out loud 
when it is first introduced, making it more likely that the 
learner will speak the target word correctly, particularly in the 
case of second language learning. On the other hand, first 
utterances may also be riskier for training since they could 
contain more anomalies such as hesitation and silence due to 
the user’s unfamiliarity with the new item.  

We thus evaluate speech recognition using pronunciations 
obtained by training a pronunciation mixture model solely on 
the user’s first utterance of each word as a replacement lexicon 
(Figure 9). As a benchmark, we compare these results against 
lexicons produced using the letter-to-sound model. Because 
the test set for the PMM condition does not include any of a 
user’s first utterances, we similarly remove all first utterances 



when evaluating recognition on the normal letter-to-sound 
lexicons.  

Remarkably, the PMM trained purely on the users’ first 
utterances demonstrated a 3% improvement over the L2S 
lexicon (averaged over results from one to twenty 
pronunciations included), despite having no ground-truth 
labeling of any first-trial utterances. A PMM trained on other 
learners’ first utterances produced no significant advantage 
over the L2S lexicons, suggesting that speaker-dependent 
characteristics may be critical to effective recognition.  

 

 
Figure 9: Comparing performance of a PMM trained 
on the first utterance of each word to that of normal 
L2S lexicons. 

The promising speech recognition enhancement obtained 
by training only a small number of high confidence user 
utterances suggests further exploration of opportunities to 
perform user-specific PMM training using high confidence in-
game scenarios. For example, starting a game in study mode 
before transitioning to retrieval mode could not only give the 
learner more time to develop familiarity with new items, but 
also offer an advantage for speech recognition enhancement. 
One could imagine collecting utterances during the study 
phase to produce a true mixture of multiple utterances 
produced by the same user for each word. 

6. Conclusion 
Our work has shown that a speech recognizer designed for 
traditional purposes may be unnecessarily strict when placed 
in a fast-paced game context, particularly because false 
negative recognition errors are both self-perpetuating and 
detrimental to learner enjoyment. We have proposed several 
techniques for improving performance, such as using a small 
and dynamic recognizer vocabulary, expanding the set of N-
best accepted hypotheses, and using high confidence in-game 
utterances to retrain out-of-vocabulary words. Although a 
more lenient recognizer may run the risk of accepting learner 
errors, we found these occurrences to be surprisingly rare, and 
well worth the trade-off of decreasing the significant 
frustration associated with false negatives. It would be 
worthwhile to evaluate whether first utterances remain 
advantageous for PMM training in a second language learning 
context, despite learner inexperience in the target language. 

While speech recognition has experienced limited adoption 
in fast-paced educational games compared to alternatives such 

as adventure style games, our results suggest that tailoring the 
recognizer to the unique needs of time-sensitive game 
environments could be key to increasing adoption. Future 
work should explore methods for handling speech anomalies 
specific to learning amidst rapid gameplay, such as using 
voice activity detection or time padding to prevent cut-off 
speech, and a silence model to handle accidental or hesitant 
recordings. Finally, automatic detection of words that are 
likely to be poorly ranked by the recognizer’s letter-to-sound 
model, perhaps by comparing PMM scores to default L2S 
rankings of out-of-vocabulary items, would be a worthwhile 
venture for future research. 
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