
Learning User Models During Shared Autonomy
Shervin Javdani, J. Andrew Bagnell, Siddhartha S. Srinivasa

Robotics Institute, Carnegie Mellon University
{sjavdani, dbagnell, siddh}@cs.cmu.edu

Abstract—In shared autonomy, user input and robot autonomy
are combined to control a robot to achieve a goal. One often
used strategy considers the user and autonomous system as
independent decision makers, combining the output of these two
entities. However, recent work has shown that this can lead
to poor performance, suggesting the need to incorporate user
models into the autonomous decision maker. A key challenge
for doing so is learning a good user model. Existing methods
for learning user models assume autonomous assistance is not
present, while prior work suggests that users behave differently
in the presence of assistance. In this work, we propose a method
for learning user behavior during shared autonomy. We present
a cost minimization framework that utilizes this learned model
to select assistance actions that minimize the cost incurred by the
user. Finally, as altering the assistance strategy can change how
the user behaves, we present a method for evolving the model
and assistance strategy together.

I. INTRODUCTION

Robotic teleoperation enables a user to achieve their goal by
providing inputs into a robotic system. In direct teleoperation,
user inputs are mapped directly to robot actions, putting
the burden of control entirely on the user. However, input
interfaces are noisy, and often have fewer degrees of freedom
than the robot they control. This makes operation tedious, and
many goals impossible to achieve. Shared autonomy seeks to
alleviate these issues by combining manual teleoperation with
autonomous assistance.

Dragan and Srinivasa [1] show that nearly all prior shared
autonomy methods can be thought of as a blending between
two independent sources - user inputs and an autonomous
policy. Methods differ in the autonomous policy used, and
how the blending is done. Potential field methods [2] combine
direct teleoperation with a policy which pushes the robot
away from obstacles and towards goals. Virtual fixtures [3, 4]
combine direct teleoperation with an autonomous policy that
projects the robot onto path constraints. Autonomous task
completing systems [5, 6] use goal achieving policies, and give
full control to either the user or autonomy. Linear blending [1]
uses goal achieving policies, and blend by utilizing goal
prediction confidence to smoothly switch between sources.

While blending is intuitive, Trautman [7] presents many
examples where user inputs and the autonomous policy are
reasonable in isolation, but their blended combination is
not. These examples demonstrate a key shortcoming of the
blending approach - the autonomous policy selects assistance
actions independent of user inputs.

Although the autonomous policy itself does not usually
consider user inputs, user models have been used to predict
the user’s goal and select an autonomous policy [4, 1, 8, 9].

+

POMDP New Data

Old Data

Learn
Predictor

Direct 
Teleop Model

Fig. 1: Our algorithm pipeline. Given the current predictor, we utilize a
POMDP based policy to select assistance actions under goal uncertainty. Once
the shared autonomy system achieves the user goal, we add this data to all
previous shared autonomy data. We use this entire dataset, along with a prior
model of user behavior during direct teleoperation, to learn a new predictor.
This induces a different POMDP based assistance policy, which we use at the
next iteration. We repeat this process.

However, these models are generally learned from direct
teleoperation, whereas experiments suggest that users change
their behavior during shared autonomy [10, 11].

Some works have proposed minimizing a user-robot cost
function [8, 10]. However, current implementations do not
incorporate predictions of future user inputs into the policies,
and do not model how user behavior changes when assisting.

More recently, Nikolaidis et al. [11] present a framework
for minimizing cost while modelling how likely that user is to
adapt to the autonomous assistance. In their framework, the
user can either oppose or agree with the robot, where adaption
corresponds to being more likely to agree. In contrast to our
work, they assume a discrete set of joint user-robot policies.

Our aim is predict how users respond to assistance, and
utilize these predictions to select assistance actions. If certain
assistance actions cause users to incur greater cost, e.g. if they
fight the system, we predict that incurred cost and penalize



those actions. If other actions cause users to achieve their goal
while incurring less cost, we prefer those actions.

We first review the cost minimization framework of Javdani
et al. [10] assuming we have a model of user behavior. We next
present a method for learning user behavior during assistance.
Intuitively, we believe a model of user behavior during direct
teleoperation serves as a good prior, and incorporate this
notion into our method for learning a user model during shared
autonomy. We show how this model can be used for selecting
assistance actions. We discuss how to account for altering the
assistance strategy in learning a user model during assistance.
Finally, we discuss proposed experiments for testing this idea
in a discrete shared autonomy game.

II. ASSISTANCE ACTION SELECTION

We present our user-robot cost minimization framework for
a known goal. Note that we can extend this cost minimization
to an unknown goal by following Javdani et al. [10] and using
the QMDP method [12].

A. User-Robot Cost Minimization

Formally, let s ∈ S be the robot state (e.g. position,
velocity), and a ∈ A be the actions (e.g. velocity, torque).
We model the robot as a dynamical system with transition
function T : S×A→ S. The user supplies inputs u ∈ U via an
interface (e.g. joystick, mouse). These user inputs map to robot
actions through a known deterministic function D : U → A,
corresponding to the effect of direct teleoperation. We define
a trajectory ξt as a sequence of states, user inputs, and actions,
ξt = {s0, u0, a0, . . . , ut−1, at−1, st}.

We assume a known user-robot cost function C : S × U ×
A→ R. This cost function can be hand-tuned or learned, e.g.
through maximum entropy inverse optimal control (MaxEnt
IOC) [13]. Together, the tuple (S,U, T, Cu) defines a Markov
Decision Process (MDP).

Unlike standard MDP formulations, we cannot directly
optimize for actions, as we do not decide user inputs. To
select robot actions, we assume access to a stochastic user
policy πu(ξt) = p(ut|ξt), which provides a distribution over
user inputs given the history of states, user inputs, and actions.
In Sec. III, we discuss how we can learn this policy.

We similarly define the assistance policy πr(s) = p(a|s).
This allows us to define the value function, or expected cost-
to-go, given a user policy:

V π
u

πr (s0) =
∑
t

Est,ut,at [C(st, ut, at)]

st ∼ T (st−1, at−1)
ut ∼ πu(ξt)

at ∼ πr(st)

We denote the optimal value function as the expected cost-
to-go of the best policy, V π

u
(s) = minπr V π

u

πr (s).
Note that in prior work [10], this value function was

approximated by assuming the user would not supply more

inputs:

V π
u

[10] (s0) = min
πr

∑
t

Est,at [C(st, 0, at)]

This assumption was made for computational purposes -
rolling out the user policy while selecting assistance actions is
computationally difficult. However, if we wish to incorporate
the user model into action selection - for example, to avoid
fighting the user - we must relax this assumption.

Instead, we approximate by rolling out our policy and
predictor for a short horizon, and utilize a heuristic thereafter:

V π
u
(s0) ≈ min

πr

T∑
t

Est,ut,at [C(st, ut, at)] + Ṽ (sT )

Where Ṽ is some estimate of the cost-to-go, e.g. assuming the
robot will take over.

III. LEARNING THE USER POLICY

Most shared autonomy works have focused on utilizing
predictors to infer a distribution over the user’s goal [4, 1, 8, 9].
These methods learn a predictor during direct teleoperation,
and apply it during shared autonomy [1, 8, 9, 10]. Implicitly,
this assumes that users do not change their behavior when
assistance is provided. However, recent studies suggest that
users alter their behavior during assistance [10, 11].

A. Learning User Adaptation
The way in which users respond to assistance actions

provides information about the effectiveness of those actions.
If the user fights certain assistance actions, we should actively
avoid those assistance actions. On the other hand, if we
can predict that some assistance actions will enable users to
achieve their goal while incurring less cost, we should prefer
those actions.

Intuitively, we believe that user behavior during assistance
will resemble that of direct teleoperation. Let pme be a pre-
dictor of direct teleoperation behavior, e.g. learned through
maximum entropy inverse optimal control (MaxEnt IOC) [13].
To learn a predictor with assistance, we employ the principle of
minimum cross-entropy [14], learning a predictor that matches
the observed data while minimizing the Kullback-Leibler (KL)
divergence to this prior distribution. This has the additional
benefit of leveraging existing work on user predictions during
direct teleoperation.

Let fξu be some features of user input u and trajectory so
far ξ. Let f

ξ

u be the average feature observed in the data:

argmin
pkl

KL(pkl‖pme)

s.t.
∑
ξ∈Data

p(ξ)
∑
u

pkl(u|ξ)fξu = f
ξ

u

That is, the average feature of the data f
ξ

u should match the
expected feature predicted by our learned distribution pkl on
the trajectories observed in the data.

For computational purposes, we follow Nikolaidis et al. [11]
and utilize a bounded memory model, incorporating features
of only a short history.



B. Iterating Learning and Policy Updates

The above learning problem assumes that that the training
and testing distributions are iid - that is, the histories ξ ∈
Data is the same as the histories we will see during testing.
However, updating our model of the user causes our shared
autonomy policy to change, and therefore the histories to be
different, violating this assumption.

This common problem in reinforcement learning is ad-
dressed by Ross et. all [15, 16] with the DAgger algorithm.
The solution is intuitively simple - iteratively update your
policy, get a new set of data with the current policy, and
train the predictor with all data, including data from previous
policies. See fig. 1. In addition to enabling stronger theoretical
guarantees in this setting, this has the empirical benefit of
continuously adapting to the user’s behavior during assistance.

IV. PLANNED EXPERIMENTS

We have implemented these methods for a discrete grid-
world scenario with modal control [17]. Briefly, modal control
addresses the problem of controlling high degree of freedom
systems with lower degree of freedom inputs by defining a
discrete set of control modes, each of which controls a subset
of the robot degrees of freedom. See fig. 2. We are currently
preparing testing of this system for mechanical turk.

REFERENCES

[1] A. Dragan and S. Srinivasa, “A policy blending formal-
ism for shared control,” IJRR, 2013.

[2] J. W. Crandall and M. A. Goodrich, “Characterizing
efficiency on human robot interaction: a case study of
shared–control teleoperation,” in IEEE/RSJ IROS, 2002.

[3] S. Park, R. D. Howe, and D. F. Torchiana, “Virtual
fixtures for robotic cardiac surgery,” in Med. Image.
Comput. Comput. Assist. Interv., 2001.

[4] M. Li and A. M. Okamura, “Recognition of operator
motions for real-time assistance using virtual fixtures,”
in HAPTICS, 2003.

[5] A. H. Fagg, M. Rosenstein, R. Platt, and R. A. Grupen,
“Extracting user intent in mixed initiative teleoperator
control,” in AIAA, 2004.

[6] J. Kofman, X. Wu, T. J. Luu, and S. Verma, “Teleopera-
tion of a robot manipulator using a vision-based human-
robot interface,” IEEE Transa. Ind. Electron., 2005.

[7] P. Trautman, “Assistive planning in complex, dynamic
environments: a probabilistic approach,” in HRI Work-
shop Hum. Rob. Team., 2015.

[8] K. K. Hauser, “Recognition, prediction, and planning for
assisted teleoperation of freeform tasks,” Auton. Robots,
vol. 35, 2013.

[9] H. Koppula and A. Saxena, “Anticipating human ac-
tivities using object affordances for reactive robotic re-
sponse,” in RSS, 2013.

[10] S. Javdani, S. Srinivasa, and J. A. D. Bagnell, “Shared
autonomy via hindsight optimization,” in RSS, 2015.

[11] S. Nikolaidis, A. Kuznetsov, D. Hsu, and S. Srini-
vasa, “Formalizing human-robot mutual adaptation via

Fig. 2: Our proposed experiment for modal control. Users must navigate the
robot to the specified goal, which the system does not know apriori. The
grid includes fast-moving squares (white), slow-moving squares (green), and
walls (blue). Users have two control modes: left-right and up-down, and can
switch modes by rotating the robot. In order to assist the user, the system can
automatically switch modes.

a bounded memory based model,” in ACM/IEEE HRI,
2016.

[12] M. L. Littman, A. R. Cassandra, and L. P. Kaelbling,
“Learning policies for partially observable environments:
Scaling up,” in ICML, 1995.

[13] B. D. Ziebart, A. Maas, J. A. D. Bagnell, and A. Dey,
“Maximum entropy inverse reinforcement learning,” in
AAAI, 2008.

[14] J. E. Shore and R. W. Johnson, “Axiomatic derivation
of the principle of maximum entropy and the principle
of minimum cross-entropy.” IEEE Trans. Info. Theory,
vol. 26, pp. 26–37, 1980.

[15] S. Ross, G. Gordon, and J. A. D. Bagnell, “A reduction of
imitation learning and structured prediction to no-regret
online learning,” in AISTATS, 2011.

[16] S. Ross and J. A. D. Bagnell, “Agnostic system identifica-
tion for model-based reinforcement learning,” in ICML,
2012.

[17] L. Herlant, R. Holladay , and S. Srinivasa, “Assistive
teleoperation of robot arms via automatic time-optimal
mode switching,” in ACM/IEEE HRI, 2016.


	Introduction
	Assistance Action Selection
	User-Robot Cost Minimization

	Learning the User Policy
	Learning User Adaptation
	Iterating Learning and Policy Updates

	Planned Experiments

