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Abstract—We propose a novel learning approach based on
differential geometry to extract and encode important character-
istics of a set of trajectories captured through demonstrations.
The proposed approach represents the trajectories using a surface
in Euclidean space called Canal Surface. The surface is formed
as the envelope of a family of regular implicit surfaces (e.g.
spheres) whose centers lie on a space curve. Canal surfaces
extract the essential aspects of the demonstrations and retrieve
a generalized form of the trajectories while maintaining the
extracted constraints. Given a random initial pose in task space,
a new trajectory is reproduced by considering the relative ratio
of the initial point with respect to the corresponding cross-
section of the obtained canal surface. Our approach produces
a continuous representation which is visually perceivable and
easily understandable even by non-expert users. Preliminary
experimental results using real-world data are presented.

I. INTRODUCTION

The ultimate goal of Learning from Demonstration (LfD)
approaches is to enable even non-expert users to teach new
skills to robots through demonstration. The robot should be
able to learn the skill and generalize it to novel situations
autonomously. However, it has been shown that current robotic
platforms are not good at being autonomous and need human
assistance constantly1. Therefore, ignoring the presence of
human teacher after the demonstration phase, which is a
common case, becomes one of the main drawbacks of the
existing LfD approaches. In fact, the existing representations
are so complicated that make it almost impossible for non-
expert users to diagnose a failure or an undesirable behavior
and resolve the issue. A possible solution, however, is to
employ an encoding process that is both powerful enough to
learn and generalize the task robustly and is also readily com-
prehensible for non-experts. Such learning approach should
take advantage of teacher’s feedback not only for providing
new demonstrations but also for updating and adjusting the
learned model in the loop.

During the past two decades, several LfD approaches have
been developed [1]. Many of them use regression-based tech-
niques to represent the given set of demonstrations using a
probabilistic representation. The approach proposed by Cali-
non et al., uses Gaussian Mixture Model (GMM) to represent
the demonstrations and Gaussian Mixture Regression (GMR)
to retrieve a smooth trajectory [2]. Similarly, Gaussian Process
Regression (GPR) was proposed to generalize over a set of

1For instance, see results from the recent DARPA Robotic Challenge at
http://www.theroboticschallenge.org/

demonstrated trajectories [4]. Later local Gaussian process
regression was employed to extract the constraint of a demon-
strated skill [9]. Another approach similar to Gaussian Process
called LfD by Averaging Trajectories (LAT), was introduced
in [8]. LAT is based on the product of normal distributions
estimated from trajectories relative to the objects observed
during the demonstrations. Both LAT and GPs cannot extract
constraints of the demonstrated skills. In addition, the repre-
sentations generated by such probabilistic approaches in most
cases are not easily understandable by non-experts. Ijspreet et
al., showed that dynamical systems can also be used to encode
and reproduce trajectories [6]. Dynamic Movement Primitives
(DMPs) represent the demonstrated trajectories as movements
of a particle subject to a set of damped linear spring systems
perturbed by an external force. The shape of the movement is
approximated using Gaussian basis functions and the weights
are calculated using locally weighted regression. However, the
boundaries and the state-space formed by DMPs representation
are not visually perceivable. To reflect a human’s intention,
Dong and Williams proposed a representation of continuous
actions (i.e. trajectories) by extracting covariance data which
is called probabilistic flow tubes [3]. Using binary contact
information and state of the environment during the demon-
strations all the sequences are matched temporally. Their
representation can be seen as a special case of our approach in
which the cross-section is formed using covariance data. An
approximation of a boundary around a trajectory, which can
be visualized as a funnel, was used to tackle the problem of
real-time motion planning [7]. A library of funnels and their
corresponding open-loop controllers are computed off-line and
a closed-loop system was used to generate trajectories from the
library in real-time that can deal with obstacles. In this paper,
we propose a novel geometric LfD approach to encoding a
trajectory-based skill as a geometric model composed of a
regular curve and a surface in 3D Cartesian space called a
Canal Surface. The constructed canal surface represents the
main features of the skill and its constraints. Since the encoded
skills using canal surfaces are visually perceivable and easily
understandable, they enable even non-expert users to provide
feedback to improve the quality of the learned skill.

II. CANAL SURFACE

Canal Surfaces, also known as Generalized Cylinders [10],
play a fundamental role in descriptive geometry. In the con-
text of Computer Aided Graphic Design (CAGD), they are



used for the construction of smooth blending surfaces, shape
reconstruction, and transition surfaces between pipes [5].

A canal surface, Cu, is defined as an envelope2 of the one-
parameter pencil3 of spheres and can be written as

Cu : f(x;u) := {(c(u), r(u)) ∈ R4|u ∈ R}, (1)

where the spheres are centered on a regular curve Γ : x =
c(u) ∈ R3 in Cartesian space. The radius of the spheres are
given by the function r(u) ∈ R, which is a C1-function. The
non-degeneracy condition is satisfied by assuming r > 0 and
|ṙ| < ‖ċ‖ [5]. In Differential Geometry, Γ is known as the
spine curve or directrix and r(u) is called the radii function.
For the one-parameter pencil of spheres, Equation 1 can be
written as

Cu : f(x;u) := (x− c(u))2 − r(u)2 = 0. (2)

Parameterizing Equation 2 using an orthonormal frame such
as Frenet-Serret (also called TNB frame), for each s value of
the arc-length of the directrix, the cross-section is a circle
orthogonal to the tangent of the directrix. Thus the canal
surface can be represented as a set of circles

Cs : f(s, v) = c(s)+ (3)

r(s)

(
−eT

dr

ds
+

√
1− (
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)2 (eB sin(v)− eN cos(v))

)
,

where v represents the arc-length of the circles and eT , eN , eB
denote the unit normal vectors of the TNB frame. In a more
general form, the cross-section may vary in shape and size
when the TNB frame translates along the directrix. Also,
cross-sections can be represented using different shapes and
techniques such as polygons, polynomials, and B-splines[10].
Such characteristics make canal surfaces a suitable candidate
for encoding complicated constraints of trajectory-based skills
captured through demonstrations.

(a) four demonstrations (b) three demonstrations

Fig. 1: Canal surfaces with circular and elliptical cross-sections.

III. SKILL LEARNING USING CANAL SURFACES

We assume that n different demonstrations of the same task
are performed and captured in task-space. Any demonstration
technique such as kinesthetic teaching, teleoperation, and

2A surface tangent to each member of a family of surfaces in 3D space is
called an envelope.

3A pencil is a family of geometric objects sharing a common property.
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Fig. 2: A single step during reproduction.

shadowing can be employed. For each demonstration the 3D
Cartesian position of the robot’s end-effector is recorded over
time as ξ̂

j
= {ξj1, ξ

j
2, ξ

j
3} ∈ R3×T j

, where j = 1 . . . n denotes
the jth demonstration including T j points. To gain a frame-by-
frame correspondence mapping among the recorded demon-
strations and align them temporally, for each demonstration
firstly a set of piecewise polynomials is obtained using cubic
spline interpolation. Then a set of temporally aligned trajecto-
ries is generated by resampling from the obtained polynomials.
Another advantage of this technique is that when the velocity
and acceleration data are unavailable, the smoothed first and
second derivatives of the obtained piecewise polynomials can
be used instead. This process gives the set of n resampled
demonstrations ξ ∈ R3×N×n each of which consists of N
data-points. An alternative widely used solution is employing
the Dynamic Time Warping method.

Estimating the Directrix: To estimate the backbone curve
or the directrix, we can simply calculate the directional mean
value for the given set of demonstrations. Let m ∈ R3×N

be the arithmetic mean of ξ. Note that m is the space curve
that all the spheres are centered on to form a canal surface.
Alternatively, the directrix can be produced using GMR by
sampling from a statistical model learned using GMM.

Estimating the Radii: In its simplest form, the radii
function of a canal surface with a circular cross-section can
be calculated by measuring the distance from each point on
the directrix to the corresponding points on the demonstrated
trajectories. The maximum distance is then used to make a
circle that bounds other points as well. We could also use
elliptical cross-sections instead. The advantage is that the
obtained cross-section can cover a smaller yet more reasonable
area while maintaining all the implicit local constraints of the
task more efficiently. In a more general form, cross-sections
can be represented by different shapes using B-splines that
provide a powerful tool for fitting a smooth curve to a set
of key-points. Given the set of demonstrations, at each arc-
length, the cross-section can be estimated by fitting a closed
B-spline to the data. In Figure 1a, a canal surfaces estimated
from a set of four demonstrations is shown. The directrix and
the demonstrations are depicted in blue and gray respectively.
The main features of the movement are extracted. For instance,
the narrow region in the middle of the canal indicates that
all the reproduced trajectories must satisfy this constraint.
After removing one of the demonstrations, the updated canal
surface is shown in Figure 1b. It can be seen that the shape
of the cross-section and the directrix are adapted to the new



constraints. The cross-section is elliptical and smaller at the
bottom and the directrix is not a straight line anymore.

Reproduction: During the reproduction phase, the initial
position of the end-effector p1 is used as input. Starting from
the initial pose, we measure the ratio η by calculating the
distance from the directrix p1c1 and its corresponding distance
from the boundary of the canal surface at the corresponding
cross-section g1c1. We then use η to generate the next pose
of the end-effector by transforming the current point from
the current TNB frame to the next. An illustration of a
single-step reproduction process using this ratio rule can be
seen in Figure 2. The ratio rule ensures that the essential
characteristics of the demonstrated skill are applied to the
reproduced time-independent trajectory. Figure 1 depicts two
trajectories (in black) reproduced from arbitrary initial poses
using the ratio rule.

IV. EXPERIMENT AND COMPARISON

To validate the capabilities and interpretability of the pro-
posed approach, we performed a real-world experiment. First,
we captured five demonstrations from a 6DOF Jaco2 robotic
arm through kinesthetic teaching (gray curves in Figure 3a).
The obtained canal surface with elliptical cross-section is il-
lustrated in Figure 3a. The reproduced trajectory (black curve)
in Figure 3a is generated using the ratio rule. Then we applied
GMM/GMR as presented in [2] with 4 Gaussian components
to the set of demonstrations. Figure 3b shows the results. The
comparison in Figure 3c reveals that the reproduced trajectory
by GMR is similar to the directrix of the modeled canal
surface. The obtained representation by using our approach
is visually descriptive and easily understandable even for non-
experts. This feature enables end-users to evaluate the given set
of demonstrations and improve the learned model by providing
proper feedback (e.g. verbal, physical). Therefore, unlike many
existing LfD approaches including GMM/GMR, our approach
is capable of keeping the user in the loop. Another advantage
is that our approach reproduces time-independent trajectories
from various initial poses. However, GMR reproduces time-
based trajectories and requires an additional component to
generate trajectories from an arbitrary initial pose.

V. DISCUSSION AND FUTURE WORK

In order to use human feedback inside the loop for adjusting
the learned model, our future work includes activating the
robot in compliant control mode to enable users to interact and
correct the robot’s movements even during the reproduction
phase. The learned model can be actively updated and the
new reproduced trajectories will reflect the given corrections
in the form of new constraints on the surface.

Furthermore, although the proposed approach is capable of
encoding and reproducing trajectories on its own, it can be
combined with other methods such as DMPs and keyframe-
based LfD. Integration with DMPs can provide us with a dif-
ferent reproduction method while keyframe-based LfD enables
the system to take advantage of smoother trajectories while
retaining their important key-points.

(a) The canal surface, demonstrations (gray), directrix
(blue), and the reproduced trajectory (black).
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(b) result from GMM/GMR.
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(c) The directrix vs. GMR reproduction.

Fig. 3: Comparing the proposed approach and GMM/GMR.
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