Planning in Dynamic Environments using
Evolving Time-Indexed Graphs

Vaibhav V. Unhelkar*®, Rares-Darius Buhai** and Julie A. Shah*
*Computer Science and Artificial Intelligence Lab,
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Email: unhelkar@csail.mit.edu, rbuhai @mit.edu, julie_a_shah@csail.mit.edu

Abstract—In several scenarios of human-robot interaction,
the robot operates in a dynamic environment and has limited
knowledge of its environment as well as the surrounding humans.
In such cases modeling and reasoning over time can be beneficial,
since both the environment and robot’s model of the environment
changes over time. Here, we discuss planning with explicit
consideration of time using ‘“‘evolving time-indexed graphs,” and
study it in the context of robot navigation among humans.
Following, the safe-interval path planning (SIPP) algorithm, we
pose the planning problem as graph search with time included as
part of the state space. We propose forward safe-interval planner
(FSIP), an incremental extension of SIPP, for applications where
the robot’s model of the environment evolves during execution.
Initial evaluations of the algorithms for path planning are carried
out using simulation within Robot Operating System (ROS).
We discuss the performance of the incremental approach, its
limitations and our on-going work.

I. INTRODUCTION

Human-robot interaction often takes place in dynamic,
partially known and uncertain environments. Modeling humans
— their beliefs, intentions and plans — from first principles or
using data-derived models is no easy task. Further, behavior of
the interacting agents is inter-dependent and often changes dur-
ing the course of the interaction. These aspects make planning
for human-robot interaction (HRI) significantly challenging.
Here, we consider explicit consideration of time in the planning
process to address some of the aforesaid challenges.

Timing has been identified as one of the critical components
for designing and affecting human-robot interaction. Effect of
timing has been studied in various contexts of HRI, including
communication (spoken dialogue, non-verbal gestures) and
synchronization in collaborative tasks [2]]. Moreover, consider-
ations of timing and anticipatory behavior are essential in time-
critical tasks, such as, those encountered in disaster response
and collaborative manufacturing.

The concept of timing has also been explored within planning
for HRI. Broz et al. [1]] include time within the state of
partially observable Markov decision processes (POMDP) to
model human-robot interaction tasks. Incorporating time allows
for finer modeling of the interaction and potentially better
plans (higher expected reward); however, it also results in
a significantly larger state space and correspondingly higher
computational costs. One method to tackle this computational
challenge is to use state aggregation, e.g., state aggregation
using expected rewards for POMDPs [1]. However, despite
the state aggregation - due to the dual challenge of modeling

“These authors contributed equally to this work.

uncertainty as well as time - the computational costs of planning
using POMDPs with time may remain prohibitively large.

An alternate approach is to pose planning as an instance of
graph search. Phillips and Likhachev [8]] model path planning
in dynamic environments using graphs that include the time
dimension as part of the state space. This allows for a way
to utilize any predictive information regarding humans and
dynamic obstacles in the environment. The computational
challenge due to explosion of state space is resolved by using
an approach similar to state aggregation; contiguous states
with identical non-temporal components are merged into safe
time intervals. By reasoning over these safe time intervals,
the algorithm safe-interval path planner (SIPP) can explicitly
reason in time [§]. Note that though planning through graph
search does not consider uncertainty, it is a computationally
attractive alternative for reasoning in time. Further, anytime
approaches to graph search have been developed to comply
with hard time constraints of robot navigation [7].

Due to its ability to explicitly model time while still being
computationally feasible, we further explore use of graph
search for planning in HRI applications. We define “time-
indexed graphs” as graphs whose nodes are characterized by
a non-temporal component and a time index. Any predictive
information available regarding the future can thus be encoded
as part of the state space. For instance, in the path planning
application this corresponds to prediction of trajectory of the
dynamic obstacles. As discussed above, SIPP and Anytime-
SIPP algorithms provide computationally attractive options for
reasoning over such time-indexed graphs.

However, one key aspect of various robotic applications
is the limited and evolving knowledge of the future. For
instance, in path planning applications a robot’s knowledge
of the trajectories of dynamic obstacles is limited. In practice,
this anticipatory information may be obtained through a
motion prediction algorithm, such as [3} |6, [9]. Further, this
predictive knowledge to be encoded as part of a time-indexed
graph changes during execution as more information becomes
available to the robot. This motivates the need of “evolving time-
indexed graphs” — graphs that not only represent time but also
allow for a changing topology — as well as novel incremental
algorithms that reason over them. Here, we formally define
evolving time-indexed graph and discuss our work towards
developing incremental planning algorithms for graph search
over them. Following SIPP we explore the domain of path
planning in dynamic environments - an application of interest

for physical HRI. Results from simulation of the incremental
approach for path planning in dynamic environments are
presented, and its limitation and our on-going work is discussed.

II. EVOLVING TIME-INDEXED GRAPHS

We define “time-indexed graph” as a directed graph G =
(S, E) that satisfies the following properties

« states s € S include a time-independent component x and
a time index t, i.e., s = (,t), and

e edges e € E only exist between the nodes of the type
s = (x,t) and ' = (x,t+1), and have weight as one.

These properties allow the time-indexed graph to explicitly
encode any available temporal information. The edges corre-
spond to traversing the graph in time, and the shortest path
on this graph corresponds to minimizing travel time between
the start and goal configurations. Potential actions a at a state
s are denoted by the set A(xz), which depends only on the
time-independent component. Feasibility of an action a € A(x)
depends on the graph topology and the duration of the action.
For an action to be feasible, all states along the action path
must be present in the graph.

However, this additional expressive capability to represent
temporal information comes at a computational cost. To see
this note that a directed graph G, = (X, E,;) used for non-
temporal planning can be converted to a time-indexed graph by
augmenting the state x € G, with a time-index, i.e, s = (z,1).
The state space of the corresponding time-indexed graph will
be | X|N;, where N; denotes the time horizon of the problem.
Thus, a planner that reasons over time-indexed graphs has to
typically search over a significantly larger state space.

Typically the temporal information to specify such a time-
indexed graph will be made available using a prediction algo-
rithm. For instance, a motion prediction algorithm that predicts
the trajectory of surrounding humans. These predictions evolve
as more information arrives and robot updates its models.
This requires us to consider a graph with not only a temporal
component but also evolving topology. We denote time-indexed
graph with changing topology as “evolving time-indexed graph.”
The change in topology may reflect in the form of addition
and deletion of states and/or edges, and can be used to reflect
changes in predictive information. Further extensions of this
formalism, to incorporate uncertain execution, can be obtained
by modeling actions with bounds on their execution time.

ITII. PLANNING OVER EVOLVING TIME-INDEXED GRAPHS

In theory existing graph-search algorithms, such as A* and
its variants, can be used for planning over (evolving) time-
indexed graphs. However, as discussed above, inclusion of
the time index results in an increase in the size of the state
space by a factor of the time-horizon of the problem. This
may render applicability of classical graph search approaches
in several applications computationally expensive. To alleviate
this computational challenge, Phillips and Likhachev [8]] have
developed safe-interval path planner (SIPP), an algorithm for
search over time-indexed graphs. This algorithm and its anytime
variant [7] exploit the existence of safe intervals in time-indexed

Algorithm 1 FSIP

1: procedure MAIN()

2: 9(Sgoa) = V(Sgoal) = 00; bp(Sgoa) = null
3: g(ssan) = 0; v(Sgan) = 00; bp(Ssian) = mull
4. OPEN =0

5: Insert Sy into OPEN with key (Ssart)

6: COMPUTESHORTESTPATH()

7: while sgoq # Ssart dO

8:

Sgart = current state of the robot
9: if changes in edge costs detected then
10: Mark all nodes that are not descendent of sy, as unexplored
11: for all states s with changes do
12: Update cost of all edges connected to s
13: UPDATESTATE(s)
14: COMPUTESHORTESTPATH()

15: procedure KEY(s)
16: return [min(g(s), v(s))+ h(s); min(g(s), v(s))]
17: procedure UPDATESTATE(s)

18: if s was not visited before then

19: g(s) = v(s) = oo; bp(s) = null

20: if s # Sy then

21: bp(s) = arg mins’eGETPREDECESSORs(s) U(Sl) +C(S/) s)
220 gls) = v(bp(s)) +e(bp(s), 9)

23: if s € OPEN then

24: Remove s from OPEN

25: if v(s) # g(s) then

26: Insert s in OPEN with key(s)

27: procedure COMPUTESHORTESTPATH()
28: while key (sgoa1) < eg}iDnENkey(s) OR v(Sgoa1) 7 g(Sgow) do

29: Remove s with the smallest key(s) from OPEN;
30: if v(s) > g(s) then

31: v(s) = g(s);

32: for each s’ € GETSUCCESSORS(s) do

33: UPDATESTATE(s")

34: else

35: v(s) = oo

36: for each s’ € GETSUCCESSORS(s) U{s} do
37: UPDATESTATE(s")

graph. This is possible due to the existence of several nodes
with identical time-independent component = but different time
indices. Merging such nodes into intervals results in reduction
of state space, but requires specialized algorithms (such as,
SIPP and anytime-SIPP) to reason over them.

The existing interval-based algorithms for time-indexed
graphs provide a computationally attractive approach to reason
over them; however, they need to search from scratch once the
graph topology changes. Since, changes may often occur in
the predictions available to a robot and correspondingly in the
topology of the time-indexed graph, re-planning from scratch
might be computationally limiting during execution. This calls
for development of incremental approaches for evolving time-
indexed graphs, analogous to incremental approaches such as
LPA* and D* [3| 4] for classical dynamic graphs. Here, we
propose one such incremental approach forward, safe-interval
planner (FSIP). FSIP is developed as a hybrid of the LPA*
and SIPP graph search algorithms with specialized features
for evolving time-indexed graphs, and it can re-use its prior
planning process when predictive information changes.

Intuition: Algorithms [I}2] describe the algorithm and the
required functions. Similarly to SIPP, FSIP first converts
the underlying time-indexed graph to a time-interval based
representation. Having generated the graph over safe time
intervals, we perform a search on the time-interval graph using
a modified LPA* algorithm to allow for efficient replanning.
Note that the LPA* algorithm is designed for graphs with
changing topology but fixed start state; hence, we modify the

Algorithm 2 FSIP : Computing Successors and Predecessors

36: procedure GETPREDECESSORS(S)
37: predecessors=)
38: for all actions a € A(s) do

39: x’ < action a reversibly applied to z(s)

40: t, < time to execute a

41: for all safe interval i € =’ do

42: s’ < state with configuration z’, interval 4
43: tyan < v(8") +tq

44: tena < endTime(s’) +t,

45: if startTime(s) > tena OR endTime(s) < tan then
46: continue

47: t < earliest feasible arrival time at s from s’
48: if ¢ does not exist then

49: continue

50: Insert s’ into predecessors

search to allow for changes in start state of the robot.

We use SIPP’s GETSUCCESSORS(s) procedure and an
analogous GETPREDECESSORS(s) procedure to determine
neighbors of each state. The first search by the algorithm
is identical to SIPP, except for the computation of key and
additional maintenance of the one-step look-ahead cost for each
explored node. The underlying time-indexed graph evolves as
the available predictive information changes, resulting in the
addition and removal of states. The algorithm mimics these
changes in the time interval-based graph representation, and
adds and removes time intervals as appropriate. The use of
modified LPA* allows FSIP to explore only the subset of states
that change due to novel predictive information, in order to
efficiently generate the new plan.

Once the start state changes, we prune the existing search
tree and only maintain the sub-tree originating from the current
start state. This allows FSIP to maintain the previous search
process, while searching from a modified start state. However,
this also renders the algorithm incomplete. Further, if the
start state does not change the algorithm reduces to the LPA*
algorithm and regains the associated properties - completeness
and optimality. An alternate approach is to use D* lite algorithm
for incremental search with changing start state; however, this
requires specification not only the goal configuration x4 but also
goal time t,. We are concurrently developing an incremental
approach using D* and evolving time-indexed graphs designed
for applications where goal time specification is available.

IV. PRELIMINARY EVALUATION AND DISCUSSION

To evaluate the planning performance of FSIP, we carried out
simulation of path planning scenarios in dynamic environments
using Robot Operating System (ROS). The performance of
FSIP was compared against that of SIPP, which replanned
from scratch once novel predictions were made available to
the algorithm. Prediction of motion of dynamic obstacles in
the environment was made available to the algorithms at the
start of the problem. The ground truth motion of the dynamic
obstacles changed every 500 time-steps, and correspondingly
the predictions were updated. Motion primitives of the robot
(used to represent action space of the time-indexed graph)
and the static map of the environment were pre-specified.
Simulation were carried out for twenty such randomly generated
scenarios with one dynamic obstacle in the environment, out
of which seventeen scenarios resulted in a feasible solution.

X
o
o
N
o

4
g : s
-?;3 o FsIP 2150 o
g x = o
i o
gz o .g‘IO o
x c
B S | °
Z 4 © x o s x °
S o5 5 *
@ o 4 ® X 40
o0 C8ses000e 20 *eeeooo66
Z0 5 10 15 Z 0 5 10 15

Planning Episode
(a) Nodes Expanded

Planning Episode
(b) Planning Time

Fig. 1: Comparison of FSIP and SIPP for path planning in dynamic
environments. Planning episode 1 denotes the planning at the start
of the problem, remaining planning episodes correspond to the case
when predictions of the dynamic obstacle are updated.

Figure [I] summarizes the results of simulations for which
a feasible solution was available. In these simulations, both
the algorithms found a solution with comparable path cost. By
maintaining the sub-tree originating from the current start node,
FSIP needs to expand a smaller number of nodes during the
subsequent replans (planning episode 2 onwards). However,
the incremental approach requires higher planning time than
planning from scratch. This happens since the incremental
approach incurs an additional computational cost of updating
its graph representation when new predictions are available.

In our on-going work, we are exploring modifications to our
incremental planner such that performance benefits observed in
the number of nodes expanded are also translated to planning
time. The utility of an incremental planning approach depends
on the amount of changes made to the graph. Further, online
prediction algorithms used for motion prediction typically make
frequent but incremental updates to their predictions. Hence, we
posit that a robot can realize benefits in computational time by
using a mixed approach which involves incremental planning if
the changes to the graph are less and replanning from scratch
otherwise. Lastly, we aim to evaluate the incremental approach
in closed loop with an online prediction algorithm.

REFERENCES

[1] Frank Broz, Illah R Nourbakhsh, and Reid G Simmons. Planning
for Human-Robot Interaction Using Time-State Aggregated
POMDPs. In AAAI, volume 8, pages 1339-1344, 2008.

[2] Guy Hoffman, Maya Cakmak, and Crystal Chao. Workshop on
timing in human-robot interaction. In HRI. ACM, 2014.

[3] Sven Koenig and Maxim Likhachev. D* lite. In AAAI, 2002.

[4] Sven Koenig, Maxim Likhachev, and David Furcy. Lifelong
planning A*. Artificial Intelligence, 155(1):93-146, 2004.

[5] Thibault Kruse, Amit Kumar Pandey, Rachid Alami, and Alexan-
dra Kirsch. Human-aware robot navigation: A survey. Robotics
and Autonomous Systems, 61(12):1726-1743, 2013.

[6] Markus Kuderer, Henrik Kretzschmar, Christoph Sprunk, and
Wolfram Burgard. Feature-based prediction of trajectories for
socially compliant navigation. In R:SS, 2012.

[7] Venkatraman Narayanan, Mike Phillips, and Maxim Likhachev.
Anytime safe interval path planning for dynamic environments.
In IROS, pages 4708-4715. IEEE, 2012.

[8] Mike Phillips and Maxim Likhachev. SIPP: Safe interval path
planning for dynamic environments. In /CRA. IEEE, 2011.

[9] Brian D Ziebart et al. Planning-based prediction for pedestrians.
In IROS, pages 3931-3936. IEEE, 2009.

	Introduction
	Evolving Time-Indexed Graphs
	Planning over Evolving Time-Indexed Graphs
	Preliminary Evaluation and Discussion

