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Abstract— In this paper we present a visual verification
approach for robotic assembly manipulation which enables
robots to verify their assembly state. Given shape models of
objects and their expected placement configurations, our ap-
proach estimates the probability of the success of the assembled
state using a depth sensor. The proposed approach takes into
account uncertainties in object pose. Probability distributions
of depth and surface normal depending on the uncertainties
are estimated to classify the assembly state in a Bayesian
formulation. The effectiveness of our approach is validated in
comparative experiments with other approaches.

I. INTRODUCTION

Robotic manipulation is the process of using robots’ hands
to rearrange robots’ environment [1]. For successful manip-
ulation, robust perception of the state of the environment is
very important [2]. While there have been active efforts in
robotic perception, the state-of-the-art results are often re-
stricted to single entity pose estimation/tracking approaches
which are mainly suitable for simple pick-and-place tasks. To
proceed toward more complex assembly manipulation tasks
we have to address several challenges:
• Self-occlusions: When objects are assembled together,

self-occlusions naturally occur. (e.g. a bolt is screwed
into a part or a peg-in-hole task)

• Sensor noise: Measurements are subject to sensor noise.
A proper sensor model is crucial for robust estimation.

• Uncertainty in pose: Due to sensor noise, estimated
object pose is always uncertain. It is thus required to
take into account the uncertainty in the pose estimate
of an ongoing task.

Traditionally, factory assembly lines have relied on au-
tomated machine vision technology [3], [4], [5]. However,
most of the systems require well structured settings such as
controlled illuminations and carefully designed fixtures. The
visual features for the visual inspection are often manually
defined and depend on specific tasks.

The conventional assembly lines need to be more flexi-
ble [6], and hence assembly verification should be versatile.
We envision a reconfigurable verification system in which
a mobile manipulator augmented with a sensor inspects
the assembly manipulation state. As the verification system
works in untethered settings, it has to cope with various
uncertainties, such as in sensor measurements and in pose
estimates of assembly parts, as well as the self-occlusions.

Pioneering work in inspection includes [7], [8] where
the ‘verification vision’ (VV) problem is introduced. The
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Fig. 1: Visual verification system. A heterogeneous robotic team is
considered in this work where one mobile manipulator is designated as an
assembly robot while the other robot visually verifies assembly operations
using an RGB-D sensor attached on its end effector. The assembly robot
is inserting the new peg M2 to the work-in-progress M0:1. Note that our
visual verification approach is not restricted to this multi-robot system; it
can be applied to any robot systems which have manipulator(s) and a depth
sensor.

VV system inspects the location of an object via several
visual operators. The main difference between this problem
and general object pose recognition is that a large amount
of prior knowledge about object types and placements are
available.

In this paper, we propose an approach for visual veri-
fication exploiting prior knowledge. We assume multi-step
assembly tasks and wish to verify the correctness of every
step, where a new part is assembled to the work-in-progress.
Fig. 1 describes our visual verification system, which consists
of one assembly mobile manipulator and a verification robot
with a depth sensor. An RGB-D sensor is chosen as a depth
sensor since the depth channel is suitable for textureless
assembly parts. For optimal decisions on the assembly state,
we formulate the verification problem as a Bayesian classi-
fication. The main contributions in this paper are as follows:
• A versatile visual verification approach which performs

inspection tasks without significant setup costs and is
applicable to semi-structured settings.

• A noise model for depth and surface normal measure-
ments, which is denominated as Per-pixel Gaussian
Noise Model (PGNM). Depth values are modeled as a
1D Gaussian along the axis of ray, while surface normal
values are modeled as a 2D Gaussian distribution in the
tangent plane on the unit sphere S2.

• A generic visual verification framework which takes
into account pose uncertainties as well as sensor noise.
Naive Bayes classification formulation with the PGNM
leads to robust classification of assembly state.

• Applications to sequential robotic assembly scenarios:



block assembly and peg-in-hole.
This paper is organized as follows. We review existing

work related to our problem in Section II. We begin with a
toy example which is a simplified 1D case in Section III, and
our probabilistic visual verification extending to 2.5D case
is presented in Section IV. Section V and Section VI further
describe PGNM and Bayesian classification, respectively.
Finally, experimental evaluations and comparisons to a recent
method are shown in Section VII.

II. RELATED WORK

Industrial vision systems have been extensively studied
and employed in factory assembly lines [3], [4], [5] for many
applications ranging from assembly to inspection. A typical
setup for industrial visual inspection is to point one or more
sensors at objects commonly transported by a conveyor belt.
The imaging devices as well as the transporting system are
carefully placed in the factory environments. The location
and orientation of objects are thus typically known, and the
illumination of the environment is strictly controlled [3]. The
most common sensor is a monocular camera, but range or
depth sensors have become popular because of their insensi-
tivity to ambient illumination, easier background subtraction,
and direct relation to the surfaces of objects [9], [10]. All
these approaches assume known pose of targets and require
a carefully designed setup.

Object localization has been tackled by employing various
features such as edges, lines [11], corners, or keypoint
descriptors [12]. A classical detection approach is the tem-
plate matching [13] in which a set of edge templates is
matched to a test edge image in an exhaustive sliding window
approach. Corners and keypoint descriptors were actively
adopted for generic object recognition [12], [14], [15] and
6-DOF localization of highly textured objects [16]. It is
worth noting that these work does not take advantage of the
prior knowledge of object location; they rather search for the
object in a brute-force manner. Since the prior knowledge of
placement is not considered, self-occlusions is not properly
handled. Uncertainties in sensor or pose are often ignored in
many work.

One of the popular localization algorithms hinged on the
pose prior is the Iterative Closest Point (ICP) algorithm [17].
ICP is an iterative algorithm which gradually minimizes
the error of correspondences between two point clouds.
Among various distance metrics, the effectiveness of the
point-to-plane error metric has been outstanding [18]. While
it converges to an optimal pose if the starting pose is
within the basin of convergence, it could not be free from
self-occlusions. Uncertainties in pose estimates also highly
depend on the quality of data associations and geometric
constraints of scenes.

Bayes classification has been well studied in machine
learning literature and has been applied to various appli-
cations: spam filtering [19], binary skin color detection
[20], and background subtraction [21]. For each class, a
conditional probability and a prior distribution are generally
learned from data. By Bayes’ theorem, the conditional and

prior distributions are fused to estimate a posterior distribu-
tion. The final decision is then determined by maximum a
posteriori (MAP) [22].

Bolles’s VV [7], [8] uses edge, corner, region operators
and uses Bayes’ theorem to estimate the posterior probability
of correct and surprise given the value of operators. Our
work is different from VV in three aspects. 1) While VV
uses very limited number of visual features, our approach
exploits full dense depth and surface normal data. Whereas
the operator/feature pairs were manually defined by a human
operator in VV, our approach does not require any manual
setup. 2) Although VV employs a Bayesian formulation, it is
restricted to selecting good operator features. We aggregate
the confidence of each individual pixel resulting in a final
decision along with its overall confidence. 3) As feature
distributions in VV are learned from a set of fixed-view
2D images, it is constricted by the fixed viewpoint. Our ap-
proach, however, is viewpoint invariant as 3D shape models
are employed along with 2.5 depth measurements, and this
leads to a versatile visual verification.

The advent of dependable/affordable depth sensors enables
robots to exploit reliable depth information for various
robotics problems: bin-picking [23], [24], SLAM [25], [26],
object tracking [27], and visual inspection [28]. The approach
in [28] uses a ray-tracing method to count the number of
different depth pixels and to decide if the object is well
placed or not. This approach is, however, limited as it does
not consider uncertainty at all nor takes into account the
depth discrepancy information. Our approach is compared
with this approach in Section VII.

III. 1D VISUAL VERIFICATION: A TOY EXAMPLE

xdx+ x−

N (x+, σ(x+)2)

N (x−, σ(x−)2)

0

o b

Fig. 2: 1D visual verification example. A noisy range sensor is at 0
location, and a target object o and a background b are placed at x+ and
x−, respectively. If the sensor reads d, is it from o or b, and what is the
probability for each case? (Please read text for details.)

For simplicity, consider the 1D case in Fig. 2 which
describes a noisy 1D depth sensor placed at coordinate 0.
An object o (the right green box) is placed at x+, and there
is a background wall b at x−. Both locations x+ and x− are
known a priori. Suppose that the probability distribution
of the sensor reading follows a Gaussian distribution, and
the standard deviation σ(x) is proportional to the squared
distance from the sensor to the object as

σ(x) = ηx2

where η is a constant which represents the intrinsic charac-
teristic of the sensor. When the sensor reads the depth d, the
probability of d given x+ is p(d|x+) = N (d;x+, σ(x+)2).
If o is not properly placed or a different object is placed,
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Fig. 3: Overview. Object shape prior M0:t−1, Mt, and the their placement X
0:t−1
t are given. The pose estimate of the work-in-progress P0:t−1 is

available from the previous pose or ICP. Several sets of virtual depth images Dv1 , · · · ,Dvn are then rendered from the prior, and PGNMs Zv1 , · · · ,Zvn
from the virtual depth images are estimated. A set of real depth images Dr is obtained from a depth sensor, and the mean images of depth and surface
normal Zr are calculated. Finally, the most likely class ĈR and its probability p̂R are decided via the naive Bayesian classification.

the sensor may return a depth value around the background
x−. Analogous to p(d|x+), it is similarly determined that
p(d|x−) = N (d;x−, σ(x−)2). The main question is:

Given a sensor measurement d, what is the most
likely location (among x+ and x−), and what is
the probability of it.

More formally, what are the posterior probabilities for both
cases, p(x+|d) and p(x−|d), and which one is the most
likely. Bayes’ theorem gives a way to estimate the posterior
by combining both conditional and prior probabilities as

p(x+|d) =
p(d|x+)p(x+)

p(d)

=
p(d|x+)p(x+)

p(d|x+)p(x+) + p(d|x−)p(x−)

where p(x+) and p(x−) are prior probability distributions
which are often problem dependent. If we consider only
two cases (x+ and x−), the other posterior probability is
p(x−|d) = 1− p(x+|d). Once the posterior probabilities are
calculated, the most probable class ĉ and its probability p̂
are determined as

ĉ = arg max
c∈{+,−}

p(xc|d), p̂ = p(xĉ|d).

Note that {ĉ, p̂} is the function of (d, x+, x−). This is a
simple Bayesian classification example in which only two
cases were considered. In Section IV, we address more
realistic and general scenarios.

IV. PROBABILISTIC VISUAL VERIFICATION

In the previous section, we presented a toy example
using a 1D sensor. Now we consider a 2.5D depth sensor

M1,X
0

1

M0 M0:1 M0:2

M2,X
1

2

M2,X
0

2M1,X
0

1

M0 M0:1 M0:2

Fig. 4: Assembly sequences. Two sequential assembly scenarios are
considered in this work: block assembly (upper) and peg-in-hole (lower).

case. The 2.5D sensor returns depth images in which each
pixel value represents the 1D depth along the axis of ray
of the sensor, and hence we can regard this sensor as a
2D grid of the 1D sensors. In this section we present our
visual verification approach which is based on the Bayesian
classification explained in Section III with an extension to
surface normal distributions as well as depth distributions.

A. Assembly Scenarios

Assembly procedures often consist of sequences of atomic
assembly operations. Fig. 4 describes two assembly scenarios
considered in this paper: a block assembly and a peg-in-
hole task. At time t = 1, a new part M1 and the initial
part M0 are assembled according to the relative placement
X

0

1 ∈ SE(3). Similarly, at time t = 2, another new part
M2 is added to the work-in-progressM0:1. Please note that
the base model of the relative placement might be assembly
dependent; the relative placement of the new part in the peg-
in-hole is X

0

2, while it is X
1

2 in the block assembly. The goal
of visual verification is to confirm if the new part (highlighted



as yellow) is properly placed or assembled at each assembly
step.

B. Overview

The overall flow of our probabilistic visual verification is
presented in Fig. 3. Object shape models of the work-in-
progress M0:t−1 and the new object Mt, and their relative
placements X

0:t−1

t are known a priori. The pose mean and
uncertainty of the work-in-progress P0:t−1 can be given from
the previous pose or an object localization module which will
be explained in Section IV-C. From these information, vir-
tual depth images are generated synthetically, and Per-pixel
Gaussian Noise Models (PGNMs) (Section V) are estimated
to serve as conditional probabilities for the final Bayesian
classification (Section VI). Real depth images are gathered
from a depth sensor, and mean of both depth and surface
normal are estimated. Once PGNMs for virtual depth images
and the mean estimates of both real depth and surface normal
are estimated, the naive Bayesian classification decides the
most likely class ĈR as well as its probability p̂R.

C. Pose of Work-in-progress

Visual verification has significant prior knowledge. The
pose for the work-in-progress within a multi-step assembly
operation is not an exception. As considered assembly sce-
narios in this work are sequential assembly, the prior pose of
the object is available with high fidelity. In other words, we
do not need to re-localize the object from scratch at every
step. However, the prior pose tends to be perturbed by the
assembly manipulation at the previous step, and hence the
prior pose estimate should be improved at each step. When
the prior pose estimate is reasonably accurate, the Iterative
Closest Point (ICP) algorithm [17] commonly converges to
the optimal pose estimate.

The goal of ICP is to find the optimal motion estimate ξ̂i
that minimizes the point-to-plane energy function E(·) [18]:

ξ̂i = arg min
ξi

E(ξi)

where ξi ∈ R6 is the 6-DOF motion vector of i-th iteration.
The optimal motion is generally estimated via solving the
normal equation: ξ̂i = (HᵀH)−1Hᵀy where H ∈ R|A|×6,
y ∈ R|A|, and |A| is the number of point data associations
(for details, please refer to [17], [18], [26]). The uncertainty
covariance Σ ∈ S6

+
1 associated with the pose estimate can

be determined by

Σ := σ2
ε (HᵀH)−1 (1)

where σε denotes error between each registered point corre-
spondence [29]. An unbiased estimate of σ2

ε is calculated as
s2
ε = E(ξ̂i)(|A|−k)−1 where k is the number of parameters

to be estimated2. Please note that the uncertainty covariance
Σ is proportional to the energy E(ξ̂i).

1Sn+ is the set of positive-semidefinite matrices Sn+ := {M ∈
Rn×n | xᵀMx ≥ 0, ∀x ∈ Rn}.

2In our case, k = 6 since we are estimating 6-DOF pose variable.

V. PER-PIXEL GAUSSIAN NOISE MODEL (PGNM)
In this section we introduce a Gaussian noise model for

both depth and surface normal. We name it as the Per-pixel
Gaussian Noise Model (PGNM).

A. Rendering with Pose Uncertainty
The pose of the work-in-progress P0:t−1 includes the

mean X0:t−1 and the covariance Σ0:t−1 ∈ S6
+. As the covari-

ance represents the uncertainty of the pose, it is necessary to
take into account the uncertainty when we render the virtual
depth images Dv . It is, however, not straightforward to model
the distribution analytically, since the depth distributions are
function of multiple variables; note that depth variations
in each pixel of Dv are not only subject to the degree of
uncertainty Σ, but also depend on the mean pose X and the
geometric shape of the object M0:t−1.

A tractable solution is to sample a set of poses from the
probability density function {X0:t−1,Σ0:t−1} and to gener-
ate a set of virtual depth images Dv to model uncertainty for
each pixel. To sample from the pose, the covariance Σ0:t−1 is
decomposed by the Cholesky factorization as Σ0:t−1 = LLᵀ

where L ∈ R6×6 is a lower triangle matrix. The sampled
pose X̃ is then obtained by X̃ = exp(Lξ̃) X where ξ̃ ∈ R6

is sampled from the standard multivariate normal distribution
N (0,16×6) and exp : se(3) → SE(3) [30]. When the
virtual depth views d are generated, the depth noise due
to disparity [31] is added by

σz =
(m
fb

)
d2σd (2)

where f is the focal length of the sensor, b is the length of
baseline between the infrared projector and camera, m is one
of the parameters of a linear normalization, and σz and σd
are the standard deviations of the triangulated depth and the
normalized disparity, respectively3.

B. PGNM for Depth
The set of virtual depth images D = {d1,d2, · · · ,dNv}

is obtained via the rendering with the sampled pose S̃ =
{X̃1, X̃2, · · · , X̃Nv

} where Nv is the number of rendered
views. The mean and variance of each pixel from D are
estimated by

d̄ :=
1

Nv

Nv∑
i=1

di (3)

s2 :=
1

Nv − 1

Nv∑
i=1

(di − d̄)2. (4)

Note that d̄ and s2 are unbiased estimates of the mean and
variance from the given samples.

C. PGNM for Surface Normal
Unit surface normal vectors reside on the unit sphere

S2 which is a 2D manifold in 3D Euclidean space,

S2 = {x ∈ R3 | ‖x‖2 = 1}. (5)

3The typical values of m
fb

and σd for RGB-D sensors are 2.85× 10−3

and 0.5, respectively [31].
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Fig. 5: Mappings between S2 and its tangent space TpS2, and 2D
Gaussian distribution on the TpS2. (Please see text for details.)

When distributions on S2 are modeled, it is convenient to
consider in a tangent plane, not directly on the manifold
surface S2 [32].

Let p and q be two points on S2 as pᵀp = qᵀq = 1 and
let TpS2 represent the tangent space to S2 at p:

TpS
2 = {x ∈ R3 | xᵀp = 0}. (6)

The left image in Fig. 5 describes p, q, and TpS
2 on S2.

The geodesic distance on S2 between p and q is defined by
the angle between p and q: dS2(p,q) = arccos(pᵀq).

The Riemannian exponential map, expS2(p) : TpS
2 → S2,

maps a point x in the linear tangent space TpS2 at the point
p onto the unit sphere S2:

x 7→ p cos(‖x‖) +
x

‖x‖ sin(‖x‖) (7)

and the Riemannian logarithm map, logS2(p) : S2/{−p} →
TpS

2 which is the inverse of expS2(p), can be obtained as:

q 7→ (q− p cos θ)
θ

sin θ
(8)

where θ = dS2(p,q). As dS2(p,q) is geodesic distance,
Euclidean distance ‖x‖2 on TpS2 is equivalent to dS2(p,q)
as dS2(p,q) = ‖x‖2 = ‖ logS2(p)(q)‖2. The geodesic
distance and Riemannian maps between the unit sphere
S2 and its tangent space are described in [32] and its
supplementary material. For further details of Riemannian
geometry, please refer to [33].

PGNM estimates a distribution of unit surface normals
on the tangent space Tn̄S

2 from D. As Tn̄S
2 is the 2D

subspace, the modeled Gaussian distribution would be 2D
Gaussian distribution with the mean n̄4 and covariance Σ as
depicted in the right image of Fig. 5.

To estimate the surface normal from depth images D,
it is convenient to convert D to vertex images V =
{v1,v2, · · · ,vNv} where each vertex image v(p) : R2 →
R3 maps an image coordinates p ∈ R2 to a 3D xyz vertex
coordinates. The vertex image is obtained via

v(p) = d(p)K−1[pᵀ 1]ᵀ

where K :=

[
fx 0 cx
0 fy cy
0 0 1

]
∈ R3×3 is the intrinsic matrix

of the depth sensor. Their associated normal images N =

4Note that the 2D coordinates of the mean n̄ on Tn̄S2 are 0 ∈ R2.

d̄+ d̄−

n̄−n̄+n̄r

d̄r
scene

Fig. 6: Depth and surface normal means. The grayscale scene image
shows the assembly scene after the assembly robot attached the new block
(bright block) to the work-in-progress block (dark block). The depth d̄r

and surface normal n̄r means are estimated from a set of real depth images
Dr . Once the current pose estimate P = {X0,Σ0} is calculated from ICP,
virtual PGNMs are estimated. Here only mean depth (d̄+, d̄−) and normal
(n̄+, n̄−) are shown. Note artificially added depth noises which is more
noticeable in normal mean images.

Σ11 Σ12 Σ22 |Σ|

Fig. 7: Covariance images from the surface normal PGNM. Covariance
matrix elements from the 2D Gaussian surface normal distributions are
shown. As Σ is always symmetric, the off diagonal element Σ21 is not
shown here. Note that covariance elements are higher around the concave
and convex areas on the object, since surface normals deviates more on
these areas due to the pose uncertainties.

{n1,n2, · · · ,nNv} where n(p) : R2 → S2 are calculated by
the cross product followed by normalization as

n(p) =
vu(p)× vv(p)

‖vu(p)× vv(p)‖2
where vu(p) = ∂v

∂u = v(p+[ 1
0 ])−v(p) and vv(p) = ∂v

∂v =
v(p + [ 0

1 ])− v(p) [26], [32].
Let τp(x) ∈ R2 be the 2D coordinate of x on TpS2. The

mean n̄v ∈ S2 and the covariance Σ ∈ S2
+ from the normal

images N are estimated by

n̄ :=
1

Nv

Nv∑
i=1

ni (9)

Σ :=
1

Nv

Nv∑
i=1

(
τn̄(ni)− τn̄(n̄)

) (
τn̄(ni)− τn̄(n̄)

)ᵀ
(10)

=
1

Nv

Nv∑
i=1

τn̄(ni)τn̄(ni)ᵀ. (11)

Note that τn̄(n̄) = 0 as the origin of the Tn̄S2 is n̄. It is also
worth noting that τn̄(ni) can be estimated via rotating the
origin of the plane Tn̄S2 to the north pole (0, 0, 1)ᵀ of the
S2 and the x and y coordinates of logS2(n̄)(n

i) correspond
to τn̄(ni). Fig. 6 presents mean estimations of depth and
surface normal of an example, and covariance images for
the n̄+ case are shown Fig. 7

VI. BAYESIAN CLASSIFICATION

The primary goal of visual verification is to decide what
is the most likely class given an input. Let K be the
number of possible classes and Z be the given sensory input.



The problem is then formulated as estimating a posterior
probability for each case p(Ck|Z) where k ∈ {1, 2, · · · ,K}.
As final decision, a maximum a posteriori (MAP) estimation
of Ĉ is considered as

Ĉ = arg max
k∈{1,··· ,K}

p(Ck|Z). (12)

The simplest case is the binary decision (K = 2) in
which the classes are either success or failure. More general
cases consider K possible outcomes with their associated
probabilities as

p(Ck) = λk ∈ [0, 1],

K∑
k=1

λk = 1.

This distribution is known as categorical distribution p(C) =
CatC(λ) or multinomial distribution. The Bernoulli distri-
bution is a special case when K = 2.

By Bayes’ theorem, the posterior probability can be ex-
pressed via the conditional probability and the prior as:

p(Ck|Z) =
p(Z|Ck)p(Ck)

p(Z)
=

p(Z|Ck)p(Ck)∑
i p(Z|Ci)p(Ci)

. (13)

The denominator, p(Z) =
∑
i p(Z|Ci)p(Ci), does not de-

pend on the class Ck, and thus (12) is to choose the highest
unnormalized posterior as

Ĉ = arg max
k∈{1,··· ,K}

p(Z|Ck)p(Ck). (14)

The conditional probability distribution p(Z|Ck) is learned
from a set of training data as shown Section V. The sensory
measurements Z are composed of depth and surface normal,
Z = {Zd,Zn}. By the naive conditional independence
assumption [22], the conditional density can be split as:

p(Z|Ck) = p(Zd|Ck)p(Zn|Ck). (15)

The conditional probability distribution of depth measure-
ment Zd is defined by the mean (3) and the variance (4) of
the 1D Gaussian distribution in Section V-B as

p(Zd|Ck) = N (d̄r; d̄vk , s
2
vk

) (16)

=
1√

2πs2
vk

exp
(
− (d̄r − d̄vk)2

2s2
vk

)
. (17)

Similarly, the conditional probability distribution of normal
measurement Zn is defined by the mean (9) and the covari-
ance (11) of the 2D Gaussian distribution in Section V-C
as

p(Zn|Ck) = N (τn̄vk
(n̄r); τn̄vk

(n̄vk),Σvk) (18)

= N (τn̄vk
(n̄r); 0,Σvk) (19)

=
exp

(
− 1

2τn̄vk
(n̄r)

ᵀΣ−1
vk
τn̄vk

(n̄r)
)

√
(2π)2|Σvk |

. (20)

Like our model, when the probability distributions of the
feature Z are Gaussian, the classifier is called Gaussian
Naive Bayes (GNB) classifier [22]. In many machine learn-
ing applications, these conditional probability distributions

or likelihood are learned from training data. In our case, it
is intractable as the depth and surface normal measurements
not only depends on an object’s shape but also are subject
to the pose of the object with respect to the sensor. Thus we
generate this statistical models online using 3D shape prior.

A. Classification and Confidence

The Bayesian classification in the previous section is done
in each pixel. The visual verification, however, is not just
for one pixel measurement, but for a verification region.
In this section the final classification result as well as
the confidence are estimated by aggregating the per-pixel
classification results on the region.

Let R ⊂ R2 be the inspection region on the depth image,
and r ∈ R is 2D image coordinates in the region. The
region R is determined by rendering the new part model
Mt with the mean pose estimate Xt = X0:t−1X

0:t−1

t . The
classification outcome of each pixel r is the MAP class Ĉ(r)
and its confidence p(Ĉ(r)|Z).

A simple approach to fuse a set of pixel-wise estimations
is to count the number of each class as

p(Ck|Z)R =

∑|R|
r I(Ĉ (r) = k)∑K

i=1

∑|R|
r I(Ĉ (r) = i)

=
1

|R|

|R|∑
r

I(Ĉ (r) = k)

where I(·) is the indicator function. This value, how-
ever, does not take into account the pixel-wise confidence
p(Ĉ(r)|Z) as it is solely estimated by the MAP class Ĉ(r).
A better amalgamation would be considering the confidence
as

p(Ck|Z)R =

∑|R|
r p(Ĉ(r)|Z) · I(Ĉ (r) = k)∑K

i=1

∑|R|
r p(Ĉ(r)|Z) · I(Ĉ (r) = i)

(21)

and the final MAP class and probability for the R region is
determined as:

ĈR = arg max
k∈{1,··· ,K}

p(Ck|Z)R, p̂R = p(ĈR|Z)R.

VII. EXPERIMENTS

In this section we present experimental results in which
our approach (GNB with depth and normal, GDN) is com-
pared with the ray tracing-based visual inspection approach
(WO) [28]. Our approach is also evaluated with two variants
of our Bayesian classification approach, one using only depth
(GNB with depth, GD) and the other one using only the
normals (GNB with normal, GN) of the PGNM, to see
how these depth and normal are individually effective in
this problem. Considered assembly experiments are the first
step of both assemblies shown in Fig. 4 where M1 is
assembled to M0 with the placement pose X

0

1. The pose
P0 = {X0,Σ0} of the work-in-progressM0 is given by the
ICP explained in Section IV-C.

We evaluate the four approaches with respect to:
• How do they treat ambiguous cases.



P
o
si

ti
v
e

(+
)

A
m

b
ig

u
o
u
s

(±
)

N
e
g
a
ti

v
e

(-
)

n̄r n̄v GDNWO GN GDScene n̄r n̄v GDNWO GN GDScene

P
o
si

ti
v
e

(+
)

A
m

b
ig

u
o
u
s

(±
)

N
e
g
a
ti

v
e

(-
)

Fig. 8: Per-pixel probability outputs for three cases (+, ±, −) of the block assembly (left) and the peg-in-hole task (right). From top to bottom,
the scene images show the positive case (+) which is the correct assembly, the ambiguous case (±) where the part is imprecisely assembled, and the
negative case (−) in which the part is completely missing. The mean images of surface normal from real n̄r and virtual n̄v depth are presented next to
the scene images. Gray scale images of the four columns to the right represent the probability p(Ck|Z) where the first and second rows for each case
depict p(C+|Z) and p(C−|Z), respectively. Note that the per-pixel probabilities of WO are binary as it estimate true or false for each pixel. (Best viewed
in color)
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Fig. 9: Probability vs. Pose Uncertainty. The initial pose uncertainty
Σ is gradually increased to see how the four approaches work under the
uncertainty. The y-axis represents p(C+|Z), and hence the plots should be
around 1, 0.5, and 0 for the (+), (±), and (−), respectively. Note that [28]
estimates as (+) case in the (−) case and quite erroneously confident in the
(±) case. (Best viewed in color)

• Robustness to pose uncertainties.
• Reliability in estimating the probability with pose offset

(i.e. inaccurate pose estimation).
Since all GNB-based visual verification (GDN, GD, and

GN) are stochastic, we run multiple times for each eval-
uation5 and draw errorbar plots which illustrate mean and
standard deviation of the multiple runs.

A. Ambiguous Cases

In this experiment we examine the classification accuracy
of the four approaches in three different cases. For all
approaches, only two classes were assumed: positive (+, a
new part is assembled as expected) and negative (−, the part
is entirely missing). Two depth scenes were captured for the
two classes and one ambiguous scene (±, the part is placed
in a wrong placement) was obtained for test purpose.

Fig. 8 shows per-pixel probability outputs for three cases.
For each case, WO, GN, GD, and GDN are presented from
left to right; the first row presents p(C+|Z), while the
second row shows p(C−|Z). When M1 is well assembled,
all approaches show high probabilities in p(C+|Z) and
consequently low probabilities in p(C−|Z) as p(C−|Z) =

5We run 10 times in this experiments.
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Fig. 10: Probability vs. Pose Error. Given a pose estimate X, the pose is
translated in x-axis from -10 cm to 10 cm. New Σ estimate was determined
for each perturbed pose. The more the pose estimate gets off, the lower the
probability p(C+|Z) is. (Best viewed in color)

1− p(C+|Z). When the surface normal distribution is only
considered (GN), the probability estimates are not accurate
in some regions where surface normals are similar to that of
backgrounds (upper planar areas on both the block and the
peg).

If M1 is completely missing (−), all GNB approaches
return high probabilities for (−) case. WO is discouraging
in this case, since it is misled by the foreground region which
actually belongs to M0, not M1. GD and GDN are quite
similar, while GN is slightly worse. It is clear that depth
measurement are favorable in these examples as GD and
GDN correctly classify (+) or (−) classes. A distinction
between GD and GDN is not observed in this experiment,
but we will show it in the following sections.

B. Robustness to Pose Uncertainty

In this section we evaluate how our approach is robust
to the uncertainty in the pose of the object. To analyze
robustness to pose uncertainty, the pose uncertainty Σ was
gradually raised. Fig. 9 presents plots for (+), (±), and (−)
cases. As y-axis of the each plot represents p(C+|Z), the
plots are expected to gather around 1, 0.5, and 0 for the (+),
(±), and (−) cases, respectively.

Even though the uncertainty increases, the probability esti-
mations of all approaches do not deviate significantly. WO is



nearly static as it does not take into account uncertainties.
Our approach and two variants exhibit similar trend; they are
steady after 22Σ for both (+) and (−) cases. When there is
no uncertainty (s = 0), GN degrades because conditional
probabilities in (19) are getting too narrow. It is an expected
phenomenon as zero uncertainty invalidates our probabilistic
formulation. GD also deteriorates at zero uncertainty, but
the ratio is less significant compared to GN. GDN is quite
similar to GD but more accurate by considering both depth
and normal.

C. Robustness to Pose Offset
In this experiment we compare the robustness to pose

error. Since the pose uncertainty Σ is increasing according
to (1) as the offset of the pose X is increasing, we estimate
Σ for each perturbed pose. Fig. 10 shows their probability
responses with respect to pose error in x-axis. All approaches
show lower p(C+|Z) as pose error increases. In terms of
performance, GDN comes first followed by GD. GN follows
similar trend, but it seems to vary more with respect to
the pose error. WO shows discouraging performance as in
Section VII-B. No matter what the case is, WO always
returns probabilities favoring C+ within ±5 cm in this
experiment.

VIII. CONCLUSION

A depth sensor-based visual verification approach was
presented that can be applied from generic robotic manip-
ulation to robotic assembly in flexible/versatile settings. By
exploiting prior knowledge of the shapes of objects and
their assembly configurations, we formulated the problem
as a Bayesian classification wherein the PGNM for both
depth and surface normal plays an important role to robustly
estimate the maximum likely class and its confidence. Our
approach was evaluated in a set of comparative experiments.
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