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I. INTRODUCTION AND MOTIVATION

For people with severe motor impairments assistive and
rehabilitation machines such as assistive robotic arms and
upper or lower limb prostheses are crucial in reducing their
dependence on caretakers and increasing the ability to perform
activities of daily life. However, for many, the control of
such devices remains a challenge—for example, due to their
physical impairments or limitations of the control interfaces.
The introduction of partial autonomy to these devices—in
which the control is shared between the human and robotics
autonomy—aims to help reduce the cognitive and physical
burden on the user. The reduced bandwidth of the control
signals generated by motor-impaired users makes them more
reliant on the interaction with the autonomy, and also less
adaptable and more vulnerable to any arbitrariness present in
the system—for example, the choice of control interfaces and
mappings, or the exact specification of how control is shared
between the user and the autonomy.

Since users differ in their physical abilities and desired
amount of assistance, customization of the amount of assis-
tance is critical for the adoption of assistive shared-control
systems. Predefined assistance levels may not remain optimal
for the user in the long term, as the need for assistance may
increase or decrease. One way to accomplish customization
is to tune the system parameters which will bring about a
change in the human-robot interaction and the final behavior.
The aim is to optimize the human-robot interaction during
task performance. A simple choice of optimality criterion is to
consider task-related performance metrics such as minimizing
the time taken and energy expended.

Our insight is that if we entrust the task of customization
to the users, they will tune the system in such a way that
likely achieves their preference, and perhaps also improves
satisfaction and performance. This personal optimality crite-
rion may not be a simple time–optimal or energy–optimal
objective function. Moreover, the needs of each user can
undergo variation due to factors such as fatigue, loss of
ability due to degenerative disease or improvement due to
rehabilitation.

Many optimization techniques have been adopted to gener-
ate different strategies for control sharing; for example, for-
mulating the problem as a POMDP and inferring a distribution
over goals from user commands via Maximum Entropy Inverse
Optimal Control [2], or concatenating energy-optimal motion

primitives to create optimal trajectories [3]. Although these
approaches result in improved task performance (task com-
pletion time, control effort), the assistance schemes are mixed
in terms of user acceptance. In particular, there are instances
of assistance resulting in higher user dissatisfaction [2], and
users preferring to be in control and more cautious [3]. In other
studies users find the assistance at times to be uncooperative
and are willing to tolerate a loss of control only when there
is a significant improvement in performance [4].

Fig. 1. A prototypical arbitration function,
parameterized by θ = {θ1, θ2, θ3}.

The need for high user
satisfaction is crucial for
the acceptance of robot
autonomy by the end-
users in the assistive do-
main. This notion mo-
tivates our approach to
engage the end-user in
the customization proce-
dure under the assump-
tion that the user knows
what is preferred by
him/herself.

To ground our formalism, we present a first implementation
in which the reasoning between the user control and the robot
policy is a function of the system’s confidence in its inference
of human intent, with tunable parameters (Figure 1) [1]. The
parameters (θ = {θ1, θ2, θ3}) affect the onset of assistance,
aggressiveness and the maximum amount of assistance offered
by the robot. In the prototype user-driven optimization system
developed for this work verbal commands from the user are
mapped to changes in the parameters by the system operator.
We also present results from a pilot study which shows that
spinal cord injury (SCI) subjects were able to achieve task
performance comparable to that of uninjured subjects with
customization. Notably, the amount of assistance was not
always optimized for task performance. Some subjects favored
retaining more control during the execution over better task
performance.

II. FORMALISM AND OPTIMIZATION PROCEDURE

Let x(t) denote the state of the system at time t. Let θ(t)
be the set of tunable parameters that will affect the amount of
control shared between the human and the robot. The other
control inputs to the system are uh(t) and ur(t), the control



Verbal Cue Parameters Changed Amount of change
“More” θ3 ↑, θ2 ↓, θ1 ↓ δθ ← δθ
“Less” θ3 ↓, θ2 ↑, θ1 ↓ δθ ← δθ

“Little More” θ3 ↑, θ2 ↓, θ1 ↑ δθ ← 1
2
δθ

“Little Less” θ3 ↓, θ2 ↑ δθ ← 1
2
δθ

TABLE I
MAPPINGS FROM VERBAL CUES TO PARAMETERS CHANGED

(↑ indicates a positive δθ and ↓ denotes a negative δθ)

commands generated respectively by the user and autonomous
robot policy at time t.

The control signal from the robot autonomy is generated by
a function f(·) ∈ F ,

ur(t)← f(x(t)) (1)

where F is the set of all control behaviors corresponding to
different tasks.

We assume that the control command uh(t) is generated by
a function of g(·) ∈ G,

uh(t)← g(x(t)) (2)

where G is the set of user behaviors corresponding to different
tasks. g(·) is simply a symbolic representation of the mapping
function that generates uh(t) and is completely unknown to
the autonomous system.

The shared control system makes use of function β(·),
parameterized by θ

u(t)← βθ(uh(t),ur(t)) (3)

which arbitrates between the control commands from the
user and the robot policy to produce control command u(t)
executed by the robot.

A key insight in our formulation is that, for a time–varying
function β(·), the parameters themselves can be functions of
time and therefore may be interpreted as control signals. Then
the dynamics of the system can be written as

ẋ(t)← a(x(t),θ(t),uh(t),ur(t), t) (4)

where a(·) is in general a non-linear, time–varying function.
The problem of finding the set of parameters θ(t) that will
generate the optimal human-robot interaction and task perfor-
mance thus may be formulated as an optimization problem.

The elements of the framework f(·), g(·), β(·) and a(·)
are system-specific, and different choices of these functions
will have drastically different impact on task performance and
user satisfaction. As discussed in the introduction, the impact
is anticipated to be all the greater on motor-impaired subjects.

A. Optimization

Typically optimization is performed over all control signals
that are inputs to the system. In our system, however, the
control commands from the human and the robot are treated
as given quantities, and the goal rather is to optimize the inter-
action parameters θ(t). Therefore, optimization is performed
only with respect to a subset (θ(t)) of the entire control space.

Since we do not want to reduce the assistive capabilities
of our system, and we have a human in the loop, our insight
is that the optimization task can be performed by the user

Control Mappings
Mode 3D 2D
1 vx, vy , vz vx, vy
2 ωx, ωy , ωz vx, vz
3 — ωx, ωy

4 — ωz

TABLE II
OPERATIONAL PARADIGMS FOR THE TELEOPERATION INTERFACE

him/herself. However, there may be a variety of unmeasurable
factors influencing the cost function, and determining the exact
mathematical form for the cost function may be an intractable
problem. Making any kind of approximation to simplify the
cost function in turn will affect the robustness and efficacy of
the assistive system.

B. User-Driven Optimization of the Arbitration Parameters

In this first exploration of our interactive optimization proce-
dure, verbal commands from the human subject are translated
to changes in θ by the system operator.

A change in assistance level can be achieved by modulating
one or more of the θi ∈ θ, according to θi = θi ± δθi. In our
implementation, at initialization δθi = 0.1. The value of δθi
is adaptive, and is halved if a request to increase assistance
is immediately followed by a request to decrease and vice
versa (in order to avoid oscillatory behavior). This procedure is
analogous to a three dimensional gradient descent algorithm in
the sense that both the direction and the magnitude of change
are being updated at every optimization step. Table I provides
the mappings between common verbal cues, the parameters
changed and the values of δθ. We chose to modulate more
than one parameter at a time as it helped to make the change
in assistance level more perceivable to the user.

III. EXPERIMENTAL SETUP

The experiments were performed using the MICO robotic
arm (Kinova Robotics, Canada) which is specifically designed
for assistive purposes.

A. Control Interface

The human control command uh(t) is captured via a tele-
operation interface, that consists of a 3-axis joystick operated
under two different mapping paradigms (namely, 3D and 2D)
(Tbl II). The joystick signals are mapped to the translational
(vx, vy, vz) and rotational (ωx, ωy, ωz) velocities of the end-
effector in Cartesian space.

B. Task Descriptions

Three tasks were developed for our pilot study.
Simple Reaching (R): The user teleoperates the robotic arm to
reach a coffee carafe placed in front of the robotic arm.
Reaching for Grasping (RfG): The user teleoperates the
robotic arm to reach one of two objects on the table with a pose
suitable for grasping, as the robot arm provides assistance.
There is a near object (mug) and a far object (box), each
of which requires a different orientation of the gripper for



grasping (side and top, respectively) and accordingly also
different approach trajectories during reaching.
Reaching for Scooping (RfS): The user teleoperates the
robotic arm to reach for one of two objects on the table with a
pose suitable for a scooping motion, as the robot arm provides
assistance. There is a near object and a far object (both bowls),
each of which requires a different approach trajectory. For this
task, the end effector of the robotic arm is fitted with a spoon
which must be inserted into the bowl.

C. Methods

Subjects: For this exploratory study 17 subjects were
recruited—13 uninjured control subjects (mean age: 26± 4, 8
males and 5 females) and 4 SCI subjects (mean age: 35± 14,
all males, C3-C5 injury levels). Ten subjects (7 uninjured and
3 SCI) used the 3D interface paradigm, and the remaining
subjects used the 2D paradigm.
Protocol: Each user performed all three tasks. The purpose of
task R was to get the user accustomed to the control interface
and to the different assistance levels. Data was then collected
on the remaining two tasks (RfG, RfS). For the RfG and RfS
trials, the user first operated the system in full teleoperation
mode (tel) and then under three predefined assistance levels
(min, mid and max). After this phase, the subject was given
the option to further customize the assistance level, resulting
in assistance level custom. Three trials were collected for min,
max and custom assistance levels. For the first (non-practice)
task, the baseline from which customization began was the
mid level assistance, with level custom being the result after
customization. For the second task, customization began at this
level custom, with the option to further customize resulting in
level custom for the second task.
Metrics: Task Completion time is the amount of time spent
accomplishing a task. Mode Switches (an indirect measure
of effort) refers to the number of times the subject switched
between the various modes of the control interface.

IV. RESULTS

From our pilot study we saw that user-driven customization
in general improves task performance and helps to reduce
performance differences between uninjured and SCI subjects.
In Figure 2, the difference between task completion times for
uninjured and SCI subjects drops steadily from tel to custom
assistance levels. That is, with increased assistance, the per-
formance of SCI subjects was comparable to that of uninjured
subjects and this was maximized under customization. The
variance in the data also decreases with customized assistance,
showing the performance to become more consistent.

For the custom assistance type, even though the task com-
pletion times are comparable to those of the max assistance
type, the number of mode switches is greater than those of
max. Thus, it is not uniformly the case that mode switches
are minimized from low to high assistance. This observation
provides insight that the true cost function that the user is
optimizing is more complex that a simple time-optimal or
energy-optimal cost function.
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Fig. 2. Task completion time (top row) and number of mode switches (bottom
row) for uninjured vs. SCI subjects. (***) p < 0.001, (**) p < 0.01 and (*)
p < 0.05, (n.s) not significant.

V. CONCLUSION

In this work, we have introduced a system for user-driven
customization which is presented as a constrained non-linear
optimization problem. Unlike standard optimization problems
in which the form of the cost function is predetermined in this
work no such assumptions were made. Instead, the end user
was allowed to directly perform the optimization procedure.
The aim is that this will lead to higher user satisfaction. An
interactive user-driven customization system was developed to
ground the formalism and selected results from the pilot study
were presented.
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