
A Novel Computational Method for Inferring Dynamic

Genetic Regulatory Trajectories

by

Christopher Campbell Reeder

B.A., Computer Science, UC Berkeley (2006)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2008

c© Massachusetts Institute of Technology 2008. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 8, 2008

Certified by .
David K. Gifford

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Terry P. Orlando

Professor of Electrical Engineering
Chairman, Department Committee on Graduate Theses

2

A Novel Computational Method for Inferring Dynamic Genetic

Regulatory Trajectories

by

Christopher Campbell Reeder

Submitted to the Department of Electrical Engineering and Computer Science
on August 8, 2008, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

We present a novel method called Time Series Affinity Propagation (TSAP) for inferring
regulatory states and trajectories from time series genomic data. This method builds on
the Affinity Propagation method of Frey and Dueck [10]. TSAP incorporates temporal con-
straints to more accurately model the dynamic nature of underlying biological mechanisms.
We first apply TSAP to synthetic data and demonstrate its ability to recover underlying
structure that is obscured by noise. We then apply TSAP to real data and demonstrate
that it provides insight into the relationship between gene expression and histone post-
translational modifications during motor neuron development. In particular, the trajectories
taken by the Hox genes through the space of regulatory states are characterized. Understand-
ing the dynamics of Hox regulation is important because the Hox genes play a fundamental
role in the establishment of motor neuron sub-type identity during development [6].

Thesis Supervisor: David K. Gifford
Title: Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

I would like to first thank Dr. Georg Gerber. Upon my arrival at MIT, he immediately

treated me as a collaborator. I am very grateful for his willingness to discuss research ideas

for hours on end. I owe much of my growth as a researcher to my interactions with Georg.

Indeed, most of the work that led to this thesis was based on ideas developed during our

conversations.

I would also like to acknowledge my research advisor Professor David Gifford. He has an

uncanny ability to identify important research problems. The manner in which he has led

the effort to bridge the gap between biology and computer science is truly inspiring.

I am very grateful to those who have been in the Gifford Lab during my time here so

far: Bob Altshuler, Tim Danford, Dr. Robin Dowell, Yuchun Guo, Dr. Shaun Mahony,

Alex Rolfe, and Alex Tsankov. It is wonderful to be surrounded by such intelligent people.

Shaun was particularly helpful in helping me figure out how to interpret and visualize the

results of my thesis work. Also, Tim and Alex Rolfe have built an infrastructure for working

with biological data that has been an indispensable resource. I am also grateful to Jeanne

Darling, without whom the workings of the Gifford Lab would surely grind to a halt.

My friends here at MIT, from Berkeley, and from back home have been a great source

of support and distraction, both of which have been much needed at times. Finally, I must

thank my parents for their love and for giving me such a great gift in that they have always

encouraged me in my various aspirations.

5

6

Contents

1 Introduction 15

1.1 Problem Description . 15

1.2 Biological Background . 16

1.2.1 Gene Expression . 17

1.2.2 Histone Post-Translational Modifications 18

1.3 Solution Overview . 19

1.4 Related Work . 20

1.5 Thesis Overview . 22

2 State Inference 23

2.1 Clustering . 23

2.2 Affinity Propagation . 25

2.2.1 Factor Graphs . 27

2.2.2 The Max-Sum Algorithm . 29

2.2.3 Derivation of Affinity Propagation . 30

2.3 Time Series Affinity Propagation . 36

2.4 Similarity Measure Construction . 41

2.4.1 Gene Expression Data . 42

2.4.2 Histone PTM Data . 43

2.4.3 Comparing Feature Vectors . 44

2.5 Visualizing States and Trajectories . 45

7

3 Applications 49

3.1 Synthetic Data . 50

3.1.1 Toy Synthetic Data . 50

3.1.2 Biologically Motivated Synthetic Data 56

3.2 Real Data . 58

3.2.1 Description of Data Analyzed . 58

3.2.2 Inferring States and Trajectories . 60

3.2.3 Regulatory Trajectories of the Hox Genes 67

4 Conclusion 73

4.1 Future Work . 73

8

List of Figures

2-1 The median of a set of points is more robust to outliers than the mean. (a)

and (b) show the same set of points in blue. In (a), the median point is

highlighted in red. This is a point that might be chosen as a prototype if

prototypes are restricted to be points from the data set. In (b) the mean of

the points is highlighted in red. This might be the point chosen as a prototype

if prototypes are not constrained. In the unconstrained case, the prototype

does not reflect the natural center of the cluster because of the outlying point. 25

2-2 The factor graph representing the factorization in Eqn. 2.6. Circular nodes

represent variables and square nodes represent factors. The node labels des-

ignate which variable or factor the node represents. 28

2-3 The factor graph representing the factorization of p(c) ∝ exp(J). The vari-

ables are represented by circular nodes. For each variable ci there is a factor

corresponding to the function δi(c) represented by a black square node and a

factor corresponding to the function si(ci) represented by a gray square node. 31

9

2-4 The factor graph representing the factorization of p(c) ∝ exp(J̃). The vari-

ables are represented by circular nodes. For each variable ci,j there is a factor

corresponding to the function δi,j(c) represented by a black square node and

a factor corresponding to the function si.j(ci.j) represented by a gray square

node. Between each pair of variables ci,j and ci,j+1 there is a factor corre-

sponding to the function γi,j(ci,j, ci,j+1) represented by a white square node.

Each δ node is connected by an edge to every variable node. Only the edges

connected to the node representing the factor corresponding to the function

δ1,1(c) are displayed for clarity. 39

2-5 Data for the histone PTM H3K27me3 around the transcription start site of the

gene Hoxa5 in mouse embryonic stem cells. Each location for which there are

data points along the x-axis corresponds to a probe on the microarray. Mul-

tiple data points at each location reflect replicate experiments. Data points

from the same replicate are connected by lines. The data have been nor-

malized and thus the height of each data point is the normalized ip′

wce
ratio

measured in the experiment. 44

2-6 An example of a state diagram with six states. Nodes and edges are weighted

to convey information about the usage of states and transitions by trajectories. 46

2-7 An example of an expanded state diagram with six states and five time points.

Nodes and edges are weighted to convey information about the usage of states

and transitions by trajectories. Edges for transitions taken by a small number

of trajectories are left out to improve clarity. 47

3-1 The synthetic data set consisting of points drawn from Gaussian distributions

centered around (3, 2) and (3, 4). The points drawn from the two different dis-

tributions can be distinguished by their shape and color. Points corresponding

to observations for the same object at different time points are connected by

a line. In total, 50 objects were observed from each distribution at two time

points. 52

10

3-2 The number of clusters found by AP increases with the preference value. . . 53

3-3 The number of states found by TSAP for each pair of parameter values is

represented by the height of the surface. Two regions of this plot are of

particular note. The parameter values for which TSAP finds one state are

denoted by yellow. The parameter values for which TSAP finds two states

are denoted by blue. 54

3-4 The number of correctly clustered points is greater for more negative alpha

values. 55

3-5 Synthetic histone PTM states. 56

3-6 (a)-(d) show the feature vectors calculated from the biologically motivated

synthetic data with noise added. The paths taken by the five trajectories are

also shown. The five trajectories each have five time points, but visit fewer

locations in feature space because each of the trajectories visit at least one

location in feature space for more than one time point. 57

3-7 The median micro-averaged precision for a range of alpha values over prefer-

ence values such that seven states were found. 59

3-8 The time points included in the experiments are shown here. The gene names

within the circles are genetic markers for stages of neural development that

are expressed at the indicated time points. Days are numbered starting with

untreated ES cells. After two days, the cells have formed embryoid bodies.

Cells are collected immediately before and eight hours after the addition of

retinoic acid (RA). By day 3 the cells are expressing Sox1 which is a marker for

neural progenitors. By day 4, the cells are expressing Olig2 which is a marker

for committed motor neuron progenitors. By day 7, the cells are expressing

Hb9 which is a marker for postmitotic ventral motor neurons. 61

3-9 Visualization of the features extracted from the data. 62

11

3-10 The alpha value varies between -0.5 and 0 and the preference value varies

between -150 and 0. The number of states found by TSAP for each pair of

parameter values is represented by the height of the surface. Note the large

region of preference values for which the number of states found by TSAP is

relatively stable. 63

3-11 The exemplars found by TSAP. The title of each chart is the name of the

gene and the time point at which it is being used as an exemplar. For each

exemplar, the H3K27me3, H3K4me3, and expression features that were cal-

culated for the similarity measure are shown as bars. Recall that the features

represent an amount of change from the initial time point (ES cell stage). The

exemplars can be taken as representative of the data points assigned to them

by TSAP. 65

3-12 State diagram representing TSAP results for α = −0.25 pref = −30.0 66

3-13 State diagram for genes from the Hox clusters 68

3-14 State diagram for Hox genes that are assigned to state 10 at day 7. These are

all posterior Hox genes. 70

3-15 State diagram for Hox genes that are assigned to state 13 at day 7. These are

all anterior Hox genes. 71

12

List of Tables

2.1 The interpretation of the constraint imposed by the δk functions for different

values of ci and k. 33

3.1 The five trajectories contained in the synthetic data are represented in this

table. Arrows separate each time point. The data at each time point are

represented by three letters corresponding to the two histone PTMs and gene

expression. H, M, L, and O stand for high, medium, low, and off, respectively. 57

3.2 Correlation between data sources . 60

3.3 Trajectories taken by the greatest number of genes. 64

13

14

Chapter 1

Introduction

1.1 Problem Description

Adult multicellular organisms can consist of hundreds of distinct cell types. Although all of

the cells in an individual organism, with very few exceptions, contain the same set of genes,

cells of different cell types establish and maintain their identity by expressing different subsets

of genes [11]. Cells are unable to function properly unless the correct set of cell type specific

genes are expressed. Thus, the precise control of gene expression is crucial to the ability of

multicellular organisms to live.

Biology seeks to understand the manner in which cell type specific expression patterns

are established during the development of a multicellular organism. The origin of all cells

in a multicellular organism can be traced back to a single cell, the fertilized egg. Through

differentiation, cells give rise to progeny of more specialized cell types. This process be-

gins with the fertilized egg and continues through several intermediate stages, ultimately

producing all of the cells in the adult organism. External signals trigger changes in the reg-

ulatory mechanisms that control gene expression to induce differentiation. The complexity

of the regulatory mechanisms that control gene expression and the fact the the genomes

of many multicellular organisms contain tens of thousands of genes makes understanding

differentiation at the level of gene regulation a difficult problem.

15

In recent years, various technologies have been developed that allow many aspects of

gene regulation to be measured on a genome-wide scale. For example, DNA microarrays

were originally developed to measure levels of RNA transcripts, an intermediate product of

gene expression, corresponding to thousands of genes simultaneously [23]. Such technolo-

gies provide an opportunity to characterize the regulatory mechanisms that are at work in

different cell types. However, the data sets produced by genome-wide technologies are large

and contain significant experimental noise, thus making them difficult to interpret. Because

of this difficulty, the development and application of computational methods has become a

vital part of research in the field of gene regulation.

We present a novel computational method called Time Series Affinity Propagation (TSAP)

to investigate the regulatory mechanisms involved in the establishment of cell type specific

expression patterns. Many previous computational approaches to the analysis of genomic

data have not addressed the availability of multiple, heterogeneous sources of data, nor have

they taken into account the inherent temporal structure of data related to development.

TSAP has been designed to address these issues. The derivation of TSAP will be presented

as well as novel results obtained through the use of TSAP to study motor neuron develop-

ment.

1.2 Biological Background

TSAP is designed to be able to incorporate measurements of any sort of genomic phenomena.

However, the discussion in this thesis will focus on genomic data of two types. The first type

is expression data collected using DNA microarray technology. The second type is genome-

wide location mapping data for histone post-translational modifications (PTMs) collected

using chromatin immunoprecipitation combined with microarray technology [21].

16

1.2.1 Gene Expression

Contained within the cells of all known living organisms is a substance called deoxyribonucleic

acid (DNA). The basic unit of DNA is the nucleotide, which consists of a nitrogenous base,

a sugar, and a phosphate group. DNA is most commonly found to exist in cells as polymers

of nucleotides with the phosphate residue of one nucleotide binding to the sugar residue of

the next nucleotide. The nitrogenous bases found in living cells are generally one of four

structures: Adenine (A), Thymine (T), Guanine (G), or Cytosine (C). The ordering of these

bases along the nucleotide strand encodes the information for producing proteins as well as

other information necessary for the proper functioning of the cell.

A portion of DNA sequence that encodes information for producing a protein (or possibly

a set of related proteins in the case of alternative splicing) is referred to as a protein-coding

gene. A protein-coding gene is “expressed” when copies of the protein coded for by the

gene are produced in the cell. Expression of a protein-coding gene involves the creation of

an intermediate substrate. Molecules of a substance closely related to DNA called RNA

are “transcribed” from the DNA sequence of the protein-coding gene. The RNA molecule

consists of a sequence of nucleotides that are complementary to the nucleotides of the DNA

sequence of the gene. The information carried by these RNA molecules is then “translated”

by ribosomal complexes into protein.

Several technologies, such as DNA microarrays, measure RNA transcript levels rather

than measure protein levels directly. DNA microarray technology takes advantage of the

fact that single stranded nucleic acid molecules that have complementary sequences will

tend to hybridize to one another. Microarrays contain many single stranded nucleic acid

molecules called probes that are attached to a glass slide. The probes are designed to contain

sequences corresponding to locations of interest in the genome. For the purpose of measuring

gene expression, the probes consist of parts of the sequences of genes. RNA molecules are

extracted from a sample of cells that are of the cell type of interest. The RNA molecules are

amplified and labeled and then allowed to interact with the probes on the microarray. The

technology relies on the tendency of nucleic acid fragments to hybridize to the most perfectly

17

complementary probes which should correspond to the genes from which the RNA molecules

were transcribed. However, nucleic acid fragments will sometimes hybridize to probes that

are not perfectly complementary. Also, the efficiency of hybridization depends on the actual

bases that make up the probe sequences. An optical scanner is used to detect where labeled

molecules have hybridized to probes on the microarray and in what concentration. Image

analysis is applied to the image obtained from the scanner to obtain a measurement of how

many RNA molecules corresponding to each gene were present in the sample of cells.

1.2.2 Histone Post-Translational Modifications

The DNA in a cell exists in a complex called chromatin. This complex contains proteins,

most prominently histone proteins, in addition to DNA. The histone proteins and DNA form

structures called nucleosomes in which 147 base pairs-worth of DNA wraps around a histone

octamer [22]. The histone proteins are often subject to post-translational modifications

(PTMs), usually on their N-terminal tails which extend out from the nucleosome complex.

It is clear that there is some relationship between histone PTMs and gene regulation and

this relationship has been the focus of much recent research [17].

To measure the locations in the genome where histones with particular PTMs exist, a

combination of DNA microarray technology (chip) preceded by chromatin immunoprecipita-

tion (ChIP) may be utilized [14]. Collectively, this approach will be referred to as ChIP-chip.

The general idea is to isolate fragments of DNA that are associated with a histone PTM of

interest and then infer the location of these fragments in the genome according to the probes

to which they hybridize on a DNA microarray. To perform ChIP, live cells are treated with

a chemical, often formaldehyde, which causes proteins that are interacting with DNA to

become cross-linked to the DNA. The resulting DNA-protein complex can then be extracted

from the cells intact. The DNA is fragmented using a method such as sonication. The next

step requires the availability of an antibody protein that binds specifically to histones with

the PTM of interest. Through immunoprecipitation, fragments of DNA cross-linked to his-

tones with the PTM of interest are isolated out of the fragmented DNA-protein complex that

18

was extracted from the cells. The DNA fragments can then be purified from the precipitated

mixture of DNA, histones, and antibodies. The locations of these fragments in the genome

can be measured using a DNA microarray experiment in essentially the same manner that

the location of genes associated with RNA transcripts are measured in a gene expression

experiment. It is often useful to use a special type of DNA microarray called a tiling array

in which probes are tiled across the genome at a regular interval. Thus, the location of the

modified histone can be measure with greater spatial resolution than if microarrays were

used that contain only a handful of probes per gene.

Two histone PTMs in particular will be discussed in this thesis. Histone H3 lysine

27 trimethylation (H3K27me3) and histone H3 lysine 4 trimethylation (H3K4me3) are two

PTMs that involve the methylation of different lysine residues on the N-terminal tail of

histone 3. Most evidence to date has associated H3K27me3 with repression of gene expression

and H3K4me3 with activation of gene expression. TSAP is applied in this thesis to provide

a unique view of the temporal relationship between these histone PTMs and gene expression

during development.

1.3 Solution Overview

The objective of TSAP is twofold. The first part of TSAP’s objective is to discover gene

regulatory states that play a prominent role in the establishment of cell type specific expres-

sion patterns. For the purposes of this thesis, a gene regulatory state is defined as the joint

occurrence of a specific gene expression level and associated histone PTM patterns at a given

gene. The second part of TSAP’s objective is to trace the trajectories of genes as they move

between regulatory states during the establishment of cell type specific expression patterns.

The approach taken by TSAP to the first part of the objective is to find a partitioning of

the genes under consideration such that each partition contains genes that exist in a common

regulatory state. An assumption is made that genes that exist in a common regulatory

state will exhibit similar levels of gene expression and will be associated with histones that

exhibit similar patterns of modification. Thus, TSAP finds a partitioning of the genes under

19

consideration that maximizes the similarity within each partition based on gene expression

and histone modification.

To achieve the second part of the objective, TSAP allows each gene to be assigned to

different partitions as cells pass through different cell types during differentiation. However,

since the regulatory state of a gene is not expected to be independent in related cell types,

the partitioning of genes for a particular cell type is influenced by the partitioning of genes

for related cell types.

1.4 Related Work

TSAP is related to the Affinity Propagation (AP) clustering method [10]. AP approaches

the well established K-medians clustering problem from a statistical inference perspective. A

probability distribution is defined for which finding a maximal configuration is equivalent to

finding an optimal solution to the K-medians problem. A variant of belief propagation [20]

is used to find an approximately maximal configuration for the probability distribution. A

more detailed discussion of AP and TSAP is presented in Chapter 2. No efficient method for

finding an exact solution to the K-medians problem is known. In fact, the problem is known

to be NP-hard [5]. Several approximation algorithms for the K-medians problem have been

developed that are based on solving a linear programming (LP) relaxation. The theoretical

properties of belief propagation are not well understood, so the LP based approaches have an

advantage to AP in that they come with well defined theoretical guarantees. However, AP

is very practical to implement and has been shown to converge efficiently to good solutions

in practice. Further justification for the use of a method related to AP is given in Chapter

2.

The K-means problem is another formulation of the clustering problem that is related

to the K-medians problem. In the K-medians problem, the objective is to partition the

data into K clusters such that each cluster is centered around a “median” point from the

data set. In the K-means problem, the objective is the same except the point that each

cluster is centered around need not be a point from the data set. One approach to finding an

20

approximate solution to the K-means problem is the iterative algorithm that is commonly

referred to as the K-means algorithm. Another related approach to clustering is the use of

mixture models. In this approach, each cluster is associated with a probability distribution

rather than just a particular point. It can be shown that the K-means algorithm is a

nonprobabilistic limit of the Expectation Maximization algorithm applied to mixtures of

Gaussian distributions [3].

Another approach to clustering that is very common, especially among biological appli-

cations, is hierarchical clustering. Rather than partition the data into some K number of

clusters, hierarchical clustering methods find a tree structure that represents the similarity

of points in the data set. The root of such a tree represents the data set as a whole. At each

branch of the tree a set of points is split into smaller sets in a way that reflects a greater

degree of similarity between the points within the subsets than between points in different

subsets. The leaves of the tree represent the individual points from the data set. In one of the

first applications of a clustering method to genomic data, a hierarchical clustering method

was used to cluster gene expression data measured by DNA microarrays using material from

Saccharomyces cerevisiae [8]. Examples of other clustering methods that have been applied

to genomic data include Self Organizing Map and Principal Components Analysis. Handl

et al. [13] provide a more thorough survey of recent applications of clustering methods to

genomic data.

The clustering methods mentioned thus far, other than TSAP, do not explicitly take into

account any prior knowledge about relationships between data points. Some methods have

been developed for genomic applications that do explicitly take into account the dynamic na-

ture of many genomic data sets. See [9] for a more thorough discussion of previous approaches

to analyzing genomic data that have temporal structure. One approach in particular that is

similar in a sense to TSAP is the use of Hidden Markov Models (HMMs) to cluster data [16].

In this approach, K states are posited to exist in the data and the trajectories taken by data

points through these states are traced. TSAP has several advantages over such an approach

including having the value of K determined in part by the data themselves and the fact that

21

the states found by TSAP need not fit an underlying parametric distribution. A variation on

HMMs called Infinite Hidden Markov Models [1] avoid the requirement of having to choose

K ahead of time. However, states are still assumed to have been generated by parametric

distributions.

1.5 Thesis Overview

In Chapter 2 of this thesis, we discuss the use of clustering methods for discovering regulatory

states and trajectories. We will describe the Affinity Propagation (AP) algorithm, as well

as briefly introduce graphical models and belief propagation. This will lead to a derivation

of Time Series Affinity Propagation which is an extension of AP that explicitly models the

temporal structure of dynamic data. We will suggest an approach to constructing a similarity

measure from dynamic gene expression and histone PTM data. Chapter 2 concludes with a

description of an approach to visualizing the states and trajectories that are found by TSAP.

In Chapter 3 we present applications of TSAP to three data sets. The first two data

sets consist of synthetic data. We will demonstrate with the first synthetic data set TSAP’s

performance in a simplistic setting. We constructed the second synthetic data set to simulate

a real biological data set. TSAP’s performance on this synthetic data set motivates an

application to a real data set. Thus, we apply TSAP to data from a particular mouse

developmental system. We discuss the relationship between the histone PTMs and gene

expression in the context of this biological system.

In the final chapter, we make some concluding remarks and present ideas for future

related work.

22

Chapter 2

State Inference

2.1 Clustering

Given data for a set of genes, the objective of gene regulatory state inference is to discover a

set of states that classify genes in a biologically relevant manner. One approach to achieving

this objective is to organize the set of genes into groups such that genes within groups tend

to be more similar than genes from different groups according to a notion of similarity

based on the data. Methods that take this approach to arbitrary data sets have been

discussed extensively in the machine learning and statistics literature. Such methods are

usually formulated as attempting to solve a type of unsupervised learning problem known

as clustering.

One popular subclass of clustering algorithms are partitional algorithms which divide a

set of data points into K groups in such a way that maximizes the within group similarity.

Algorithms in this class can generally be interpreted as attempting to optimize some cost

function J that is related to the within group similarity. Many standard approaches to

partitional clustering assume that associated with each cluster k is a cluster prototype µk.

Given a measure of similarity between data points S(·, ·), the cost function can then be

defined as the net similarity of data points to the prototype of their assigned cluster, which

can be written as

23

J =
N∑
n=1

K∑
k=1

rnkS(xn, µk) (2.1)

where rnk = 1 when xn is assigned to cluster k and rnj = 0 for j 6= k.

Some approaches, such as the K-means algorithm allow the cluster prototypes to be

points not included in the original data set. However, there are several reason why it is

preferable to restrict the cluster prototypes to only take on values equal to points from the

original data set. One reason is that more flexibility is afforded in the similarity measure

because it need only be defined for points in the original data set. Another reason is that

restricting the values that can be taken by cluster prototypes increases the robustness of the

cluster prototypes to outliers as demonstrated in Fig. 2-1. A third reason is that cluster

prototypes can be used as candidates for further inspection after clustering. For example,

in an application of clustering to genomic data, a cluster prototype that is a point from the

data set will be a gene from the genome and can be examined in future experiments. Cluster

prototypes that are restricted to only take values equal to points from the original data set

will be referred to as exemplars in the rest of this discussion.

Optimizing J exactly is known to be NP-Hard [5]. However, several methods for finding

an approximate solution have been developed. The K-medians algorithm is a popular algo-

rithm that takes an iterative approach to the approximate optimization of J . The algorithm

proceeds as follows. The µk are initially set to be equal to K arbitrary points from the data

set. Then J is maximized with respect to the rnk, keeping the µk fixed

rnk =

1 if k = arg minjS(xn, µj)

0 otherwise

(2.2)

Next J is maximized with respect to the µk, keeping the rnk fixed. This is done by

searching over the Nk data points currently in each cluster k. The two maximization steps

are repeated iteratively until convergence.

The K-medians algorithm is used often in practice, yet it has several drawbacks. One

important issue has to do with the convergence of the algorithm. Convergence of the al-

24

(a) (b)

Figure 2-1: The median of a set of points is more robust to outliers than the mean. (a)
and (b) show the same set of points in blue. In (a), the median point is highlighted in red.
This is a point that might be chosen as a prototype if prototypes are restricted to be points
from the data set. In (b) the mean of the points is highlighted in red. This might be the
point chosen as a prototype if prototypes are not constrained. In the unconstrained case,
the prototype does not reflect the natural center of the cluster because of the outlying point.

gorithm is guaranteed, but only to a local maximum. Thus, in practice, the K-medians

algorithm is generally run many times on the same data set with different initializations of

the µk. The ability of the algorithm to find a good solution is very sensitive to how it is

initialized, especially when the data set has many points and K is large. Another difficulty

in using the K-medians algorithm effectively is that K must be specified when it is usually

not known how many clusters are present in the data. In the next section, a partitional

clustering algorithm called Affinity Propagation is discussed. Affinity Propagation approxi-

mately optimizes a cost function similar to J while addressing to some extent the issues that

plague the K-medians algorithm.

2.2 Affinity Propagation

The approach to clustering taken by Affinity Propagation (AP) [10] is similar to the K-

medians problem in that the objective is to maximize the similarity of points to their assigned

exemplars. However, AP avoids the problem of having to choose an appropriate value for K

25

to some extent by incorporating the selection of the number of clusters into the optimization

problem. This is accomplished by associating a cost with a point choosing itself as an

exemplar and then enforcing that if any point xi takes xj to be its exemplar, then xj must

be its own exemplar. Thus, the cost function becomes:

J =
N∑
i=1

si(ci) +
N∑
k=1

δk(c) (2.3)

Where ci is the assigned exemplar for xi, si(·) = S(xi, ·), and δk(·) enforces the constraint

on valid exemplars. It is defined as follows:

δk(c) =

−∞ if ck 6= k but ∃i : ci = k

0 otherwise

(2.4)

Thus, a configuration of the variables c = {c1, . . . , cN} that maximizes J will maximize

the sum of similarities between data points and “valid” exemplars. The number of valid

exemplars that are included in a maximal configuration of c will depend on the self-similarity

values si(i). When si(i) is more negative, the ith data point will be less likely to be chosen

as an exemplar because there will be more of a penalty on the cost function for doing so.

This is because the δk(·) function enforces that ci = i in any valid configuration that includes

the ith point as an exemplar.

To find an optimal configuration of c, Frey and Dueck recognized that by exponentiating

the cost function J , it can be interpreted as a probability distribution: p(c) ∝ exp(J). In

other words, p(c) is a likelihood function over the random variables c and J is equal to the log

likelihood ln p(c) up to some constant. A variety of approximate inference methods have been

developed for finding the most likely setting of variables in a probabilistic model and thus

can be used to find a configuration of c that maximizes p(c). This approach to optimization

has been applied in the clustering setting previously. In fact, as mentioned earlier, the K-

means algorithm can be thought of as an application of an approximate inference method

called the EM algorithm to a special case of the Gaussian mixture model [3]. The approach

that Frey and Dueck chose to take was to represent p(c) as a graphical model, specifically a

26

factor graph, in order to utilize the Max-Sum algorithm for inference [18]. To facilitate the

discussion of AP, a brief introduction to factor graphs and the Max-Sum algorithm will be

given.

2.2.1 Factor Graphs

A factor graph is a special type of graphical model formalism [15]. In general, graphical

models are a useful methodology for representing probability distributions diagrammatically.

Graphical models are used extensively in machine learning research and many important

results have been derived using graphical models. Common variants of graphical models

include Bayesian networks and Markov random fields in addition to factor graphs. Factor

graphs are discussed in this section because they will provide a convenient framework for

describing the Max-Sum algorithm.

Let x be the set of variables {x1, . . . , xN} and suppose that the joint distribution over x

can be written as a product of functions (factors):

p(x) =
∏
s

fs(xs) (2.5)

where xs denotes the subset of x whose members are the arguments to the function fs(·).

In the factor graph representation of p(x), a circular node is associated with each variable

xi and a square node is associated with each factor fs(xs). Undirected edges connect each

factor node to the variable nodes on which that factor depends. As a more concrete example,

consider the following factorization of a distribution

p(x) = fa(x1, x2)fb(x2, x3)fc(x2, x4) (2.6)

The factor graph representing this factorization is shown in Fig. 2-2.

27

1 2 3

4

a b

c

Figure 2-2: The factor graph representing the factorization in Eqn. 2.6. Circular nodes
represent variables and square nodes represent factors. The node labels designate which
variable or factor the node represents.

28

2.2.2 The Max-Sum Algorithm

A common task when working with probability distributions is to find a maximal setting of

the variables. The max-sum algorithm is an algorithm for finding the maximum likelihood

solution given a factor graph representation of a probability distribution. The algorithm will

be described in this section. For a more thorough derivation see [3].

The max-sum algorithm operates by passing messages between nodes in a factor graph.

The messages are functions of the variables represented by the variable nodes that are either

the recipients or senders of the messages. The logarithms of the functions specified by the

factor graph are evaluated during the course of the algorithm. This allows sums of messages

to be evaluated rather than products, thus avoiding issues of numerical precision. The

name “max-sum” reflects this aspect of the algorithm. Two types of messages are defined

depending on whether the message is being passed to or from a factor node. In the following

equations, the xi are the variables over which the probability distribution is defined. The fj

are the functions that make up the factorization of the probability distribution as reflected

in the factor graph.

variable node to factor node:

µxi→fj
(xi) =

∑
fk∈n(xi)\{fj}

µfk→xi
(xi) (2.7)

factor node to variable node:

µfj→xi
(xi) = max

xj\{xi}

ln fj(xj) +
∑

xk∈xj\{xi}

µxk→fj
(xk)

 (2.8)

where n(xi) is the set of factor nodes that neighbor the variable node xi in the factor

graph.

When the max-sum algorithm is applied to a tree structured graph, outgoing messages

are sent by a node when all of the necessary incoming messages have been received. Message

passing is initiated by the leaf node and messages propagate through the graph. Message

29

passing terminates when the leaf nodes receive messages from their neighbors.

To determine the maximal setting of each variable xi once message passing has termi-

nated, the arg max is taken over all incoming messages to the variable node

xmax
i = arg maxxi

 ∑
fk∈n(xi)

µfk→xi
(xi)

 (2.9)

The max-sum algorithm is an efficient and straight-forward algorithm for exact inference

in tree-structured factor graphs. In general graphs with cycles, it is possible to apply a

iterative version of the max-sum algorithm in which all nodes send messages at each iteration

based on the current set of incoming messages. The theoretical properties of the max-sum

algorithm and other related algorithms when applied to an arbitrary graph with cycles are

not fully understood [26]. Although there are no guarantees of convergence, it is often the

case that the messages converge after several iterations and that an approximate solution

may be extracted using Eqn. 2.9. Several important results (turbo codes [2] being one

notable example) can be interpreted as an application of the max-sum algorithm or one of

several related message passing algorithms to a graphical model with cycles. In the next

section, such an application is used to derive Affinity Propagation.

2.2.3 Derivation of Affinity Propagation

The factor graph representation of the interpretation of J as a probability distribution is

shown in Fig. 2-3. there are two types of factor nodes in this graph: those corresponding

to local si(·) functions and those corresponding to δk(·) functions. We will therefore refer to

those nodes as s nodes and δ nodes. Max-sum messages may be derived according to the

message definitions given above. The messages from δ nodes to variable nodes are

µδk→ci(ci) = max
c\{ci}

δk(c) +
∑

c′∈c\{ci}

µc′→δk(c′)

 (2.10)

The s nodes are each only connected to one variable node, for example the node corre-

30

...

...

1 2 3 N

Figure 2-3: The factor graph representing the factorization of p(c) ∝ exp(J). The variables
are represented by circular nodes. For each variable ci there is a factor corresponding to the
function δi(c) represented by a black square node and a factor corresponding to the function
si(ci) represented by a gray square node.

31

sponding to the function si(ci) is connected to the node corresponding to the variable ci.

Thus, the messages from the s nodes to variable nodes simplify:

µsi→ci(ci) = si(ci) (2.11)

The messages from variable nodes to δ nodes take the following form:

µci→δk(ci) = µsi→ci(ci) +
∑
k′ 6=k

µδk′→ci(ci) (2.12)

The calculation of the simplified version of the messages from s nodes to c nodes does

not involve any incoming messages, so there is no need to calculate messages from c nodes

to s nodes.

One issue made apparent by the message definitions given above is that the δk(·) functions

take the entire vector c as an argument. Calculating the message from a δ node to a variable

node involves finding a maximal configuration of c. To do this as written would require

searching over the space of configurations of c which is of size exponential in the number of

variables. It would seem that calculating these messages is not any more computationally

feasible than maximizing J directly. Fortunately, the way the δk(·) functions are defined

allows for a powerful simplification of the calculation of messages from δ nodes to variable

nodes. Note that when the constraint imposed by the δk(·) functions is violated the value of

the entire expression is equal to −∞. Thus there is no reason to even consider configurations

of c that violate this constraint. The calculation of a message from a δ node to a variable node

involves a maximization over all of the components of c except the component corresponding

to the variable node to which the message is being sent. The message is a function of that

component, so a value of the message must be calculated for each value that the component

can take. The important observation is that for the message µδk→ci(ci) the constraint imposed

by the δk(·) function on the values of the components of c other than ci is the same for all

values of ci except for ci = k. What the constraint actually is depends on whether k equals

i or not.

32

ci = k ci 6= k
k = i point i is an exemplar for it-

self and may be an exemplar
for other points

point i is not an exemplar
for itself and may not be an
exemplar for other points

k 6= i point k must be an exem-
plar for itself and may be an
exemplar for other points

point k may be an exem-
plar for itself in which case
it may be an exemplar for
other points or it may not
be an exemplar for itself in
which case it may not be an
exemplar for other points

Table 2.1: The interpretation of the constraint imposed by the δk functions for different
values of ci and k.

Table 2.1 summarizes the effects that the values of ci and k have on the constraint

imposed by the δk(·) functions. Notice that there are only two ways that the δk(·) functions

can constrain the configurations of c that are to be considered in the calculation of any given

message from a δ node to a variable node. This observation has two important consequences.

One is that the δk(·) functions may be effectively disregarded and the max operators may

be pushed through the sum and operate directly on the messages which are functions of

individual components of c. In order to disregard the δk(·) functions, the max operators

operate over appropriately constrained sets of values. Searching over the configurations

of the components of c individually is much more efficient than searching over the entire

configuration space of c. The second consequence mentioned above is that the messages only

range over two values, one when ci = k and one when ci 6= k. Thus, in the implementation

of AP, messages from δ nodes to variable nodes may be represented as pairs of values rather

than vectors with length equal to the number of data points. The message may be expressed

without the δk(·) functions in the following way:

33

µδk→ci(ci) = (2.13)

∑
c′∈c\{ci}maxc′ µc′→δk(c′) ci = k and k = i∑
c′∈c\{ci}maxc′ 6=k µc′→δk(c′) ci 6= k and k = i

µck→δk(k) +
∑

c′∈c\{ci,ck}maxc′ µc′→δk(c′) ci = k and k 6= i

max
[∑

c′∈c\{ci}maxc′ 6=k µc′→δk(c′), µck→δk(k) +
∑

c′∈c\{ci,ck}maxc′ µc′→δk(c′)
]

ci 6= k and k 6= i

Another issue with the max-sum algorithm besides the tractability of message calculation

is the potential for numerical overflow. The calculation of each message involves a sum

with a number of terms that is on the order of the number of data points. After several

iterations of message-passing these messages may become quite large in magnitude. To

avoid this situation in AP, the messages are rescaled after each iteration. This does not

affect the solution obtained by the max-sum algorithm if it converges because scaling each

message by a factor that is independent of the argument to the message does not change

the set of arguments that maximize the sum of the messages that are sent to a variable

node at a particular iteration. Frey and Dueck suggest a scaling method that is convenient

to implement and efficient. Messages from variable nodes to δ nodes are scaled by the

maximum value that they achieve over argument values other than the index of the δ node

to which the message is being sent:

µ̃ci→δk(ci) = µci→δk(ci)−max
ci 6=k

µci→δk(ci) (2.14)

This scaling method is convenient because the following equalities now hold:

max
ci 6=k

µ̃ci→δk(ci) = 0 (2.15)

max
ci

µ̃ci→δk(ci) = max [0, µ̃ci→δk(k)] (2.16)

34

Messages from δ nodes to variable nodes, which range over two values, are scaled by the

value that they take when ci 6= k. Using the equalities derived directly above, the scaled

messages from δ nodes to variable nodes can be expressed as

µ̃δk→ci(ci) = (2.17)



∑
c′∈c\{ci}max [0, µ̃c′→δk(k)] ci = k and k = i

0 ci 6= k and k = i

min
[
µ̃ck→δk(k) +

∑
c′∈c\{ci,ck}max [0, µ̃c′→δk(k)] , 0

]
ci = k and k 6= i

0 ci 6= k and k 6= i

Given this expression for the scaled messages from δ nodes to variable nodes, the scaled

messages from variable nodes to δ nodes can be expressed in the following way. Note that

the message µ̃ci→δk(ci) is only evaluated for ci = k in the calculation of the scaled messages

from δ nodes to variable nodes. Thus, an expression for the scaled messages from variable

nodes to δ nodes is only needed for the case when ci = k.

µ̃ci→δk(k) = µ̃si→ci(k) +
∑
k′ 6=k

µ̃δk′→ci(k)−max
ci 6=k

[
µ̃si→ci(ci) +

∑
k′ 6=k

µ̃δk′→ci(ci)

]
= µ̃si→ci(k)−max

ci 6=k

[
µ̃si→ci(ci) + µ̃δci→ci(ci)

]
As a result of this rescaling method, messages going both directions between δ nodes

and variable nodes have been reduced to scalar values that can be computed in O(N) time

where N is the number of data points. Each iteration of AP takes O(N2) time because O(N)

messages are sent at each iteration.

Rescaling the messages seems to allow message-passing to proceed indefinitely. The

possibility that the messages will not converge is still a concern given the cyclic nature of

the factor graph. One common cause of non-convergence for the AP messages is the presence

35

of data points that are are almost equally viable as exemplars for each other. This situation

often results in messages that oscillate during the course of message-passing. Frey and Dueck

incorporate a “damping factor” λ to avoid oscillation. So, in AP, the messages after each

iteration are linear combinations of λ times the old value of the message plus (1− λ) times

what the new value of the message should be according to the scaled update rules defined in

the expressions above. Frey and Dueck claim (but do not prove) that they are always able

to avoid non-convergence due to oscillation by increasing λ [10].

To extract a solution from converged messages, Frey and Dueck employ a non-standard

approach. Rather than use all of the exemplars specified by a maximal configuration of c,

they decided to use only “strong” exemplars. In other words, in a maximal configuration of

c there might be a point chosen to be an exemplar for which J would not change greatly if

another point were chosen to be an exemplar instead. Such a point Frey and Dueck would not

take as an exemplar because it might not be very informative. As an approximate method

for finding “strong” exemplars, a point k is chosen as an exemplar if

µ̃δk→ck(k) + µ̃ck→δk(k) > 0 (2.18)

If the set of exemplars found using the above method remains the same after several

message-passing iterations, the messages are considered to have converged. Points are as-

signed to the exemplar to which they are the most similar. Because only “strong” exemplars

are considered, potentially fewer exemplars are included in the results than if “weak” exem-

plars were not filtered out of the results found with the max-sum algorithm.

2.3 Time Series Affinity Propagation

AP has been shown to perform very well at clustering many different types of data. In the

case of time-series data there are at least two different ways that AP could be applied to

discover clusters. One way would be to concatenate the data from all time points for each

object and thus assign each object to one cluster. This approach would lose information

36

about the dynamics of the data because it would not be possible for objects to belong

to different clusters at different time points. Another approach would be to cluster each

object separately at each time point. This approach would recover the trajectory through

clusters that each object takes over time. However, an assumption is made that the behavior

of objects at different time points is independent. In many situations this is an invalid

assumption because the behavior of an object at one point in time will be related to its

behavior at recent points in time. The following discussion introduces a clustering method

related to AP in which the assignment of data points to clusters at each time point is made

separately but is influenced by the assignments made to clusters at other time points. This

method will be referred to as Time Series Affinity Propagation (TSAP).

To model the manner in which objects behave over time J is modified in the following

manner.

J̃ =
N∑
i=1

T∑
j=1

si,j(ci,j) +
N∑
i=1

T∑
j=1

δi,j(c) + γ(c) (2.19)

The vector c is now indexed by object in the dataset and by time point. The si,j(·) and

δi,j(·) functions have definitions that are analogous to their definitions in the original cost

function. The γ(·) function can be defined in various ways in order to influence the value of

the cost function. The particular way in which the γ(·) function is defined depends on the

relationship among the components of c that is to be modeled.

The approach taken in this thesis to model the temporal relationship among data points

in time series data is to define the γ(·) function such that the cost function is influenced

by the way that data points cluster at consecutive time points. This essentially assumes a

first order Markov property for the trajectories. The γ(·) function to be defined as a sum of

functions γi,j(·, ·)

J̃ =
N∑
i=1

T∑
j=1

si,j(ci,j) +
N∑
i=1

T∑
j=1

δi,j(c) +
N∑
i=1

T−1∑
j=1

γi,j(ci,j, ci,j+1) (2.20)

To fully constrain data points at consecutive time points to belong to the same cluster,

37

the γ factors would be defined as

γi,j(ci,j, ci,j+1) =

0 ci,j = ci,j+1

−∞ otherwise

(2.21)

This definition of the γi,j(·, ·) factors can be generalized to allow a variable degree of

influence between the manner in which data points at consecutive time points cluster.

γi,j(ci,j, ci,j+1) =

α1 ci,j = ci,j+1

α2 otherwise

(2.22)

To maximize J̃ , the max-sum algorithm can be employed. The factor graph representa-

tion of J̃ is shown in Fig. 2-4. The messages from s nodes to variable nodes are essentially

the same and can be simplified to be

µsi,j→ci,j (ci,j) = si,j(ci,j) (2.23)

The messages from δ nodes to variable nodes are also essentially the same and through

the same scaling trick can be expressed as

µ̃δk,l→ci,j (ci,j) = (2.24)



∑
c′∈c\{ci,j}max

[
0, µ̃c′→δk,l

(< k, l >)
]

ci,j =< k, l > and < k, l >=< i, j >

0 ci,j 6=< k, l > and < k, l >=< i, j >

min
[
µ̃ck,l→δk,l

(< k, l >)+∑
c′∈c\{ci,j ,ck,l}max

[
0, µ̃c′→δk,l

(< k, l >)
]
, 0
]

ci,j =< k, l > and < k, l >6=< i, j >

0 ci,j 6=< k, l > and < k, l >6=< i, j >

The messages from γ nodes to variable nodes are as follows

38

...
...

1 2 3 N

...
...

...
...

...
...

..
.

..
.

..
.

..
.

Data Points

1

2

3

T

T
im

e
 P

o
in

ts

Figure 2-4: The factor graph representing the factorization of p(c) ∝ exp(J̃). The variables
are represented by circular nodes. For each variable ci,j there is a factor corresponding to the
function δi,j(c) represented by a black square node and a factor corresponding to the function
si.j(ci.j) represented by a gray square node. Between each pair of variables ci,j and ci,j+1

there is a factor corresponding to the function γi,j(ci,j, ci,j+1) represented by a white square
node. Each δ node is connected by an edge to every variable node. Only the edges connected
to the node representing the factor corresponding to the function δ1,1(c) are displayed for
clarity.

39

µγi,j→ci,j (ci,j) = max
ci,j+1

[
γi,j(ci,j, ci,j+1) + µci,j+1→γi,j

(ci,j+1)
]

(2.25)

= max

[
α1 + µci,j+1→γi,j

(ci,j), α2 + max
ci,j+1 6=ci,j

µci,j+1→γi,j
(ci,j+1)

]
(2.26)

These messages can be calculated in O(NT) time because the max over incoming mes-

sages only needs to be calculated once per iteration. Once again, the messages from variable

nodes to s nodes do not need to be calculated because they are never used by any other

calculation. The messages from variable nodes to δ nodes are the same as in standard AP

with the addition of one or two incoming messages from γ nodes. They can be scaled in the

same way and need only be calculated for ci,j =< k, l >.

µ̃ci,j→δk,l
(< k, l >) = µ̃si,j→ci,j (< k, l >) + µγi,j−1→ci,j (< k, l >) + µγi,j→ci,j (< k, l >) +∑

<k′,l′>6=<k,l>

µ̃δk′,l′→ci,j (< k, l >)−

max
ci,j 6=<k,l>

[
µ̃si,j→ci,j (ci,j) + µγi,j−1→ci,j (ci,j) + µγi,j→ci,j (ci,j)+∑

<k′,l′> 6=<k,l>

µ̃δk′,l′→ci,j (ci,j)

]
= µ̃si,j→ci,j (< k, l >) + µγi,j−1→ci,j (< k, l >) + µγi,j→ci,j (< k, l >)−

max
ci,j 6=<k,l>

[
µ̃si,j→ci,j (ci,j) + µγi,j−1→ci,j (ci,j) + µγi,j→ci,j (ci,j) + µ̃δci,j→ci,j (ci,j)

]

There is no obvious way to avoid calculating the messages from variable nodes to γ nodes

for all values of ci,j. However, because of the way that the messages from δ nodes to variable

nodes are scaled, the messages from variable nodes to γ nodes can be calculated efficiently.

40

µci,j→γi,j
(ci,j) = µsi,j→ci,j (ci,j) +

N∑
n=1

T∑
t=1

µδn,t→ci,j (ci,j) + µγi,j+1→ci,j (ci,j) (2.27)

= µsi,j→ci,j (ci,j) + µδci,j→ci,j (ci,j) + µγi,j+1→ci,j (ci,j) (2.28)

For the messages to and from γ nodes, the versions for the variable node corresponding to

the earlier time-point have been expressed above. The messages between a γ node and a later

time-point are essentially the same except some variation in indexing. These messages should

be scaled to avoid numerical overflow. In the absence of a scaling method that improves the

efficiency of the calculation of any messages, the messages to and from γ node can be scaled

by their maximum value.

To maximize the new cost function, the messages defined above are sent iteratively with

the inclusion of a damping factor to avoid oscillations. The method of extracting “strong”

exemplars that was used for AP cannot be used for this model because the selection of ex-

emplars is influenced by the temporal constraint The arg max is taken over all incoming

messages to each variable node to find the current approximation of the maximizing configu-

ration. Once the approximation of the maximizing configuration has not changed for several

iterations, this configuration is taken as the solution.

2.4 Similarity Measure Construction

The choice of similarity measure can have a drastic effect on the outcome of a clustering pro-

cedure. The similarity measure should reflect similarities and differences that are meaningful

to the domain in which clustering is being applied. Similarity measure construction is made

more complicated when the data come from heterogeneous sources. This section discusses

an approach to incorporating expression as well as histone PTM data into a measure of

similarity between genes.

To incorporate data from several sources, the information associated with a gene from

each source is summarized as a scalar valued feature for that gene. The distributions of the

41

features over all genes are then standardized so that the features corresponding to different

data sources are on approximately the same scale. The set of feature vectors obtained in this

way may be used to construct a similarity measure by taking the opposite of the Euclidean

distance between each pair of vectors. The remainder of this section will discuss specific

concerns with respect to extracting features from gene expression and histone PTM data as

well as the appropriate distance measure to use to compare vectors of these features.

In the following it is assumed that there is a set X of N genes for which gene expression

and histone PTM measurements have been taken at T time points. Self similarity values

(e.g. S(i, i)) are left undefined because these values can be adjusted in order to make certain

points more or less likely to be chosen as exemplars.

2.4.1 Gene Expression Data

Data collected using DNA microarray technology should be corrected for background noise

using a method such as GCRMA [25] which uses a global model for the distribution of

probe intensities and takes into account the different propensities of the probes to undergo

non-specific binding based on their GC content. To make measurements from corresponding

probes on arrays from different experiments comparable, a normalization procedure should

also be applied. The quantile normalization method [4] corrects for between array noise by

imposing the same empirical distribution of probe intensities to each array.

Following background adjustment and normalization, measurements from the same probe

on different arrays are assumed to be comparable. It cannot be assumed that measurements

from different probes are comparable even on the same array. For example, genes that

are known to not be expressed in a given cell type by quantitative PCR exhibit probe

measurements that differ by significant amounts. The cause of these discrepancies seems

to be mainly based on sequence-specific effects of different probes. To account for between

probe noise, measurements for each probe from the first time point are taken to be baseline

measurements with which to normalize measurements from later time points. Unfortunately,

this removes the first time point from direct consideration in the state inference procedure.

42

See [12] for a more thorough discussion of concerns related to the preprocessing of DNA

microarray data.

2.4.2 Histone PTM Data

The histone PTM data that will be considered in this thesis are measured by chromatin im-

munoprecipitation combined with tiling array technology. Experimental evidence suggests

that the appearance of histone PTMs around the transcription start sites (TSS) of genes

is often indicative of gene regulation [17], so it is assumed that the tiling array includes

probes at a high enough resolution such that at least 10-20 probes fall within a set window

(e.g. 4000 base pairs) around the TSSs of the genes that are to be included in the analysis.

The tiling array experiments should be conducted such that two channels of data may be

extracted. One channel should be measured intensities corresponding to DNA fragments

enriched by immunoprecipitation that have been hybridized to the array. The other channel

should be measured intensities corresponding to DNA fragments that were not filtered by

immunoprecipitation. To correct for noise between the two channels, they should be nor-

malized in the following way. If ip and wce refer to the set of intensities from each channel,

the ip channel should be normalized to be ip′ = ip · median(wce)
median(ip)

. The ip′

wce
ratios can then be

used as a quantitative measure of how enriched locations in the genome are for a histone

PTM in the sample of cells used in the experiment. As with the microarrays used to measure

expression, between array noise must be corrected. The quantile normalization method is

also used for this purpose. An example of data that have been processed as described is

shown in Fig. 2-5.

To extract a feature from the histone PTM data for each gene, the normalized ratios that

fall within a set window around the TSS for each gene are considered as a vector. Because

the feature extracted for each gene from the expression data represents an amount of change

relative to the first time point, the features extracted from the histone PTM data should also

represent change rather than an absolute value. The vector of ratios for the first time point

is subtracted from the vectors from the later time points. The mean of the resulting vector

43

Figure 2-5: Data for the histone PTM H3K27me3 around the transcription start site of the
gene Hoxa5 in mouse embryonic stem cells. Each location for which there are data points
along the x-axis corresponds to a probe on the microarray. Multiple data points at each
location reflect replicate experiments. Data points from the same replicate are connected
by lines. The data have been normalized and thus the height of each data point is the
normalized ip′

wce
ratio measured in the experiment.

of differences for each gene at each time point is taken as a feature for the construction of the

similarity measure. If the ratios within the window around the TSS are thought of as being

sampled points from a curve, the method of calculating a histone PTM feature as described

above can be thought of as approximating the area between the curve from the time point

for which the feature is being calculated and the curve from the first time point.

2.4.3 Comparing Feature Vectors

Once scalar valued features have been calculated for each gene at each time point other

than the first time point, the similarity measure can be constructed by comparing the re-

sulting vectors of features. If these vectors are considered to be points in a Euclidean space,

Euclidean distance is a reasonable metric to use to compare points. To convert a distance

measure to a similarity measure, the opposite of the distance measure is taken.

44

2.5 Visualizing States and Trajectories

Given a similarity measure defined over N genes at T time points, TSAP can be run to

discover a set of states and the trajectories that genes take through them. To aid in the

interpretation of results from TSAP, a visualization method is proposed in this section. State

diagrams are abstractions used in systems research and theoretical computer science to rep-

resent simple machines. In its most basic form, a state diagram represents a set of states and

the transitions that may be made between them as a graph. In the diagram, nodes represent

states and edges represent possible transitions. This type of diagram is useful for visualiz-

ing the states found by TSAP and the transitions that genes take between states in their

trajectories. Additional information may be conveyed through such diagrams by weighting

nodes according to how often the corresponding states are visiting by the trajectories found

by TSAP. Also, edges can be weighted according to how often the corresponding transitions

are taken by the trajectories found by TSAP. An example state diagram is shown in Fig 2-6.

State diagrams compress the information about when during the time series states are

visited and transitions are taken. Thus, a related form of expanded state diagram is used

in the rest of this thesis. To preserve temporal information, states are drawn separately

for each time point. The nodes can then be weighted according to how many trajectories

pass through each state at each time point. Likewise, transitions made between each pair of

consecutive time points can be drawn separately. An example of this type of state diagram

is shown in Fig. 2-7.

45

Figure 2-6: An example of a state diagram with six states. Nodes and edges are weighted
to convey information about the usage of states and transitions by trajectories.

46

Figure 2-7: An example of an expanded state diagram with six states and five time points.
Nodes and edges are weighted to convey information about the usage of states and transitions
by trajectories. Edges for transitions taken by a small number of trajectories are left out to
improve clarity.

47

48

Chapter 3

Applications

Several applications of TSAP are presented in this chapter. TSAP is initially applied to

synthetic data to demonstrate its performance in a context where certain results are expected.

An application to a real data set representing the development of a neural system in mouse is

then presented. State diagrams are used to visualize the results from the real data. Several

observations are made with respect to the analysis of the real data that are of biological

significance.

In the applications of TSAP that follow, the self-similarity values si(ci) are always set to

be the same in order to make all data points equally likely to be chosen as exemplars. To be

consistent with the terminology of Frey and Dueck, the value that the self-similarity values

are set to will be referred to as the preference value. Also, in examining various amounts

of influence introduced by the γ(·, ·) function defined in Eqn. 2.22, the value of α2 will be

varied and the value of α1 will always be set to 0 to reduce the complexity of the analysis.

This is a reasonable decision because it makes for a more conservative analysis to assume

that false transitions between states should be avoided rather than false transitions that stay

in the same state. In the rest of this discussion, the value of α2 will be referred to as the

alpha value.

49

3.1 Synthetic Data

To demonstrate that TSAP is able to successfully recover states and trajectories from noisy

data sets, the algorithm was applied to two sets of synthetic data. In the first set, data

points were embedded in a two dimensional similarity space. This data set was designed

to demonstrate TSAPs ability to constrain the clustering of temporally related points. The

second set of synthetic data was designed to reflect patterns that are observed empirically

in genomic time-series data. The performance of TSAP on biologically motivated synthetic

data is supportive of the application of the algorithm to real data in the following section.

3.1.1 Toy Synthetic Data

A synthetic data set was constructed to contain points drawn from two Gaussian distributions

with similar means and the same variance. One approach to attempting to recover which

of the two distributions each point came from would be to partition the points into two

clusters. The two clusters found by a clustering method such as AP would reflect the two

underlying distributions in that the majority of the points assigned to a cluster would have

been generated by one of the two distributions. However, many points would not be assigned

to the cluster associated with the distribution that generated them. The reason for this is that

many points will be closer to the center of the cluster associated with the wrong distribution

because of the proximity of the means of the underlying distributions. A clustering method

such as AP will assign points to the cluster with the exemplar to which the points are the

most similar. As the results of TSAP on this synthetic data set will show, by incorporating

a temporal constraint it is possible to assign more points to the cluster associated with the

correct distribution.

The two distributions used to construct the synthetic data set were two-dimensional Gaus-

sian distributions with means (3, 2) and (3, 4) and covariance matrix equal to the identity

matrix. 100 points were sampled from each distribution. The points from each distribution

were broken up into pairs so that the data set can be interpreted as observations of objects

at two time points where the observations for a given object are from the same distribution

50

at both time points. The constructed data set is shown in Fig. 3-1.

A similarity measure was constructed for this data set by taking the negative Euclidean

distance between pairs of points. AP was run using this similarity measure over a range of

preference values. Fig. 3-2 depicts the number of clusters found by AP over a range of prefer-

ence values. The range of preference values for which AP finds two clusters is approximately

-92 to -44. The performance of AP on this data set was evaluated by associating each of the

exemplars from the runs that found two clusters to the distribution with the closest mean.

An object was determined to be correctly assigned to a cluster if it is assigned to the cluster

associated with the correct distribution. For the runs of AP that found 2 clusters, between

158 and 161 of the 200 points were assigned to the correct cluster. There is slight variation

in the number of correctly clustered points because AP finds slightly different exemplars for

different preference values, even when the same number of exemplars are found. Thus, about

20% of the points are closer to the wrong exemplar and AP cannot distinguish them from

the points from the other distribution.

TSAP was also run on this data set for a range of preference and alpha values. The

number of clusters found by TSAP varies with the parameter values (Fig. 3-3). The rela-

tionship between the preference value and the number of clusters found by TSAP is very

similar to AP. When the alpha value is set to 0 and TSAP finds two clusters, the number

of points that are correctly clustered ranges between 158 and 164. This range is somewhat

different from the range found by AP because of the different manner in which points are

assigned to clusters after convergence. The relationship between the alpha value and the

mean number of correctly clustered points when TSAP finds two clusters is shown in Fig

3-4. The number of correctly clustered points increases as the alpha value becomes more

negative and plateaus at -1.5. This is the alpha value less than which all objects are assigned

to the same exemplar at both time points when TSAP finds two exemplars. In other words,

the clustering of the objects is fully constrained when the alpha value is less than -1.5. By

incorporating a constraint on the manner in which points cluster, TSAP is able to assign

more points to the correct cluster. Some points are still clustered incorrectly at any alpha

51

Figure 3-1: The synthetic data set consisting of points drawn from Gaussian distributions
centered around (3, 2) and (3, 4). The points drawn from the two different distributions can
be distinguished by their shape and color. Points corresponding to observations for the same
object at different time points are connected by a line. In total, 50 objects were observed
from each distribution at two time points. 52

Figure 3-2: The number of clusters found by AP increases with the preference value.

53

value. This is either because both points in a connected pair happen to be similar to the

exemplar of the incorrect exemplar or one of the two points is so similar to the incorrect

exemplar that the other point is not able to influence its cluster assignment.

Figure 3-3: The number of states found by TSAP for each pair of parameter values is
represented by the height of the surface. Two regions of this plot are of particular note. The
parameter values for which TSAP finds one state are denoted by yellow. The parameter
values for which TSAP finds two states are denoted by blue.

54

Figure 3-4: The number of correctly clustered points is greater for more negative alpha
values.

55

3.1.2 Biologically Motivated Synthetic Data

To demonstrate the ability of TSAP to recover biologically meaningful results from genomic

data, synthetic data were constructed to reflect patterns that are observed empirically in

real data. Since running TSAP with an alpha value of 0 has been shown to be effectively the

same as AP, only TSAP was applied to this synthetic data set and to the real data in the

next section. Two types of fictional histone PTMs were designed to each take on a “high”,

“medium”, or “low” state as shown in Fig. 3-5. Synthetic gene expression data were also

constructed. Genes take one of five trajectories through the state space of histone PTM and

expression patterns (Table 3.1). The synthetic data include observations at six time points

for each gene.

�

�

�

�

�

��

��

��

��

��

��

�

�

�

�

��

��

��

��

��

��

�

�

�

�

��

��

��

��

��

��

�

�

�

�

�

��

��

��

��

��

��

�

�

�

�

�

��

��

��

��

��

��

�

�

�

�

�

��

��

��

��

��

��

Histone PTM A

High Medium Low

Histone PTM B

Figure 3-5: Synthetic histone PTM states.

Feature vectors were calculated from the synthetic histone PTM and expression data as

described in sections 2.4.1 and 2.4.2. To simulate the noise that would be present in real

data, values sampled from a Gaussian distribution with mean 0 and variance 9
16

were added

to the components of the feature vectors. This amount of noise was enough to create overlap

between the states. The paths taken by the five trajectories through feature space is shown

in Fig. 3-6. The dimensions of the feature vectors were standardized to put them on the

same scale. A similarity measure was then computed from the feature vectors as described

in section 2.4.3.

56

1. HML → HHL → HHL → MHL → MHM → MHM
2. HMM → HMM → HMM → HHM → MHM → MHH
3. HLO → HLO → HMO → HMO → MMO → MML
4. LLO → LLO → MLO → MLO → MLO → MLO
5. LMM → MMM → MMM → MLM → MLM → MLL

Table 3.1: The five trajectories contained in the synthetic data are represented in this table.
Arrows separate each time point. The data at each time point are represented by three
letters corresponding to the two histone PTMs and gene expression. H, M, L, and O stand
for high, medium, low, and off, respectively.

(a) Trajectory 1 (b) Trajectory 2 (c) Trajectory 3

(d) Trajectory 4 (e) Trajectory 5

Figure 3-6: (a)-(d) show the feature vectors calculated from the biologically motivated syn-
thetic data with noise added. The paths taken by the five trajectories are also shown. The
five trajectories each have five time points, but visit fewer locations in feature space because
each of the trajectories visit at least one location in feature space for more than one time
point.

57

TSAP was run over a range of alpha values with preference values for which seven states

are found at each alpha value. There are seven states present in the synthetic data, so the

performance of TSAP when this number of states is found is of interest. As a measure of

clustering performance, the fraction of time points at which each gene was correctly clustered

was calculated from the results of each run of TSAP. This fraction is sometimes referred to

as the micro-averaged precision [7] in the clustering literature. Each exemplar found by

TSAP was associated with the state that the greatest number of observations assigned to

that exemplar were designed to be part of in the synthetic data. Each gene at each time

point was considered to be correctly clustered if it was assigned to the correct exemplar at

that time point. For each alpha value, TSAP found seven exemplars for a range of preference

values. Fig. 3-7 shows the median micro-averaged precision over a range of alpha values.

The maximum median micro-averaged precision is achieved when the alpha value is -0.14.

The median micro-averaged precision decreases for more negative alpha values because the

assignment of genes to states is overly constrained. Thus, a moderate temporal constraint

improves the performance of clustering on this biologically inspired synthetic data set.

3.2 Real Data

3.2.1 Description of Data Analyzed

The time series histone PTM and expression data analyzed in this section were generated

through a collaborative effort between researchers at Columbia University and MIT. The cells

used to provide material for the experiments were collected at specific stages of a directed

differentiation protocol developed by Wichterle et al. [24] This protocol involves the subjec-

tion of embryoid bodies derived from mouse ES cells to specific inducers that simulate the

neural identity specifying signals received by cells in vivo. During the course of this protocol

cells were found to express markers of key stages of neural development. Furthermore, cells

derived from ES cells with this protocol were shown to behave like embryonic motor neurons

when grafted into live embryos. These results suggest that expression and histone PTM data

58

−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Alpha Value

M
ed

ia
n

M
ic

ro
−

A
ve

re
ge

d
P

re
ci

si
on

Figure 3-7: The median micro-averaged precision for a range of alpha values over preference
values such that seven states were found. 59

measured in cells collected during the course of this directed differentiation protocol can be

used to gain insight into the genomic activities involved in motor neuron development.

The time points included in the experiments were chosen relative to important steps in

the protocol (Fig. 3-8). Cell samples were collected at each stage for analysis. The gene

expression data were measured using Affymetrix microarray technology. Histone H3 lysine

4 trimethylation (H3K4me3) and histone H3 lysine 27 trimethylation (H3K27me3) were

measured with a combination of chromatin immunoprecipitation (ChIP) using antibodies

for the two marks and custom designed tiling microarrays made by Agilent. The Agilent

arrays were designed to include genes from the Hox clusters as well as other genes that are

expressed during motor neuron development. The reason for including the Hox genes in the

array design will be described in section 3.2.3. A set of negative control genes were also

included on the array.

A similarity measure over genes was constructed as described in Section 2.4. The resulting

similarity measure was defined for 991 genes at 5 time points. The features extracted from

the three sources of data are shown in Fig. 3-9. Table 3.2 shows that H3K27me3 is negatively

correlated with both H3K4me3 and expression, while H3K4me3 is positively correlated with

expression. This is in accordance with previous observations made about the relationship

between these histone PTMs and expression.

Data Correlation Coefficient
H3K27me3 vs. H3K4me3 -0.544
H3K27me3 vs. Expression -0.3967
H3K4me3 vs. Expression 0.4952

Table 3.2: Correlation between data sources

3.2.2 Inferring States and Trajectories

TSAP was run over a range of parameter values using the constructed similarity measure.

Fig. 3-10 shows the relationship between parameter values and the number of states that

were found. Choosing a reasonable setting of parameters is a difficult task for most clus-

60

Figure 3-8: The time points included in the experiments are shown here. The gene names
within the circles are genetic markers for stages of neural development that are expressed
at the indicated time points. Days are numbered starting with untreated ES cells. After
two days, the cells have formed embryoid bodies. Cells are collected immediately before and
eight hours after the addition of retinoic acid (RA). By day 3 the cells are expressing Sox1
which is a marker for neural progenitors. By day 4, the cells are expressing Olig2 which is
a marker for committed motor neuron progenitors. By day 7, the cells are expressing Hb9
which is a marker for postmitotic ventral motor neurons.

61

(a) H3K27me3 vs. H3K4me3 (b) H3K27me3 vs. Expression (c) H3K4me3 vs. Expression

Figure 3-9: Visualization of the features extracted from the data.

tering methods. It is reasonable to choose a preference value independently of the alpha

value because the effect of the preference value on the number of states found is relatively

independent of the alpha value. It can be seen in Fig. 3-10 that for a large range of the more

negative preference values, the number of states found by TSAP is fairly stable. This reflects

the organization of the data in that increasing the number of exemplars only improves the

optimized value of the cost function when the preference value has increased by a relatively

large amount. When the number of clusters becomes less stable for less negative preference

values, this is evidence of overfitting. Thus, a preference value of -30.0 was chosen because

this is one of the least negative preference values for which the number of states found by

TSAP is still stable.

The alpha value influences how dissimilar consecutive data points in a trajectory must

be in order for a state transition to be found by TSAP. A state transition will be made if the

similarity of a data point to the exemplar of the new state plus the penalty for transitioning

to the new state is still greater than the similarity of the data point to the exemplar of the

old state. A state transition should not be made when the dissimilarity between consecutive

data points in a trajectory is due to noise. If it is assumed that the top 10 percent of

similarity values correspond to similarities between data points in the same state, the alpha

value should be more negative than the top tenth percentile of the values taken by the

similarity measure. This value is approximately -0.22. The alpha value should not be much

more negative than this value or else clustering will be overly constrained. Thus, an alpha

62

Figure 3-10: The alpha value varies between -0.5 and 0 and the preference value varies
between -150 and 0. The number of states found by TSAP for each pair of parameter values
is represented by the height of the surface. Note the large region of preference values for
which the number of states found by TSAP is relatively stable.

63

value of -0.25 was chosen.

The exemplars found by TSAP are shown in Fig. 3-11. The state diagram in Fig. 3-12

represents the results found by TSAP. 264 unique trajectories were found by TSAP. The

trajectories taken by the most genes are listed in Table 3.3. The most common trajectory

is the trajectory taken through state 1 at all time points. This state represents the least

amount of change from the ES cell stage. Thus, 210 of the genes in the data set are found

by TSAP to stay relatively unchanged from their ES cell state throughout the entire time

series.

Trajectory Size
< 1, 1, 1, 1, 1 > 210
< 7, 7, 7, 7, 7 > 104
< 1, 2, 2, 2, 2 > 36
< 1, 1, 1, 1, 5 > 30
< 7, 7, 7, 7, 8 > 26
< 6, 6, 6, 6, 6 > 24
< 8, 8, 8, 8, 8 > 18
< 5, 5, 5, 5, 5 > 17
< 4, 4, 4, 4, 4 > 16
< 7, 2, 2, 2, 2 > 13

Table 3.3: Trajectories taken by the greatest number of genes.

One of the more common trajectories is the one that stays in state seven until day 7 at

which point it transitions to state 8. This corresponds to a moderate decrease in H3K4me3

at all stages relative to the ES cell stage and then a fairly large decrease in expression at the

last time point. Eight of the twenty-six genes that take this trajectory are associated with

the gene ontology (GO) category for cell cycle. This is interesting because cells at day 7

of the differentiation protocol express Hb9 which is a genetic marker of post-mitotic ventral

motor neurons. Thus, this trajectory captures the down-regulation of cell cycle related

genes as cells leave the cell cycle. It is also interesting that the change in expression occurs

significantly later than the change in H3K4me3.

64

Figure 3-11: The exemplars found by TSAP. The title of each chart is the name of the
gene and the time point at which it is being used as an exemplar. For each exemplar,
the H3K27me3, H3K4me3, and expression features that were calculated for the similarity
measure are shown as bars. Recall that the features represent an amount of change from the
initial time point (ES cell stage). The exemplars can be taken as representative of the data
points assigned to them by TSAP.

65

Figure 3-12: State diagram representing TSAP results for α = −0.25 pref = −30.0

66

3.2.3 Regulatory Trajectories of the Hox Genes

A set of homeodomain transcription factor encoding genes known as the Hox genes are of

particular importance to motor neuron development. There are four “clusters” of Hox genes

in the mouse genome that are labeled Hoxa through Hoxd. The genes of each cluster are

located within close proximity of each other in the genome, however the four clusters are

each located on different chromosomes. Each Hox cluster contains genes numbered 1 through

13 with some missing from each cluster. Hox genes from the lower numbered end of each

cluster (e.g. Hoxa1, Hoxc4, etc.) will be referred to as anterior whereas Hox genes from the

opposite end of each cluster (e.g. Hoxb9, Hoxd13, etc.) will be referred to as posterior.

Within the organization of the central nervous system, cells are identified as belonging to

specific neural subtypes. Subtype specification is important in the spinal cord where it has

been observed that different motor neuron subtypes innervate different muscle targets. To

a large extent, the identity of a motor neuron is reflected in the set of transcription factors

expressed by the neuron’s progenitors and by the neuron itself. In particular, spinal motor

neurons exhibit patterns of Hox gene expression according to their position along the rostro-

caudal axis of the spinal cord. Thus, motor neuron subtype identities are specified in part

by the selective activities of the proteins encoded by the Hox genes [6]. The mechanisms by

which the distinct patterns of Hox gene expression are established in motor neuron subtypes

are not well understood. Thus, it is of interest to investigate the regulatory trajectories of

the Hox genes during motor neuron development. A state diagram that has been filtered to

include only the Hox genes is shown in Fig. 3-13.

The results found by TSAP suggest a potential regulatory mechanism involved in estab-

lishing the subtype specific Hox expression pattern. A majority of the more anterior Hox

genes end up in a state by day 7 that is characterized by increased expression along with

decreased levels of H3K27me3 and increased levels of H3K4me3. On the other hand, most

of the more posterior Hox genes exhibit expression levels that have not changed seven days

after the ES cell stage and are in a state that is characterized by increased H3K27me3 and

decreased H3K4me3. Overall, we observe 24 different trajectories taken by the 33 Hox genes

67

Figure 3-13: State diagram for genes from the Hox clusters

68

through 10 of the 13 states that are found by TSAP when run on the entire data set. How-

ever, 23 or more than half of the Hox genes end up in two of the thirteen states. One of the

states, state 10, is characterized by an increase in H3K27me3 and a decrease in H3K4me3

with little change in expression as compared to the ES cell stage. We will refer to this state as

the repressed state. The Hox genes that are assigned to this state by TSAP are all posterior

Hox genes. The other state to which more than half of the Hox genes are assigned at the

last time point is state 13. This state is characterized by decreased H3K27me3, increased

H3K4me3, and increased expression. We will refer to this as the activated state. The Hox

genes that are assigned to this state are all anterior to the Hox genes that were assigned to

the repressed state at this time point. The difference between these two states reflects the

expression pattern of anterior Hox genes that indicate the motor neuron subtype identity of

the cells that are at the seventh day of the differentiation protocol.

State diagrams that are filtered to only include the Hox genes that are assigned to the

repressed or activated states at the last time point are shown in Figs. 3-14 and 3-15 respec-

tively. The trajectories in Fig. 3-14 demonstrate that most of the posterior Hox genes are

assigned to the repressed state by day 3 and all of them are in the state by day 4. Days 3

and 4 express genetic markers for neural progenitors and committed progenitors respectively.

The trajectories in Fig. 3-15 demonstrate that most of the anterior Hox genes have been

assigned to the activated state by day 3. In fact, many of the anterior Hox genes are already

in this state by 8 hours after the addition of RA. Interestingly, many of the trajectories of

the posterior Hox genes pass through state 4 at the 8 hours after day 2 time point. This in-

dicates that many of the posterior Hox genes exhibit decreased H3K27me3 after the addition

of RA before gaining H3K27me3 and losing H3K4me3 by day 3. Overall, the trajectories

of the anterior and posterior Hox genes indicate that most of the gene regulation involved

in establishing the Hox gene expression patterns that reflect neural subtype identity has

occured by the time cells are starting to express genetic markers of neural progenitors at day

3.

69

Figure 3-14: State diagram for Hox genes that are assigned to state 10 at day 7. These are
all posterior Hox genes.

70

Figure 3-15: State diagram for Hox genes that are assigned to state 13 at day 7. These are
all anterior Hox genes.

71

72

Chapter 4

Conclusion

In this thesis, we presented an approach to inferring regulatory states and trajectories from

dynamic genomic data along with a method for constructing a similarity measure from gene

expression and histone PTM data. We presented applications of TSAP to three data sets.

We demonstrated with two synthetic data sets that TSAP is able to recover expected states

and trajectories in a robust manner. Furthermore, by incorporating information about the

temporal relationship among data points, TSAP was shown to outperform AP. We presented

a third application of TSAP to a data set that reflected important stages of motor neuron

development. By examining the trajectories taken by the Hox genes through regulatory

states as found by TSAP, we were able to gain insight into the regulatory mechanisms that

underly neural subtype specification.

4.1 Future Work

As the ability to manipulate embryonic stem cells improves and the use of technologies

such as high-throughput sequencing [19] increases, the amount of dynamic genomic data

will continue to grow. Thus, the ability to analyze temporal data using methods such as

TSAP will become crucial to the task of uncovering the mechanisms behind gene regulation.

Several improvements could be made to TSAP. One very useful improvement would be to

73

incorporate a method for learning the α1 and α2 parameters of the γ(·, ·) function from the

data.

A further improvement to the modeling approach taken by TSAP could be made based

on the observation that the current γ(·, ·) function could be generalized. In the current

proposed method, a distinction is only drawn between transitions that stay in the same

state and transitions between different states. Conceivably, if parameters for a generalized

γ(·, ·) function could be learned, the function could draw a distinction between each possible

different transition between states. This would make the manner in which TSAP models

transitions between states even more similar to a HMM while still maintaining the advantages

that TSAP holds over HMMs mentioned in section 1.4. The problem of inferring states and

trajectories from dynamic data arises in other fields besides gene regulation. Thus, it will

be of interest to apply TSAP to additional data sets.

74

Bibliography

[1] M. J. Beal, Z. Ghahramani, and C. E. Rasmussen. The infinite hidden markov model.
In NIPS, volume 14, 2002.

[2] C. Berrou, A. Glavieux, and P. Thitimajshima. Near shannon limit error-correcting
coding and decoding: Turbo-codes. In Proceedings 1993 IEEE International Conference
on Communications, 1993.

[3] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, New York, New
York, first edition, 2006.

[4] B. M. Bolstad, R. A. Irizarry, M. Astrand, and T. P. Speed. A comparison of normal-
ization methods for high density oligonucleotide array data based on variance and bias.
Bioinformatics, 19:185–193, 2003.

[5] M. Charikar, S. Guha, É. Tardos, and D. Shmoys. A constant-factor approximation
algorithm for the k-median problem. Journal of Computer and System Sciences, 65:129–
149, Aug 2002.

[6] J. S. Dasen, B. C. Tice, S. Brenner-Morton, and T. M. Jessell. A hox regulatory
network establishes motor neuron pool identity and target-muscle connectivity. Cell,
123:477–491, Nov 2005.

[7] I. S. Dhillon, S. Mallela, and D. S. Modha. Information theoretic co-clustering. In
Proceedings of the 9th ACM SIGKDD, pages 89–98. ACM Press, 2003.

[8] M. Eisen, P. Spellman, P. Brown, and D. Botstein. Cluster analysis and display of
genome-wide expression patterns. Proceedings of the National Academy of Sciences of
the United States of America, 95:14863–14868, Dec 1998.

[9] J. Ernst, O. Vainas, C. T. Harbison, I. Simon, and Z. Bar-Joseph. Reconstructing
dynamic regulatory maps. Molecular Systems Biology, 3:74, 2007.

[10] B. Frey and D. Dueck. Clustering by passing messages between data points. Science,
315:972–976, Feb 2007.

[11] S. F. Gilbert. Developmental Biology. Sinauer, Sunderland, Massachusetts, eighth
edition, 2006.

75

[12] G. Grant, E. Manduchi, and C. Stoeckert. Current Protocols in Molecular Biology,
chapter 19. John Wiley and Sons, Inc, Jan 2007.

[13] J. Handl, J. Knowles, and D. B. Kell. Computational cluster validation in post-genomic
data analysis. Bioinformatics, 21:3201–3212, Aug 2005.

[14] D. J. Huebert, M. Kamal, A. ODonovana, and B. E. Bernstein. Genome-wide analysis
of histone modifications by chip-on-chip. Methods, 40:365–369, Dec 2006.

[15] M. I. Jordan. Graphical models. Statistical Science, 19:140–155, 2004.

[16] B. H. Juang and L. R. Rabiner. A probabilistic distance measure for hidden markov
models. AT&T Technical Journal, 64, Feb 1985.

[17] T. Kouzarides. Chromatin modifications and their function. Cell, 128:693–705, Feb
2007.

[18] F. Kschischang, B. Frey, and H. Loeliger. Factor graphs and the sum-product algorithm.
IEEE Transactions on Information Theory, 47, Feb 2001.

[19] T. Mikkelsen, M. Ku, D. Jaffe, B. Issac, E. Lieberman, G. Giannoukos, P. Alvarez,
W. Brockman, T. Kim, R. Koche, W. Lee, E. Mendenhall, A. O’Donovan, A. Presser,
C. Russ, X. Xie, A. Meissner, M. Wernig, R. Jaenisch, C. Nusbaum, E. Lander,
and B. Bernstein. Genome-wide maps of chromatin state in pluripotent and lineage-
committed cells. Nature, advanced online publication:553–560, Jul 2007.

[20] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann Publishers, Inc., San Francisco, California, revised second edition,
1988.

[21] B. Ren, F. Robert, J. Wyrick, O. Aparicio, E. Jennings, I. Simon, J. Zeitlinger,
J. Schreiber, N. Hannett, E. Kanin, T. Volkert, C. Wilson, S. Bell, and R. Young.
Genome-wide location and function of dna binding proteins. Science, 290:2306–2309,
Dec 2000.

[22] T. Richmond and C. Davey. The structure of dna in the nucleosome core. Nature,
423:145–150, May 2003.

[23] M. Schena, D. Shalon, R. Davis, and P. Brown. Quantitative monitoring of gene ex-
pression patterns with a complementary dna microarray. Science, 270:467–470, Oct
1995.

[24] H. Wichterle, I. Lieberam, J. Porter, and T. Jessell. Directed differentiation of embryonic
stem cells into motor neurons. Cell, 110:385–397, Aug 2002.

[25] Z. Wu, R.A. Irizarry, R. Gentleman, F.M. Murillo, and F. Spencer. A model based
background adjustment for oligonucleotide expression arrays. Technical Report TR-
2001-22, John Hopkins University, Department of Biostatistics, Baltimore, MD, 2003.

76

[26] J. S. Yedidia, W. T. Freeman, and Y. Weiss. Understanding belief propagation and its
generalizations. Technical Report TR-2001-22, Mitsubishi electric research laboratories,
Cambridge, Massachusetts, Jan 2002.

77

