Visual Object Perception in Unstructured Environments

Changhyun Choi

Robotics Ph.D. Program
Interactive Computing, College of Computing
Georgia Institute ofTechnology

Prof. Henrik I. Christensen (Advisor)
Prof. James M. Rehg
Prof. Irfan Essa
Interactive Computing
College of Computing
Georgia Institute ofTechnology
Georgialnstitu\}e
of Technologyy

Prof.Anthony Yezzi

Electrical and Computer Engineering
Georgia Institute ofTechnology

Prof. Dieter Fox

Computer Science and Engineering University of Washington

Outline

- Introduction
- State of the art
- Remaining challenges
- Motivations
- Thesis statement
- Approaches
- Conclusions \& Future work

Introduction

- Pick-and-place task
- Robots moving from controlled settings to unstructured environments
- Robust object perception is crucial

Problem Formulation

Early Object Perception

Convert 2D photo to 3D model perspective projection edge detection, line fitting

6-DOF transform [Roberts 65]

Categorical 3D shape models: GC, geon viewpoint invariant textureless objects
[Binford 71, Brooks 83, Biederman 85, Dickinson et al. 92, ...]

Exact 3D shape models: polyhedron or CAD viewpoint invariant textureless objects
[Lowe 87, Thompson and Mundy 87, Huttenlocher and Ullman 90, ,...]

Exemplar 2D appearance model: 2D templates viewpoint dependent
textured objects
[Murase and Nayar 95, Ohba and Ikeuchi 97, Black and Jepson 98, ...]

Categorical 2D appearance model: spatial models with local appearance features viewpoint dependent textured objects with clutter and occlusion
[Lowe 99, Mikolajczyk and Schmid 04, Fei Fei et al. 06, Fergus et al. 07, ...]

State of the Art

[Collet et al., IJRR'II]

- SiftGPU feature

- Sparse 3D keypoint models
- Iterative Clustering
- Require well textured objects
- Cannot handle textureless objects

[Aldoma et al., ICCV workshop'II] [Lai et al.,AAAI'II]

- Table-top assumption

- Object segmentation + CVFH/kernel descriptors
- Require planar background
- Hard in cluttered environment
[Hinterstoisser et al., PAMI'II]
- Template Matching

- Combine image gradients and surface normals
- Can handle untextured objects
- Require large amount of templates (e.g. 2000)
- Coarse pose estimation
- Produce jitter noises in pose estimates
[Klein et al., BMVC'06]

- Particle Filter
- Arbitrary shaped object
- Require a given starting pose
- Do not address challenging cases

Remained Challenges

1. Object with and without Textures
2. Background Clutter
3. Object Discontinuities
4. Real-time Constraints

Challenge i: Texture

Handling both textured and textureless objects

- Textured objects
- Photometric: color, keypoints, edges or textures from surfaces
- Textureless objects
- Geometric: point coordinates, surface normals, depth discontinuities

Challenge 2: Clutter

Controlled environments

Unstructured environments

- False measurements
- False pose estimates
- Stuck in local minima
- No table-top assumption

Challenge 3: Discontinuities

Occlusions

Out of FOV

Blur

- Ideal vs Reality
- Occluded by other objects, human, or robots
- Object goes out of the camera's field of view
- Blurred in images
- Re-initialization problem

Challenge 4: Real-time

- Constrained by timing limitations
- Scarcely see real-time state-of-the-art

Definition and Scope I

object instance recognition

6-DOF p.e. and tracking

Model-based Visual Object Perception

 in Unstructured Environmentscluttered \&
obj. discontinuities

Definition and Scope 2

photometric image formation in 2D

intensity, color, edges from
texture, keypoint descriptors, ...

Visual features: Photometric \& Geometric

3D geometric shapes

depth points, edges from geometric shapes,

 line segments, planes, normals, ...
Motivations

Known 3D object model was strong assumption

3D object models have been accumulated on the Internet!

Motivations

Google 3D warehouse

(about 2.5 million models)

ABawf normal map (input)

3D reconstruction (surface normals)

[Izadi et al., SIGGRAPH Talks 20। I]
3D modeling will be a trivial task with Kinect!

Motivations

24 million Kinects sold

Depth sensors are everywhere!

Occipital, Inc

Google Project Tango Apple + PrimeSense

AUTODESK 123D ${ }^{\circ}$ CATCH

AUTODESK.

[AUTODESK I23D CATCH]

3D modeling will be a trivial task even with a mobile phone!

Motivations

- Promising in Robotics
- exist in 3D space
- interact with 3D world
- 3D data is significant information for robots
- Advantages
- Foreground object segmentation is trivial
- Employ various geometric features from (3D models and 3D scene depth)

Thesis Statement

- To close the loop between the geometric era of early computer vision and the currently dominating appearance age, both photometric and geometric features need to be considered.
- The combination of these features enables object perception algorithms not only to be more effective but also to handle an increased spectrum of objects.
- Two theoretical frameworks using multiple pose hypotheses based on combined features are contributed in this thesis.
- These new frameworks are robust to significant clutter and occlusions, and are therefore efficacious solutions for visual object perception in unstructured environments.

Approaches

photometric

geometric

- 2D Visual Information (Monocular Camera)
- Combining Keypoint and Edge Features [ICRA' I 0, ICRA' I I , IJRR' 12]
- Extending to Textureless Objects [|ROS'|2]
- 3D Visual Information (RGB-D Camera)
- Voting-based Pose Estimation using Pair Features [ICRA' $\left|2,\left|R O S^{\prime}\right| 2\right]$
- Object Pose Tracking [IROS'|3]

2D Monocular > Combining Keypoint and Edge Features [ICRA' I O, ICRA'I I , IJRR' | 2]

Related Work

[Harris, 92] [Drummond, PAM|'02]

[Lowe, IJCV'04] [Gordon, 06] [Collet, IJRR'I I]

Edge-based approaches

- Cheap to extract edges (real-time)
- Applicable to textureless objects
- Not distinctive enough
- Might be stuck in local minima
- Keypoint-based approaches
- Good for initialization
- Invariant to scale and rotation
- Only applicable to textured objects
- Computationally expensive

2D Monocular > Combining Keypoint and Edge Features [ICRA' I 0]

Overview

Simplifying CAD Model

- Original CAD models are too complex.
- Most edges in CAD do not appear in the real edge image.
- We should simplify in some way.

2D Monocular > Combining Keypoint and Edge Features [ICRA'I O]

Salient Edges

Sharp Edge

$$
I\left(e d g e_{i}\right)= \begin{cases}1 & \text { if }\left|\mathbf{n}_{\mathbf{i}}^{\mathbf{1}} \cdot \mathbf{n}_{\mathbf{i}}^{\mathbf{2}}\right| \leq \tau_{s} \\ 0 & \text { otherwise }\end{cases}
$$

- Use face normal vectors
- Automatically determine salient edges which are more likely to be visible in images

edges

Limitation

- Single pose hypothesis
- Wrong prior pose \rightarrow not converging to global optimum
- Ambiguous edges
- Stuck in local minima
- Highly cluttered environment
- Occlusions
- Multiple pose hypotheses
- Particle Filtering

2D Monocular > Combining Keypoint and Edge Features [ICRA'| I, IJRR' 12]

Related Work

Particle Filtering using Edges

[Isard, IJCV'98] Condensation in 2D

[Pupilli, ICPR'06] PF for 3D edge-based tracking

[Klein, BMVC'06] PF for complex object tracking
[Teuliere, ICRA'I 0] Multiple edge correspondences

Contributions

- Given starting pose
- Gaussian random walk
- No re-initialization
- Initialization
- $\operatorname{AR}(I)$ state dynamics
- Auto re-initialization

2D Monocular > Combining Keypoint and Edge Features [ICRA'| I, IJRR'| 2]

Initialization

Initialize the particle filter using keypoints

- Given 2D-3D keypoints correspondences
- Randomly choose a set of minimum correspondences
- Solve PnP problem to estimate candidate poses
- Weights proportional to inlier ratio of remaining correspondences
- Importance sampling

AR Dynamics

$$
\begin{gathered}
X_{t}=X_{t-1} \cdot \exp \left(A_{t-1}+d W_{t} \sqrt{\Delta t}\right), \\
A_{t-1}=a \log \left(X_{t-2}^{-1} X_{t-1}\right)
\end{gathered}
$$

- Instead of Gaussian random walk models
- Linear prediction based on previous states
- Propagate particles more effectively

2D Monocular > Combining Keypoint and Edge Features [ICRA'II, IJRR'I 2]

Re-initialization

$$
\widehat{N_{e f f}}=\frac{1}{\sum_{i=1}^{N}\left(\tilde{\pi}^{(i)}\right)^{2}}
$$

Effective number of particle size

2D Monocular > Combining Keypoint and Edge Features [JIRR'। 2]

Experiments

The synthetic image sequence of the "Car door" object: complex background case

The real image sequence of the "Teabox" object

The real image sequence of the "Car door" object
with vs. without AR state dynamics

The "Book" object

The "Car door" object

Reinitialization exp.

2D Monocular > Combining Keypoint and Edge Features [JRR'। 2] Ours vs. BLORT

The synthetic image sequence of the "Book" object: simple background case

Book

REAL

Book

Teabox
The synthetic image sequence of the "Teabox" object: complex background case

Robotic Assembly

Robotic Assembly

Approaches

- 2D Visual Information (Monocular Camera)
- Combining Keypoint and Edge Features [ICRA'I0, ICRA' I I, IJRR'I 2]
- Extending to Textureless Objects [|ROS'|2]

geometric

- 3D Visual Information (RGB-D Camera)
- Voting-based Pose Estimation using Pair Features [ICRA' $\left.12,\left|R O S^{\prime}\right| 2\right]$
- Object Pose Tracking [IROS'|3]

Textureless Objects

Textureless object

Edge template

- Edges (or boundaries) are preferred for textureless objects.
- From CAD model to Edge templates
- Efficient chamfer matching [Liu, CVPR'I O]
- Coarse 3D pose estimation from 2D chamfer matching results
- Annealing Process after Initialization

2D Monocular > Extending to Textureless Objects [IROS' 12$]$

Edge Templates

CAD model

Edge Templates

Results of chamiens Matchů囚g algorithin

139

Approaches

- 2D Visual Information (Monocular Camera)
- Combining Keypoint and Edge Features [ICRA'I O, ICRA'II, IJRR'I 2]
- Extending to Textureless Objects [IROS'|2]
- 3D Visual Information (RGB-D Camera)
- Voting-based Pose Estimation using Pair Features [ICRA' $\left|2,\left|R O S^{\prime}\right| 2\right]$
- Soject Pose Tracking geometric $\left.{ }^{\mid I R O S} \mid 3\right]$

geometric + photometric

3D RGB-D > Voting-based Pose Estimation using Pair Features [ICRA' I 2]

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Overview

Contributions

- Exploiting objects' boundary information - B2B, S2B, and L2L features
- Better for planar objects
- Sparser primitives
- More efficient

3D RGB-D > Voting-based Pose Estimation using Pair Features [ICRA' $\left.12, I R O S^{\prime} \mid 2\right]$

Flowchart

Offline
\Rightarrow Online

3D RGB-D > Voting-based Pose Estimation using Pair Features [ICRA'I 2]

Geometric Primitives

3D RGB-D > Voting-based Pose Estimation using Pair Features [ICRA'I 2]
Pair Features

S2S (Drost et al.)

S2B

L2L

3D RGB-D > Voting-based Pose Estimation using Pair Features [ICRA'I 2]
Object Learning

Hash
Table

3D RGB-D > Voting-based Pose Estimation using Pair Features [ICRA' $\left.12, I R O S^{\prime} \mid 2\right]$

Flowchart

Offline
\Rightarrow Online

3D RGB-D > Voting-based Pose Estimation using Pair Features [ICRA' I 2, IROS'| 2]
Why Voting?

- Low dimensional pair features: 3D or 4D
- One scene pair feature \rightarrow Many model pair features
- Self symmetric regions
- Noise
- Background clutter
- Voting procedure to overcome the ambiguities
- Maximum votes \rightarrow the most likely pose hypothesis

3D RGB-D > Voting-based Pose Estimation using Pair Features [ICRA'| 2]

Real Scan

\Rightarrow True Positives

- False Positives

S2S
B2B

B2B
S2S
B2B

S2B

S2B

L2L

L2L

TABLE I
AVERAGE NUMBERS OF PAIR FEATURES IN THE SYNTHETIC SCENE DATASET AND RELATIVE PROCESS TIME.

Feature	Number of Features	Relative Process Time †
S2S $[23]$	$23040000(=4800 \times 4800)$	3.21
B2B	$2616953(\approx 1618 \times 1618)$	$\mathbf{1 . 0 0}$
S2B	$7689280(\approx 4800 \times 1602)$	1.20
L2L	$121058(\approx 348 \times 348)$	1.03

${ }^{\dagger}$ The fastest method, $B 2 B$, is shown as one.

- Our pair features are sparser and faster.

3D RGB-D > Voting-based Pose Estimation using Pair Features [IROS' | 2]

Exploiting Color Info.

- Industrial parts
- Low texture or textureless
- Boundary information is useful

- Daily objects
- Rich color and texture information
- Exploit both color and depth information

3D RGB-D > Voting-based Pose Estimation using Pair Features [IROS'| 2]

Color Point Pair Feature

- PPF (Drost et al.): 4 dimensional
- CPPF (proposed): 10 dimensional

To prune unnecessary feature matching

- Point Pair Feature
- Objects having rich variations in surface normals
- Inefficient for planar or selfsymmetric objects
- False matching from background clutter
- Color Point Pair Feature
- Prune potentially false matches based on color similarity
- HSV color space
- More efficient because unnecessary votes are skipped

3D RGB-D > Voting-based Pose Estimation using Pair Features [IROS'| 2]
Parallel Implementation

- parallel NVIDIA Thrust lib
- reduction
- counting
- partition
- binary search
- sorting

3D RGB-D > Voting-based Pose Estimation using Pair Features [IROS' | 2]
Test Objects

3D RGB-D > Voting-based Pose Estimation using Pair Features [IROS' | 2]

Performance Evaluation

3D RGB-D > Voting-based Pose Estimation using Pair Features [IROS' | 2]
Dataset: Gaussian noise

3D RGB-D > Voting-based Pose Estimation using Pair Features [IROS' I 2]

Results: Gaussian noise

3D RGB-D > Voting-based Pose Estimation using Pair Features [IROS'। 2]

Cluttered Scenes

3D RGB-D > Voting-based Pose Estimation using Pair Features [IROS' | 2]

Pose Estimation Results

[2]

[3]

[4]

[5]

Hinterstoisser et al. without [I] and with ICP [2], Papazov et al. [3], Drost et al. [4], and ours [5]

Approaches

- 2D Visual Information (Monocular Camera)
- Combining Keypoint and Edge Features [ICRA'I O, ICRA'II, IJRR'I 2]
- Extending to Textureless Objects [IROS'|2]
- 3D Visual Information (RGB-D Camera)
- Voting-based Pose Estimation using Pair Features [ICRA' $\left.12,\left|R O S^{\prime}\right| 2\right]$
- Object Pose Tracking [|ROS'|3]

Motivations

- Posterior p.d.f. as a set of weighted particles
- Slow frame rate due to a serial likelihood evaluation of particles
- Inherently parallel algorithm
- each particle weight update is independent of other updates

To parallelize the time-consuming likelihood evaluation

Contributions

- Rich features from RGB-D channels (colors, points, normals)
- Frame Buffer Object (FBO) in OpenGL \& CUDA OpenGL interoperability
- Multiple object rendering

3D RGB-D > Object Pose Tracking [IROS'| 3]

Related Work

[lsard, IJCV'98]
Condensation in 2D

[Montemayor, SIGGRAPH'04]
Simple PF on GPU

[Klein, BMVC'06]
Fast PF using GPU shader

[Azad, ICRA'II]
Fast PF using CUDA

Employ rich features: depth, normals, and color

3D RGB-D > Object Pose Tracking [IROS'|3]
Likelihood Evaluation

3D RGB-D > Object Pose Tracking [IROS' | 3]

Likelihood Evaluation

RGB-D scene rendered object

a point in \mathbf{M}_{t}

$$
p\left(\mathbf{Z}_{t} \mid \mathbf{X}_{t}^{(n)}, \mathbf{M}_{t}\right)=\prod p\left(\mathbf{z}_{t}^{(i)} \mid \mathbf{X}_{t}^{(n)}, \mathbf{m}_{t}^{(j)}\right)
$$

$(i, j) \in \mathcal{A}$

n-th pose

$$
\text { a point in } \mathbf{Z}_{t}
$$

$$
\mathcal{A}=\left\{(i, j) \mid \operatorname{proj}\left(x\left(\mathbf{z}_{t}^{(i)}\right)\right)=\operatorname{proj}\left(\mathbf{X}_{t}^{(n)} \cdot \mathrm{x}\left(\mathbf{m}_{t}^{(j)}\right)\right)\right\}
$$

Distance functions

$$
d_{e}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)= \begin{cases}\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\| & \text { if }\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\| \leq \tau \\ 1 & \text { otherwise }\end{cases}
$$

Euclidean distance

$$
d_{n}\left(\mathbf{n}_{1}, \mathbf{n}_{2}\right)=\frac{\cos ^{-1}\left(\mathbf{n}_{1}^{\top} \mathbf{n}_{2}-1\right)}{\pi}
$$

Normal distance

$$
d_{c}\left(\mathbf{c}_{1}, \mathbf{c}_{2}\right)=\left\|\mathbf{c}_{1}-\mathbf{c}_{2}\right\|
$$

Color distance

Likelihood Evaluation

$$
p\left(\mathbf{Z}_{t} \mid \mathbf{X}_{t}^{(n)}, \mathbf{M}_{t}\right)=\prod p\left(\mathbf{z}_{t}^{(i)} \mid \mathbf{X}_{t}^{(n)}, \mathbf{m}_{t}^{(j)}\right)
$$

$(i, j) \in \mathcal{A}$

$$
\begin{aligned}
p\left(\mathbf{z}_{t}^{(i)} \mid \mathbf{X}_{t}^{(n)}, \mathbf{m}_{t}^{(j)}\right)= & \exp ^{-\lambda_{e} \cdot d_{e}\left(\mathrm{x}\left(\mathbf{z}_{t}^{(i)}\right), \mathbf{X}_{t}^{(n)} \cdot \mathrm{x}\left(\mathbf{m}_{t}^{(j)}\right)\right)} \\
& \cdot \exp ^{-\lambda_{n} \cdot d_{n}\left(\mathrm{n}\left(\mathbf{z}_{t}^{(i)}\right), \mathbf{X}_{t}^{(n)} \cdot \mathrm{n}\left(\mathbf{m}_{t}^{(j)}\right)\right)} \\
& \cdot \exp ^{-\lambda_{c} \cdot d_{c}\left(\mathrm{c}\left(\mathbf{z}_{t}^{(i)}\right), c\left(\mathbf{m}_{t}^{(j)}\right)\right)}
\end{aligned}
$$

3D models on the Web

[1.		
区 ¢ 穴		
	mions	${ }^{11}$
		224
		"
		\%
		sent
some		Ot
\bigcirc f		

 romeretomsenus

Q butine

Georgia Tech

Conclusions

- Contributed toward robust object perception in unstructured environments
Four challenges
- object perception regardless of the degree of texture
- highly cluttered backgrounds
- object discontinuities
- real-time constraints
- combined photometric and geometric features
- multiple pose hypotheses frameworks
- combined pose estimation and tracking
- parallelized on GPU

Revisit Thesis Statement

- To close the loop betweer the geometric era of early computer vision and the currently domin ting appearance age, both photometric and geometric features nefed to be considered.
- The combination of/nese features enables object perception algorithms not on/, to be more effective but also to handle an increased spectrym of objects.
- Two theoretical frameworks using multiple pose hypotheses based on combined features are contributed in this thesis.
- These new frameworks are robust to significant clutter and occlusions, and are therefore efficacious solutions for visual object perception in unstructured environments.

Future Work

- Object model adaptation
- Object modeling
- Multi-object tracking
- Scalable object perception
- Object categorization

Thank You

Henrik Christensen Gatech

Dieter Fox
UW

Irfan Essa
Gatech

Jim Rehg
Gatech

Anthony Yezzi Gatech

AlexTrevor
Gatech

Yuichi Taguchi MERL

Ming-Yu Liu
MERL

Srikumar Ramalingam MERL

Ross Knepper MIT

Mehmet Dogar MIT

MITSUBISHI ELECTRIC
RESEARCH LABORATORIES
pcl gsoc '12

KOREA FOUNDATION
adVANCED STUDIES K/AS

10
 Backup Slides

Voting Scheme I

- 2D accumulator space: $\left(\mathbf{m}_{r}, \alpha\right)$
- S2S, B2B, and S2B share the same transform

3D RGB-D > Voting-based Pose Estimation using Pair Features [ICRA' I 2]

Voting Scheme II

$$
\mathbf{l}_{i}^{s}=\mathbf{T}_{s \rightarrow g}^{-1} \mathbf{T}_{\mathbf{x}}(\tau) \mathbf{R}_{\mathbf{x}}(\alpha) \mathbf{T}_{m \rightarrow g} \mathbf{l}_{i}^{m}
$$

- 3D accumulator space: $\left(\mathbf{o}^{m}, \alpha, \tau\right)$

3D RGB-D > Voting-based Pose Estimation using Pair Features [ICRA' I 2]

Real Scan: $S 2 B$ feature

3D RGB-D > Voting-based Pose Estimation using Pair Features [IROS' | 2]

Results: MOSI

(a)

[1]

[2]

[3]

[4]

[5]

Hinterstoisser et al. without [I] and with ICP [2], Papazov et al. [3], Drost et al. [4], and ours [5]

3D RGB-D > Voting-based Pose Estimation using Pair Features [IROS'। 2]

$$
1
$$

$$
0
$$

Hinterstoisser et al. without [I] and with ICP [2], Papazov et al. [3], Drost et al. [4], and ours [5]

