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Abstract
Network testbeds are critical for systems research but can
be problematic due to their complex nature. Testbeds
like Emulab allocate physical computers to users for the
duration of an experiment. During an experiment, a user
has nearly unfettered access to the devices under his or her
control. Thus, at the end of an experiment, an allocated
computer can be in an arbitrary state. A testbed must
reclaim devices and ensure they are properly configured
for future experiments. This is particularly important for
security-related experiments: for example, a testbed must
ensure that malware cannot persist on a device from one
experiment to another.

Physical testbed nodes can be securely reconditioned in
a scalable, maintainable way by making use of the Trusted
Platform Module (TPM) and through adherence to a strict
network boot protocol. This thesis presents the TDLS
that we have implemented for Emulab. When Emulab
allocates a PC to an experiment, the TDLS ensures that if
experiment set-up succeeds, the PC is configured to boot
the operating system specified by the user. The TDLS
uses the TPM of an allocated PC to securely communi-
cate with Emulab’s control infrastructure and attest about
the PC’s configuration. The TDLS prevents state from
surviving from one experiment to another, and it prevents
devices in the testbed from impersonating one another.
The TDLS addresses the challenges of providing a scal-
able and flexible service, which allows large testbeds to
support a wide range of systems research. We describe
these challenges, detail our TDLS for Emulab, and present
the lessons we have learned from its construction.

1 Introduction

Like other fields, experimentation is critical to systems
research. Since the ideal testing environment for some
experiments is hundreds of computers which must be con-
nected in a specific network topology, experiment creation
is hard. The cost of creating such an experimental envi-
ronment is restrictively high, both in terms of hardware
and man power. Furthermore, it is not clear that investing
in the creation of this system would be worthwhile since

early experimental results may advise against pursuing
the current work further.

To aid us in this problem of complex and costly exper-
iment creation, researchers use what are known as “net-
work testbeds.” A testbed is a network of computers (also
called “nodes”) with supporting software that enables the
experimenter to easily create arbitrary virtual network
topologies with physical nodes. The experimenter is then
given full access to the nodes to do as they see fit.

Network testbeds are generally designed to help users
create test environments that are realistic. That is, in
order to produce practically useful results, experimenters
often want to create test environments that are like true
deployment environments with respect to the properties
of interest to a test. In addition, for systems-level research,
testbed users often need a great deal of freedom within
the environments they create. A systems researcher may
need to install custom operating systems, use nonstandard
network protocols, or perform other administrator-like
tasks.

To support both realism and freedom, testbeds like
Emulab are designed to allocate actual physical devices
as well as virtual devices to users [21]. For the duration
of an experiment, a user has exclusive and essentially
complete control over the devices that are allocated to him
or her. At the end of an experiment, the user releases the
devices back to the testbed, and the testbed must reclaim
them. Virtual devices are straightforward: they can simply
be destroyed by the testbed. Physical devices, however,
must be recovered so that they can be usefully and safely
allocated to another user in the future. Since physical
devices are composed of many pieces of hardware and
those pieces often have their own persistent storage of
some kind, it is difficult to be confident that a device’s
state has been completely reset.

In this thesis, we describe the system we designed,
implemented, and use in production at Emulab which se-
curely recovers and “reconditions” physical devices that
support secure remote attestation. This includes most
modern PCs, which contain Trusted Platform Module
(TPM) hardware [19]. Emulab regains control over these
devices in a trustworthy manner through a protocol rooted
in the TPM of each device. Once a node is brought un-
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der Emulab’s control, Emulab prepares the node for a
new experiment by loading the node’s disk with contents
chosen by the experiment’s creator. Emulab’s trusted disk-
loading system (TDLS) is responsible for both of these
steps. In addition to preventing unwanted state from per-
sisting on a device from one experiment to the next, the
TDLS protects Emulab against other attacks that would
misconfigure the devices allocated to an experiment.

When Emulab creates an experiment environment for
a user, the TDLS ensures that the allocated PCs are con-
figured to boot the user-specified disk images. The TDLS
does not guarantee that the software within a disk image
is “secure” by any standard, nor does it protect a PC from
attacks during the execution of an experiment. Indeed,
testbed users often want to install and study insecure soft-
ware. The job of the TDLS is to set the initial states—disk
contents and boot data—of the PCs allocated to an exper-
iment as specified by the experiment’s creator. If the PCs
cannot be so configured, the TDLS will cause the creation
of the experiment to fail.

Emulab’s TDLS addresses several challenges in pro-
viding a secure node-configuration service for a large
testbed that supports systems-level experiments on phys-
ical devices. The first is merely to regain control over
physical nodes as they are released from experiments. An
experiment may leave a device in an arbitrary—or even
dangerous—state. The TDLS regains control through a
combination of power control, remote attestation, and
cryptographically secure network protocols. A second
challenge comes from the size and diversity of the testbed.
The Utah Emulab site contains hundreds of PCs. In ad-
dition, the site provides dozens of standard disk images
that may be loaded onto those nodes, and users are free
to create their own. The TDLS is therefore designed to
require little or no administrator action when new devices
or disk images are added to a testbed. A third challenge
is to repel network-based attacks against the TDLS. This
includes preventing a device from pretending to be Em-
ulab’s trusted control server, and preventing devices in
untrusted states from initiating or rejoining the trusted
disk-loading protocol. These issues are addressed through
the design of the TDLS protocol and careful handling of
the TPM.

The first contribution of this thesis is the identification
of two design principles for building distributed, scalable,
and secure boot-chains. These principles are: (1) Fine-
grained measurement and frequent reporting of the boot
chain allows for early error detection and attack surface
minimization; (2) Partitioning the static components from
the frequently updated components of the boot chain min-
imizes maintenance costs due to code evolution. The
second contribution is the design and implementation de-
tails of the trusted disk-loading system we created for
Emulab. In addition, this thesis summarizes the “lessons

learned” from the development of our TDLS.
We will first cover the necessary background by de-

scribing Emulab and the capabilities of the Trusted Plat-
form Module in section §2. In section §3, the challenges
and shortcomings of Emulab’s standard disk reloading
system are analyzed and our threat model is given. The
design of the Trusted Disk Loading System, how it is able
to remotely verify a node’s integrity, and how most the
initial setup can be automated are detailed in section §4.
Section §5 argues that similar providers can benefit from
the TDLS and it’s design principles and section §6 covers
our lessons learned.

2 Background
Our Trusted Disk Loading System was designed for Emu-
lab [21] with the Trusted Platform Module [19] being a
core component. The properties of the Emulab environ-
ment greatly influence the design decisions of the TDLS
and set this work apart from others.

2.1 Emulab

Emulab is a well-known network and distributed-systems
testbed that emphasizes realistic experimentation by pro-
viding its users with physical hardware. Users do not have
physical access to the testbed; instead, users communicate
with Emulab and its resources remotely via the Web, SSH,
and other Internet protocols. The testbed is managed by a
trusted control server, called boss.

When a user creates an experiment, Emulab allocates
physical resources—real PCs running real OSes and con-
nected by physical switching infrastructure—to the exper-
iment. When a machine (node) is allocated to an experi-
ment, the creator of the experiment controls all aspects of
that node: e.g., what operating system is running, what
applications are installed, and how the nodes are inter-
connected with each other. This control extends beyond
experiment set-up. Because a user has “root” access to his
or her nodes, he or she can install and remove software at
any time during an experiment.

Emulab is also a shared facility. Its physical cluster
is space-shared: at any given time, multiple independent
experiments may be taking place, each in its own alloca-
tion of physical resources. Emulab isolates experiments
so that they cannot observe or interfere with each other.
Emulab’s resources are also time-shared. A node that is
allocated to one user’s experiment at a particular point in
time will be dedicated to a different user’s experiment for
an entirely different purpose at a future time.

2.2 The Trusted Platform Module

A TPM is a stand-alone tamper-resistant microcontroller
that is a standard component of many current desktop
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Figure 1: A high-level layout of quotes. Quotes are used in
remote attestation and are signed by the TPM after they are
filled in.

and server machines. In general, it improves security by
making secret encryption keys available for use without
ever divulging the keys. It can also guarantee that spe-
cific pre-determined keys are only usable when the PC is
judged to be in a certain state. The capabilities we rely on
are (1) its ability to provide secure key storage and (2) its
ability to securely attest to the measurements of software.

Every TPM contains a Storage Root Key (SRK) that is
created before the TPM can be used and never leaves the
chip. The TPM cannot be used before the SRK is created
because all other generated keys are encrypted with the
SRK ensuring that no key ever leaves the chip in an un-
encrypted form. A TPM can generate other asymmetric
keys and encrypt them with the SRK so that they can only
be used by the TPM that generated them. The encrypted
keys are then exported from the TPM and can be stored
anywhere. For safety, it is not possible to use the SRK
directly. A TPM also includes some number of Platform
Configuration Registers (PCRs). A PCR cannot be writ-
ten with arbitrary values (it would provide no security
if it were directly writable as its current value would be
meaningless); instead, a PCR can only be extended, an
operation that stores a SHA-1 hash of the current PCR
value concatenated with a new value. A PCR value is
called a measurement and is a secure hash of some piece
of state on the machine.

An attested boot of a machine causes each stage of the
boot process, starting with the BIOS, to measure the next
stage of the boot chain into a PCR. The effect is that, at
any stage of the bootstrap, there is a unique set of PCR
values that attest to the current state of the machine. By
remotely comparing this set of values against a precom-
puted set of correct values, one can be assured that the
machine is in a particular state.

To securely transfer a set of PCR values to a remote
machine, the TPM supports a quote operation. The quote
operation requires a TPM-created Attestation Identity
Key (AIK), the indices of the PCR registers whose values
are wanted, and a nonce (shown in Figure 1). The TPM
creates a list of the desired PCR values combined with the
nonce, hashes it, and signs the hash with the AIK. This
signed hash is called a quote. The quote is then returned
to the remote machine, which verifies the signature and
checks the PCR values.

TPM-supported remote attestation in no way prevents
tampering with the boot path: it only makes it possible
for an outside party (Emulab) to reliably detect any tam-
pering that does occur. As such, it is just one element of
providing the TDLS.

2.3 Related Work

Emulab’s TDLS establishes only the initial condition of
a physical PC that has been allocated to an experiment.
This purpose distinguishes our TDLS from prior work that
uses the TPM to implement secure bootloading, integrity
guarantees, and execution services.

Emulab’s TDLS is not “just” a secure bootloader; it is
a large system that embeds a secure bootloader to imple-
ment a particular, staged, disk-loading protocol. The goal
of a typical secure bootloader is to ensure properties of the
“user-visible” OS being booted. In contrast, the task of the
TDLS is only to ensure that a machine is ready to boot
the user-visible OS, and is independent of the properties
of that OS. The security (or insecurity) of the OS con-
tained within an Emulab disk image is explicitly up to the
experimenter. This is necessarily so: for security-related
experiments, users must be allowed to install whatever
OSes they choose.

This difference in purpose leads to differences in de-
sign. TrustedGRUB [17], for instance, uses the TPM to
measure not only the binary of the kernel being loaded,
but also individual files that are important to the system.
In contrast, Emulab’s TDLS is designed to load entire
disk images, so measuring the kernel or individual files
within a disk image is unnecessary.

Our TDLS uses a static root of trust for measurement
(SRTM): i.e., measurement of a system’s BIOS at boot
time. The OSLO bootloader by Kauer [11] establishes a
dynamic root of trust by using the “late-launch” features
of AMD processors. This technique removes the BIOS
from the trusted computing base, which is useful in princi-
ple and practice. We chose to use the SRTM in our TDLS.
Unlike OSLO, TDLS incorporates an agent (boss) that
can be trusted to demand quotes, verify them, and take
corrective actions.

There is much work that aims to provide integrity
guarantees to running operating systems. Examples in-
clude SecVisor [18], a hypervisor that protects a kernel
against code-injection attacks; Livewire [8], an intrusion-
detection system based on VM introspection; Terra [7], a
trusted virtual machine monitor that protects virtual ma-
chines from each other and from the underlying platform;
and rootkit-resistant disks [2], which prevent system files
from being modified on a node’s persistent store. Unlike
these systems, our TDLS guarantees only the initial state
of a user-chosen operating system. Our TDLS provides
integrity at the start of a testbed-based experiment, not



within a running experiment. Also, because Emulab pro-
vides users with unmediated access to physical devices,
our TDLS avoids hypervisor- and VM-based approaches
to ensuring the integrity of nodes.

Flicker [12] uses TPM and late-launch features to cre-
ate trustworthy environments for code execution. Flicker
allows code to be executed securely at essentially any
time, whereas our TDLS is concerned with executing
code only at node-configuration time. A possible future
project would be to use Flicker to allow a testbed to se-
curely monitor experiments over their full lifetimes.

Dunn et al. [4] designed and implemented a protocol
which uses late-launch and the TPM to distribute and
execute malware while never revealing the malware in an
unencrypted form. The malware’s behavior can be kept
secret by encrypting the malware payload with a key that
only the TPM has access to and by using late-launch to
make execution observation infeasible. Their work uses
the TPM against the owners of the hardware and their
goal is secrecy while ours is primarily system integrity
with secrecy being secondary.

3 Disk-Loading Challenges

Because devices are time-shared, Emulab must “wash”
every physical device between the time it is released by
one experiment and the time it is allocated to another.
When a device is released from an experiment, however,
it can be in a nearly arbitrary state. That state might con-
tain malware that was the subject of the just-completed
experiment, for example, and which must not be trans-
ferred to subsequent experiments. More egregiously, a
malicious user might leave a device in a state that attempts
to subvert Emulab’s ability to recondition the node for
subsequent uses. Consider a user who wants to transfer
malware to subsequent experiments, or who wants to spy
on future experiments. Such a user might install software
that participates in Emulab’s disk-loading protocol, but
which does not actually reload the disk—thus allowing
the malware or spyware to persist.

Because the testbed is space-shared, other experiments
will be running while Emulab prepares nodes for a new
experiment. These can also threaten Emulab’s ability to
recondition devices as they pass from use in one exper-
iment to use in another. Malware within an experiment
may try to migrate onto a reloading node, or a malicious
user might try to hijack the disk-reloading process to
propagate malware or spyware.

Emulab must ensure that the node-reloading process
happens completely and correctly, without interference
from (1) software on the node being reloaded or (2) any
current experiments running on the testbed. Below, we
describe Emulab’s standard node re-imaging mechanism
and how it addresses—or falls short of addressing—the
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Figure 2: The Emulab node-imaging state machine.

threats outlined above. In Section 4, we describe how our
new trusted disk-loading system addresses the shortcom-
ings of the current, standard mechanism.

3.1 Standard Disk Loading

Emulab’s standard disk-loading process involves two de-
vices: the device being reloaded and Emulab’s boss con-
trol server. As detailed below, the reloading device is
expected to contact various services running on boss to
obtain the data that it needs to configure itself for use in
a new experiment. Testbed devices communicate with
boss through a dedicated control network. At Utah’s Em-
ulab site, the control network connects all the PCs in the
testbed to Emulab’s central servers, including boss.

All PCs in Emulab are connected to power controllers
(accessible to boss) and configured to boot only from the
control network. These are the primary elements that
ensure that Emulab can always gain control of a node,
regardless of the state it is in. The boss server can power-
cycle a node, and the node will then load a known first-
stage boot program that allows boss to manage the node.
Typically, boss directs the node to boot from its hard drive
or to reload its hard drive.

Emulab uses a set of state machines [13] to track the
states of nodes under its control. Events, including some
that are “self-reported” by the monitored nodes, cause
nodes to transition between states, which are tracked by
boss. Trigger actions can be invoked when nodes enter
states, and timeouts associated with each state allow cor-
rective actions to be performed when a node misbehaves.

Figure 2 shows the state machine that controls disk



imaging. In the first part (the upper shaded region), Emu-
lab regains control of the node and boots it into an envi-
ronment from which the node can be re-imaged.

The node is placed in the SHUTDOWN state and Emulab
uses its power-cycling capability to force the node to
reboot. The system or network card BIOS on the power-
cycled node ensures that the control network interface will
perform a PXE [10] boot. The PXE BIOS uses DHCP to
obtain IP information for the node along with the name of
the next-stage bootloader, which it downloads via TFTP
and then executes. The DHCP request to boss causes a
state transition to PXEBOOTING.

The next-stage loader is pxeboot, a custom Emulab
boot program. The pxeboot loader talks to the Emulab
bootinfo service to determine what the node should do
next: boot from a partition on disk, or download an OS
kernel and memory-based filesystem image (collectively
known as an MFS) via TFTP. In the node re-imaging
case, boss tells the node to download the disk-loading
MFS. The bootinfo request to boss causes the second
state transition into BOOTING.

After downloading the MFS, pxeboot hands off to the
MFS kernel. A successful boot of the MFS is marked
by the node explicitly reporting the RELOADSETUP state
to boss via Emulab’s tmcd service. This causes the third
state transition and marks the start of the second stage
of re-imaging (the lower shaded box): downloading and
installing a disk image.

The node contacts tmcd to learn what image to load
onto its disk and where to get that image. The node
then reports its state as RELOADING, causing the fourth
transition, and starts the frisbee disk-imaging client [9].
On successful completion of the reload, the node reports
RELOADDONE, making the fifth state transition. Emulab
reboots the node into a WAITING state for the next experi-
ment and moves the node to a different state machine.

Notice that there are no explicit failure reports during
any of the steps. Instead, each state has an associated
timeout value. If the node fails to transition from the state
in a timely manner, Emulab makes a timeout (TO) transi-
tion for the node—resulting in the node being rebooted
and starting the process over again.

These mechanisms provide a robust process for reboot-
ing and re-imaging nodes, but rely on certain properties
of Emulab’s infrastructure and assume a certain level of
trust to function correctly. A breach of that trust during
re-imaging could result in information leakage between
experiments, or worse, propagation of malware.

3.2 Threats

Emulab’s re-imaging system can potentially be subverted,
leading to a node that is not re-imaged correctly. Consider,
for example, the following threats to the disk-loading

process.
1. Avoiding the network boot. Because Emulab pro-

vides “raw” access to nodes, the preceding experiment
may have done anything to a node. A malicious exper-
iment may have modified the BIOS configuration, for
example, and arranged for the node to boot from its hard
drive, not from the network. When Emulab power-cycles
the node, the node will boot from disk. Software on the
disk can then emulate a network boot, performing the
necessary actions to force the state transitions shown in
Figure 2. Emulab will believe it is talking to a trusted
disk-imaging environment, when in fact it is not.

2. Hijacking the network boot. Even without BIOS
modifications, a malicious node may still spoof Emulab.
Emulab places all nodes being re-imaged in a common
VLAN, to take advantage of the disk imager’s multicast
features. Unless all nodes in this VLAN are rebooted
simultaneously, a lagging node could use a man-in-the-
middle attack to interpose itself between boss and another
node, and thereby subvert the imaging of that node. While
a hijack is unlikely once a node starts using authenticated
communication with boss, the initial stages (DHCP, TFTP,
and bootinfo) are vulnerable, offering a window of oppor-
tunity to infect a node before it resumes communicating
with boss.

3. Aborting the network boot. Even without a hi-
jack, a malicious node might be able to interfere with the
network-boot process of another device, so that the other
device falls back to booting from its hard drive.

Even if a node successfully boots into the disk-loading
MFS, there are attacks against the Emulab disk-imaging
subsystem during the second part of the process (the lower
portion of Figure 2). These attacks are detailed in earlier
work [16] and are summarized below.

4. Modifying the transferred image. Because fris-
bee uses an unauthenticated, IP-based multicast protocol
to distribute disk images, an adversary could transparently
replace portions of an image: e.g., replace a section that
contains the password file.

5. Corrupting the transferred image. Even if an ad-
versary lacks knowledge about the content of an image,
he or she can still inject data into the transfer, corrupting
the resulting disk and preventing it from being used.

6. Observing the transferred image. IP multicast
does not have any built-in limitations on group member-
ship. Thus, any node may join a frisbee group and obtain
a copy of an image being loaded by another user, which
may contain sensitive data.

Emulab currently uses a variety of techniques to miti-
gate, but in most cases not eliminate, these threats. When
a node enters the re-imaging path, all access to that node
by previous users is revoked. This includes access via the
serial console and network, so interactive attacks are elim-
inated. To help ensure that nodes reach the disk-loading



MFS, Emulab site operators typically password-protect
the BIOS of their testbed PCs. Emulab’s software en-
forces timeouts on a node’s state as it transitions to the
reloading MFS. Coupled with a method for client and
server authentication, and judicious use of per-experiment
infrastructure and firewalls, these strategies have proven
adequate to protect Emulab sites from the actions of non-
malicious users.

However, the overall strategy is ad hoc and provides
insufficient guarantees for many types of security experi-
mentation. It also does not take advantage of advances in
technology—in particular, the increasing availability of
TPM-enabled platforms.

4 Trusted Disk Loading

In this section, we describe how we make use of TPM
technology to implement a scalable, trusted disk-loading
system (TDLS) for Emulab. The full protocol is shown in
Figure 3.

4.1 Using the TPM to Verify Node Boot

To support a secure boot path, we added the notion of
secure states to Emulab’s state-machine mechanism. Cer-
tain operations, such as fetching image-decryption keys,
are allowed only while a node is in an appropriate secure
state. A secure state can only be entered by providing a
TPM-attested quote to Emulab’s boss server, as described
below. If the quote is incorrect, or if a timeout period
passes, the offending node is placed into a special SECVI-
OLATION state.1 When a node enters this state, an email
notification is sent to the testbed operators and the node is
powered off. Thus, any node that strays from the trusted
boot path will be handled by the operators, and the amount
of damage it can do is limited.

Figure 4 shows the state machine that drives the new
TDLS. It is similar to the state machine shown in Figure 2,
but has three additional states (described below) and new,
secure states (indicated by double ellipses). Note that
a timeout or error from any state results in a security
violation.

Since we are using a static root of trust, a reasonable
strategy would be to measure each component one after
another and attest to boss using one quote at the end of
the protocol. A benefit of doing it this way is that no
boot-chain component other than the final stage needs
to have the capability of remote attestation—a capability
that requires a significant amount of code. We, however,
chose to report quotes more frequently (not only during

1There is currently a single SECVIOLATION state in the TDLS. We
are planning to implement multiple violation states as this will help
operators distinguish between certain security violations (bad quotes)
and potential ones (timeouts).
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the final stage) since this way we can detect exactly when
any particular piece of the chain is not what we expect.
This early detection allows us to minimize the time that
unexpected (and possibly malicious) code runs on the
nodes.

Another possible design simplification would be to
measure all the boot-chain components into a single PCR.
Measuring all the components into a single PCR not only
tracks the contents of the components but also ensures that
they are measured in a particular order. The downside of
this design is that it is not conducive to code evolution—if
any stage of the boot chain is ever modified, the acceptable
PCR values known to boss must be updated not only for
the modified stage itself but also for every stage after the
modified stage.

4.1.1 Step 1: BIOS Boot

The first stage in the boot process is the BIOS boot. At
power-on, immutable BIOS code measures the rest of the
BIOS and its configuration parameters with the TPM. The
first sector of the boot device is then measured before
control is passed to it.

To support trusted booting, we modified the way that
Emulab uses PXE. PXE typically is loaded from ROM
on a host’s network interface. However, current imple-
mentations do not allow the measurement of this ROM
by the BIOS, and we cannot modify the ROM to measure
the next boot stage. This creates a break in the secure
boot chain. To avoid this problem, rather than use the



Figure 3: The full trusted disk loading protocol. Arrows represent network communication, grey bars represent PCR extensions, and
pencils with paper represent quote verifications.

NIC’s PXE ROM, we perform the first-level boot from
a write-protected USB flash device, which the BIOS can
measure. That code then performs the PXE boot.

The previous user of a machine may still modify
the BIOS (Section 3.2, Threat 1) or otherwise interfere
(Threat 3) so that the machine does not boot from the
USB device. In these cases, the BIOS and first-level boot-
loader measurements will be incorrect. Emulab’s boss
server will detect this when the node attempts to check in,
or when a timeout period has passed.

Enabling the TPM is all that is necessary for the BIOS
to be measured on boot as the TPM standards require
it [19]. On our systems, this is done by enabling the TPM
in the BIOS configuration utility. The early boot code that
measures the BIOS is also guaranteed to be immutable by
the specifications.

BIOS configuration is problematic for a testbed with
many nodes since it is usually machine dependent and
not easily done in batch. We discuss how we deal these
limitations in §4.3.

4.1.2 Step 2: Attested Emulab Network Boot

The flash device contains a modified version of the
gPXE [5] bootloader. Our version of gPXE is TPM-aware
and can establish TLS sessions with network-based ser-
vices. We can thus use gPXE to perform a measured
network boot as described below.

gPXE uses the PXE and DHCP protocols to acquire
an IP address from the Emulab boss server. It then uses
TFTP to download the next stage as specified in the DHCP
information. The downloaded next stage is measured, and

the result extended into a PCR. There is no assurance
at this point that the DHCP and TFTP packets are not
spoofed or tampered with (Threat 2). If they are, however,
this will be discovered in the next step.

After measuring the next boot stage, gPXE attempts to
perform the first secure state transition (to GPXEBOOTING,
shown in section 1 of Figure 3). This involves the node
sending a TPM-attested quote to boss. To make this quote,
the node requests from boss its AIK, the PCRs to return,
and a nonce. Using the AIK and nonce, gPXE requests a
quote from the TPM. The resulting quote is unforgeable,
and the nonce prevents replay of previously generated
quotes (Threat 2).

To ensure that the node is talking to the real boss (i.e.,
that it was boss that responded to the initial DHCP re-
quest), this request is sent via a TLS session. The boss
server is authenticated via a certificate embedded in the
boot image—in this case, gPXE. Because the certificate
is part of the gPXE image measured by the BIOS, we can
be assured that any tampering with the certificate will be
discovered. Note that boss needs no strong authentication
of the reloading node during this exchange, since the AIK
being returned is only usable by the node that generated
it.

Emulab’s boss server verifies the quote, comparing the
returned PCR values with a set of measurements that have
been precomputed and stored in Emulab’s database. The
precomputed measurements describe a correct boot of a
particular node, through the BIOS and gPXE, and having
measured gPXE’s next stage. A correct quote allows
the node to continue booting. An incorrect quote causes
Emulab to place the node into the SECVIOLATION state



and power it off.
The implementation is complicated by the fact that

only the first sector of the boot device is measured by the
TPM since the first sector is all that is loaded by the BIOS
on x86 bootup. It is up to this single sector of code to
load and measure the rest of gPXE from the boot device.
Therefore this code must be written carefully to ensure
that we measure gPXE in its entirety, otherwise there will
be a break in the secure boot chain.

Because our version of gPXE needs to be capable of
many various TPM operations, we use libtpm [1] instead
of the BIOS TPM interrupts directly. libtpm gives low-
level access to the TPM but also depends on the OS to
provide a driver for the TPM and to make it available to
userspace via device nodes. To resolve this dependency,
we took the TPM driver code from Linux and adapted it
to gPXE with significant modifications.

We use the PolarSSL library [1] for our TLS and cryp-
tographic needs. It is well suited for gPXE since it is
designed specifically for use in embedded systems. There
were some complications, however. In order to set up a
secure TLS session, it is necessary to know the current
time. We used the real-time clock code from Linux and
assimilated it into gPXE for use. PolarSSL also assumes
the existence of the BSD constructs socket() and connect()
and POSIX constructs read() and write() which do not
exist in gPXE. Though these constructs are awkward to
implement since gPXE is a cooperative multitasking sys-
tem with one stack, they were added and easily interfaced
with PolarSSL. We were also concerned that the random
numbers generated by PolarSSL would turn out to be very
predictable since PolarSSL is generally used in a more
mature environment with device interrupts. To ease our
minds, we setup an experiment to harvest the entropy gen-
erated by PolarSSL: a node was configured to boot our
version of gPXE, connect to boss securely over TLS while
dumping the entropy generated for the TLS handshake,
and reboot to restart the process. We let the experiment
run over night—enough for 245 TLS handshakes (our
server class test node takes about 4 minutes to POST). In
the end we found that not only were the randomly gener-
ated numbers for every TLS handshake unique, there were
7.9999 bits of entropy per byte over all gathered entropy
(as reported by ent [20]). Had we found the generated
entropy to be insufficient, we would have investigated the
possibility of using the TPM’s built-in random number
generator.

An important design point is that the gPXE flash device
contains no node-specific data, and is thus amenable to
large-scale duplication. This is essential for managing
a large set of machines. Every time the operators of
the testbed change the version of gPXE in use, the flash
devices must be physically replaced and new, known-
good measurements of it must be taken. However, by

design, the functionality of gPXE is limited. We expect
that modifications to it will be extremely infrequent. The
same is not true of later stages such as the Linux MFS -
we separated out and measure these stages individually in
order to easily adopt updated boot-chain components.

4.1.3 Step 3: Booting the Disk-Loading MFS

gPXE downloads and executes a version of the GRUB 2
bootloader [6] that we have enhanced to support commu-
nication with Emulab’s boss and the TPM (section 2 of
Figure 3. (In the secure boot path, GRUB replaces pxe-
boot.) Similar to the standard boot path, GRUB makes
DHCP and bootinfo requests, triggering transitions to
the PXEBOOTING and BOOTING states. Unlike the stan-
dard path, a failure or timeout results in a transition to
SECVIOLATION.

We use the BIOS TPM interrupts in GRUB instead
of libtpm because, unlike gPXE, GRUB doesn’t need to
perform any TPM operations besides measuring. There is
a subtle difference in the measurements taken by GRUB
compared to those taken by gPXE though: GRUB’s disk
subsystem fetches the given file’s data on-demand while
gPXE waits until the image is successfully loaded. This
behavior makes it difficult to measure properly; reads
covering the same file but of varying lengths will yield
different PCR results.

Our solution to this problem is to read the entire file
into a buffer when it is opened, measure it, and then return
data from that buffer on future reads. This ensures that the
given file will always have the same PCR value regardless
of a change in storage media or the length of the reads.

As shown in section 3 of Figure 3, GRUB proceeds to
download and measure the secure disk-loading MFS: a
minimal Linux system that we have configured to disable
all network listeners. The measurement is extended into a
PCR, but not immediately reported to boss. After measur-
ing and extending, GRUB transfers control to the Linux
kernel in the MFS.

Before starting the disk-loading subsystem, the secure
disk-loading MFS produces another quote for boss to
check. This includes the updated PCR values that cover
GRUB’s measurement of the MFS. The quote process is
identical to that performed by gPXE previously. It causes
a secure state transition to RELOADSETUP if successful,
or SECVIOLATION otherwise (Threat 2).

4.1.4 Step 4: Securely Reloading the Disk

Once a node has performed an attested boot into the disk-
imaging MFS, we make use of prior work [16] that ex-
tends the Emulab disk-imaging system [9] to provide
confidentiality, integrity protection, and authentication for
images and their distribution (Threats 4, 5, and 6).



In our new TDLS, we improve upon that previous work
by providing a trusted platform on which to run the disk-
imaging client. The TDLS also uses the TPM to imple-
ment cleaner ways of (1) assuring node identities to the
server and (2) distributing image-decryption keys.

To provide better node identification, for every node,
we create a per-node certificate that is associated with
a key pair created by each node’s TPM. The certificate
(including the public key) and TPM-encrypted private key
are stored in the database on boss. When a node is running
in secure disk-loading MFS, it acquires the certificate and
encrypted key over an insecure channel. The key is loaded
into the TPM, and whenever a TLS session is started with
boss, the client certificate associated with the key is given
to boss during the handshake.

This authenticated channel is used to pass the image-
decryption key from boss to the node. It is important that
this key not be released to a node until we are certain that
(1) the node is the one it claims to be and (2) that it is
running in a trusted environment. We now have both those
assurances. At this point the node enters the RELOADING
state and invokes frisbee to obtain the actual disk image.

4.1.5 Step 5: Signing Off

After the disk has been loaded but before handing off
to the OS on the disk (RELOADDONE), the TDLS “in-
validates” the PCR state so that the soon-to-be-booted
OS cannot produce a quote using the state of those reg-
isters (section 4 of Figure 3). This prevents the loaded
OS, which is not trusted, from participating in the TDLS
protocol.

The TDLS makes an explicit hand-off using PCR 15
and a mandatory final quote to Emulab’s boss server. This
PCR is set to zero by a reboot (and only by a reboot), and
the TDLS includes its value in all quotes to boss. A zero
in PCR 15 is the boss-visible indicator that the node is
executing the trusted disk-loading protocol.

To invalidate the PCR state, the secure disk-loading
MFS extends a known value into PCR 15, which sets the
PCR to a non-zero value. The MFS then produces and
transmits a final quote, including this non-zero measure-
ment, to signal that the trusted image load has completed
(TPMSIGNOFF).2

4.1.6 Epilogue: Booting the Loaded Disk

The secure disk-loading protocol ends when the disk-
loading MFS signs off. It still remains, however, to boot
the node from the downloaded disk.

2Conceivably, the final quote could include a measurement of the
final disk contents, as further protection against disk failures and mali-
cious activity. We consider this impractical, due to the time needed to
hash entire—and potentially very large—disks.

After sending its final quote, the MFS immediately re-
boots the node. This re-engages the BIOS boot (§4.1.1),
which runs our modified gPXE (§4.1.2), which securely
contacts the bootinfo service. In the TDLS protocol, boot-
info would tell the node to download the disk-loading
MFS. Now, however, bootinfo tells the node to boot
from its local disk—i.e., the image that was just down-
loaded. gPXE immediately invalidates the node’s PCR
state, transmits the “sign-off” quote to boss, passes con-
trol to GRUB (whose measurement was included in the
“sign-off” quote) and proceeds to boot the on-disk OS.

Because disk loading and disk booting are separate, an
attacker might try to subvert correct booting by modify-
ing the node between these steps. We believe that such
attacks are infeasible without physical access to the PC or
compromising the Emulab software. Even when not in the
TDLS, TPM-enabled nodes use the secure boot procedure
up to the GRUB stage, which mutually authenticates the
node and the true Emulab boss. Failure to boot through
the secure path will be discovered through an incorrect
quote or timeout.

4.2 Establishment and Maintenance

Because of the large size and dynamic nature of Emulab,
the scalability and maintainability of new features must
be analyzed. It is therefore essential to consider the tasks
required to set up and maintain the TDLS.

The most labor-intensive one-time task is installing
USB flash devices on all machines. Because the USB-
based gPXE image contains no node-specific information,
this is reduced to a task of physical replication.

Another task is the creation of the two per-node TPM-
encrypted keys: the AIK used to produce quotes, and
the TLS key (and certificate) used to authenticate a node
to boss. These steps must be performed on the nodes
themselves, when they are in a secure state. This can be
automated, running a script in the gPXE environment and
taking advantage of its ability to securely identify and
communicate with boss.

Likewise, the correct values of the PCRs used in quotes
must be produced for each node type and stored in Emu-
lab’s database. Assuming all nodes of one node type have
the same BIOS version (as our nodes in Emulab do), the
BIOS measurements will be identical across all nodes of
the same node type. Additional values covering gPXE
and later stages can be computed offline using the SHA-1
hash function [19].

Changes to the TDLS, or the addition of other trusted
boot paths, require the collection of additional PCR values.
As long as all are based on booting through gPXE, we
can compute these values offline.



4.3 From Prototype to Production

The TDLS was designed to keep maintenance as low as
possible. That being said, the one-time setup procedure
of adding a node to the TDLS has multiple sensitive steps.
The following steps are required to add a node to the
TDLS: (1) Generate a TPM AIK; (2) Generate a TPM
TLS key; (3) Generate a signed TLS certificate using
the TLS key; (4) Insert both keys and the certificate into
Emulab’s node database; (5) Configure the node’s BIOS
to boot the gPXE dongle; (6) Configure Emulab to send
TPM-aware GRUB2 as the second stage; (7) And finally,
attach the gPXE dongle to the node.

Most of these steps are not trivial. Furthermore, they
must be done on every node that is to be added to the
TDLS. We have over 100 nodes that will be added to the
TDLS at Emulab Utah; manually going through this setup
process would be extremely tedious and error-prone. To
remedy these concerns, we wrote a helper system which
automatically acquires an Emulab node equipped with a
TPM, configures the BIOS, initializes the TPM for use,
generates all the necessary keys, and then releases the
node. This system does not touch the Emulab database
though; the database updates are left up to us humans so
we can carefully verify the keys and certificates before
inserting them into the database.

Using standard Emulab tools, the helper system first
gets exclusive access to the node by creating and placing
it in a new Emulab experiment. Once the experiment is
created, it reboots the node and runs a machine-dependent
Python script which uses Expect to enter the BIOS, enable
the TPM, and change the first boot device to the USB
dongle. The helper system then forces the node to boot
a Linux kernel with a special memory file-system. This
memory file-system contains a suite of TPM helper tools
(which we also wrote) that make the creation of TPM
keys easy. The node executes an embedded script, runs
they key creation tools, and copies the generated keys to
an FTP server where they are later harvested. Finally, the
helper system destroys the experiment and releases the
node.

This software was well worth the implementation time;
it successfully configured and harvested the keys from
92% of our nodes. The remaining nine were done ”by
hand.”

To simplify key harvesting in the future, we are consid-
ering the following improvement: because our version of
gPXE already has the capability to securely communicate
with boss and libtpm support, gPXE could be modified so
that, on first boot, it would automatically discover that it
needed to generate the prerequisite keys, generate them,
pass them to boss to store them, and continue on with the
TDLS protocol. This would be done when a new node is
being installed into the TDLS before any users are given

access to it, reducing the chances that an attacker could
interfere. With these modifications, adding a new node to
the TDLS would be reduced to configuring the BIOS and
simply plugging in the gPXE USB dongle.

5 Applicability
The TDLS is important for containing the effects of ex-
periments, and thus important for a testbed that seeks
to provide isolated, reliable, and secure services to its
users. Our TDLS design can inform the creation of
node-configuration services for network testbeds, busi-
nesses that loan physical nodes (such as Rackspace [15]),
and other, similarly managed networks. The xCAT 2
toolkit [22], for example, supports user-provisioning of
physical PCs in clusters. Although our TDLS was built for
Emulab, we believe our implementation could be adapted
for use in other testbeds that provide users with unmedi-
ated access to TPM-enabled devices.

The TDLS design can be beneficial to systems that have
the following properties: (1) users have “root” access to
physical PCs; (2) PCs are serially reused over time for
many experiments and users; (3) and PCs are recondi-
tioned for experiments using a network server (boss);

Although many cloud and grid platforms allow users to
allocate virtual machines only, our TDLS could neverthe-
less be useful to the providers of cloud and grid services
who must manage the underlying physical resources.

6 Lessons Learned
Our trusted disk-loading system for Emulab has recently
been enabled for production use. During the design and
implementation of the prototype and the subsequent push
to production, we identified these principles that we be-
lieve are general. These “lessons learned” could be use-
fully applied to similar, trustworthy node-configuration
systems for security-conscious testbeds.

Separate changing from unchanging components.
For a large testbed like Emulab, scalability is critical.
The known-good measurements must be reestablished
for every component that is added or modified. Stages
of the boot chain are also stored on per-node media
making updates to those stages even more costly. Total
maintenance due to boot-chain updates can be reduced
by dividing the static parts from the often-evolving parts
making the TDLS as a whole easier to maintain and more
readily extensible.

Check in frequently to minimize damage. While it
would be possible to check boot state only at the end of
the device “reconditioning” process, the timeout in some
states may be very long. If attestation is performed only
at the end of the node-configuration process, it is not pos-
sible for a testbed to detect nodes that have left the trusted



boot path until all timeouts have expired. Performing
attestations frequently, at a number of boot stages, helps
to minimize the window of opportunity for attackers.

Make an explicit transition to untrusted code. The
TDLS relies on a trusted boot path and disk loader to load
and boot untrusted user code. TPM-based attestation can
make the transition point visible and prevent user code
from impersonating trusted code.

Write-protect boot-chain stages when possible.
While it provides no additional security since modifi-
cations to the USB dongle would be detected by the
PCR measurements, write-protecting the media makes
the TDLS more maintainable. The USB dongles are
left plugged into the testbed nodes which are constantly
being imaged with various operating systems and are
passed from one user to the next; dongle modifications
are likely, whether accidental or malicious. Preventing
these modifications frees us from the task of finding,
re-imaging, and replacing modified dongles.

7 Future Work
One nice feature of using a state machine to track node
progress is that it provides enough flexibility to control
exactly how to respond to different node behaviors. For
example, it is possible to create a separate and distinct
state in which to place all nodes that timeout during one
specific transition in the TDLS protocol. This variable
granularity allows fine-grained node management. In the
future, we would like to have two separate states for the
problematic nodes instead of one (SECVIOLATION). In
one state we would put all nodes that timeout and, in
the other, all nodes that produce incorrect quotes. This
distinction is useful because nodes that timeout probably
need administrator inspection less urgently than a node
that has a corrupt BIOS or is receiving modified software.

We have also considered the possibility of using Open-
Flow [14] in conjunction with a node’s state machine in
order to manipulate the surrounding network paths or to
give/revoke access to network resources.

Other future work includes the possibility of allow-
ing Emulab users to upload and securely boot their own
MFSes. Sometimes imaging the entire disk is not nec-
essary and an MFS provides enough functionality for an
experiment.

8 Conclusion
We have presented a new trusted disk-loading system for
Emulab. The task of the TDLS is to gain control over
a physical PC, which may be in a nearly arbitrary state,
and set its state as directed by Emulab. In particular, the
TDLS is responsible for establishing the initial condition
of a PC that has been allocated to an experiment. We have

identified ways in which Emulab’s standard disk-loading
system can be subverted by an attacker, thus causing
initial conditioning to fail. Using the TPM of modern
PCs, our TDLS addresses these threats to reliable disk
loading. Our early experience has confirmed that our
system is practical to deploy and maintain at the scale
of hundreds of physical PCs, and in the face of constant
testbed evolution.
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