A Hierarchical Control Architecture for Robust and
Adaptive Collaborative Robot Task Execution

Luke Fraser®, Banafsheh Rekabdar’, Monica Nicolescut, Mircea Nicolescu®, and David Feil-Seifer’
Department of Computer Science and Engineering, University of Nevada, Reno
Email: *fraser@nevada.unr.edu, Tbrekabdar@nevada.unr.edu, imonica@cse.umr.edu, §mircea@cse.unr.edu, Ydave @cse.unr.edu

I. INTRODUCTION

Robot task representation typically involves a sequential set
of steps. This methodology does not generalize to complex
real-world tasks. Real-world tasks involve multiple paths of
execution, where intra-task dependencies allow for differ-
ent methods to complete the same task. Representing such
complex tasks compactly poses a challenge as enumerating
all possible paths results in combinatorial growth. As well,
complex tasks benefit from the shared work of multiple
agents. Tasks representations should provide a mechanism for
multiple agents to communicate and self-organize as a team.
We propose a control architecture to address these issues.
The architecture 1) provides an efficient an compact encoding
of complex tasks, 2) enables robots to infer what the other
teammates are doing, 3) allows robots to dynamically decide
which execution path to follow using an activation spreading
mechanism.

II. RELATED WORK

The focus of the the proposed work addresses challenges
encountered working with service and assistive robots in real-
world environments. Assistive and service robot applications
have been investigated: search and rescue [1], space explo-
ration [2], and medicine and health [3], [4]. The control
structures presented perform specific tasks in a sequential
manor. This methodology does not generalize well to complex
tasks. As well performing in real-world environments requires
a control architecture that can adaptively react chagnes in the
environment. Furthermore such an architecture should extend
to multiple agents. Large and complex tasks benefit from
multiple agents participating collaboratively. The proposed ar-
chitecture seamlessly integrates multiple agents in a distributed
task representation.

The proposed task representation resembles a hierarchical
task network (HTN) [5]. HTNs have been used effectively
to encode simple tasks for automated robots [6], [7]. In [6]
HTN’s are used as a task representation for object manipu-
lation planning. Using HTN’s the planner is able to generate
sequential plans for the robot to execute. In [7] HTN’s are
used to build a complete task plan for a given scenario. The

Acknowledgement: This material is based upon research supported by the
Office of Naval Research under Award Number N000141612312.

Fig. 1. Representation of task network for expression: “a THEN ((b OR c)
AND (d THEN e THEN (f WHILE g)))”

HTN encodes several behaviors that are executed sequentially
at runtime. The HTN provides a means for fast planning of a
given task or subtask.

Although, HTN’s are similar, the method of task execution
is vastly different. The proposed HTN does not separate the
planning stage from the execution stage. In our approach both
planning and execution are performed concurrently. As well
our approach does not expand an HTN at runtime to all
possible paths of execution. The proposed distributed HTN
architecture allows for real-time planning and execution of a
complex task. An activation spreading approach is used to
execute and plan a task. As well, the activation spreading
framework generalizes to multiple robot tasks.

The following sections will describe the proposed architec-
ture. Section III will provide an overview of the task repre-
sentation. Section IV will describe the multi-agent execution
scheme.

III. TASK REPRESENTATION

We propose a task representation that can encode complex
tasks structures and would enable a heterogeneous team of
robots and people to self-organize in deciding how to achieve
a task’s goals. The architecture thus serves multiple roles: i) it
provides an efficient, compact encoding of the structure of the
task, ii) it enables robots to process which goals other agents
are performing, iii) based on the previous information it allows
robots to make decisions on what actions to do next and iv)
it serves as the control architecture that the robots will use to
achieve their goals.



A. Methodology

We propose a representation using a behavior-based
paradigm, which provides modularity and ease in commu-
nication and connectivity between behaviors. As previously
mentioned, our aim is to enable the system to encode tasks that
involve temporal sequencing constraints, overlapping temporal
constraints (some steps need to happen at the same time,
e.g., hold cup while pouring), alternative ways of execution
(any one of multiple options is acceptable), and no temporal
constraints (some steps can be executed in any order). All these
options could be a part of a single task representation, which
could be seen from a task such as “a THEN ((b THEN ¢) AND
(d OR e OR (f WHILE g)))”. To encode such a task we will
define two types of nodes in our behavior network. Behavior
nodes encode a basic behavior that achieves a well-defined
goal (such as a, b, ¢, d, e, f, g above). Goal nodes are N-ary
trees (i.e., can have from O to N children) and encode the four
different types of execution constraints mentioned above, as
follows:

« THEN goal nodes encode sequencing constraints. For
example, GoalSeq = a THEN b, implies that in order
to achieve GoalSeq, the system should execute behavior
a, followed by behavior b.

o OR goal nodes encode alternate paths of execution. For
example GoalAlt = a OR b, implies that in order to
achieve GoalAlt, the system can execute either behavior
a or behavior b.

o AND goal nodes encode the option of having no ordering
constraints. For example GoalNoOrd = a AND b, implies
that in order to achieve GoalNoOrd, the system should
execute both behaviors a and behavior b, but in any order.
This also leads to alternative paths of task execution,
but in which all the individual components must be
performed at some point.

o« WHILE goal nodes encode overlapping temporal con-
straints. For example GoalTmp = a WHILE b, implies
that in order to achieve GoalTmp, the system must exe-
cute behavior a while maintaining the goals of behavior
b. Implicitly this means that both behaviors a and b might
need to be executed concurrently.

With these types of components, the above task will be
represented as shown in Figure 1. It can be seen that this repre-
sentation compactly encodes all the task constraints, including
all possible paths of execution. This is especially important
when there are multiple alternative paths, such as for Goal2:
either goal3 or Goal4 could be performed first; to achieve
Goal4 either one of d, e or Goal5 could be executed. Instead
of explicitly enumerating all possibilities, we use the most
compact form of the task representation. This representation
would be more accurately represented by the following prefix
encoding: (THEN a, (AND (THEN b ¢) (OR d e (WHILE f
).

Each goal node stores the following information: status
(indicates whether the goal has been achieved, not achieved
but currently being worked on, or not achieved and not actively

being pursued), type (THEN, OR, AND, WHILE), activation
level and collaborative type (indicates whether it is a joint goal,
requiring or permitting that more than one agent performs
the goal, or not). During task execution, each goal node
continuously evaluates its status (computed from the status of
its children) and this information is available for the higher-
level parent nodes.

To perform a task, a robot uses the above task representation
as follows: the root node of the task (typically a goal node)
evaluates, if all its children goal/behavior nodes are done. If
they are all finished, nothing needs to be done. Otherwise, the
node will send activation messages to its child nodes in order
to signal that they should become active and work. These goal
nodes, in turn, send activation messages as needed to their
children. Messages are also passed from children nodes that
are currently active (basic behaviors that are running, or goal
nodes that are active) upwards to the parents to indicate the
viability of a given child. This is important for keeping track
of which pathways of execution are preferred by parent nodes.
This is a key feature that enables seamless self-organization
within the robot team (Section IV). The different types of goal
nodes send activation messages to their children as follows:

o THEN goal nodes evaluate the status of their children
in the order given by the sequence and send activation
messages with decreasing magnitudes, from the first goal
in the list whose status is not done to the last. This ensures
that the subsequent steps of the task are executed in the
proper sequential ordering.

e OR goal nodes initially send activation messages to all
their children. Once the activation messages reach a leaf
node (basic behavior), the behavior with the highest
activation level and whose own preconditions are met
will start running. This allows for opportunistic task
execution, in situations in which environmental condi-
tions are met for just one (or some) of the alternative
pathways. Once a pathway becomes active (detected
through messages from the children), the goal node will
stop sending activation messages to all the other children.

o AND goal nodes send activation messages to all their
children. When a particular child node becomes active,
the node will increase the activation it is sending to the
active child, but continue sending activation to the other
children nodes. This would ensure that the system would
not oscillate between a child goal node to another and also
allow for the possibility that another robot could work on
one of the other child goal nodes, which is explained in
Section IV.

o WHILE goal nodes first evaluate the status of their second
child. If it is achieved, then activation is sent to the first
child to begin execution. Otherwise, the node first sends
activation to the second child, to ensure that its conditions
are met before the first node can start running.

B. Outcomes

This work will develop an architecture that addresses sig-
nificant challenges that arise in collaborative domains. First,



Robot 2

Robot 1

Fig. 2. Communications between nodes from representations on multiple
robots. Gray nodes represents the current active path on each robot Connec-
tions between basic behaviors are not shown for clarity.

it provides a compact representation of complex tasks with
multiple pathways of execution and it serves both as a decision
making tool, as well as a control system that is directly
employed by the robot for task execution.

IV. TASK EXECUTION

The task representation described in Section III enables a
single robot to perform a complex task with multiple types
of constraints on its own. As a member of a team, however,
a robot’s decision making needs to take into account its
teammates. For this, in addition to the overall goals of the task,
the robot needs to take into account which goals are already
being worked on by other teammates and also which goals
require additional assistance. We describe below how robots
can acquire this information and make decisions regarding
their own future actions for the benefit of the team.

A. Methodology

We propose that each robot have its own copy of the
overall task representation, which uses the top-down and
bottom-up activation spreading and message passing mech-
anism presented in Section III. In addition, each goal or basic
behavior node continuously communicates with its identical
(peer) nodes on the other robots and sends its current status and
an activation message (possibly different from the activation
level of the node) (Figure 2):

o If the node status is achieved, this information, along
with a zero activation level, will be communicated to all
corresponding nodes on the other robots. In this situation,
the node will automatically be considered achieved by
all the robots, thus preventing any top-down spreading of
activation from the completed node (on all other robots)
and re-execution of that goal by another teammate.

o If the node status is not achieved, and not active, there
is no communication with corresponding nodes on other
robots. This implicitly indicates that the goal is “avail-
able” for any other teammate to work on. All the robots
in the team will thus use the activation levels within their
own representations to decide what to work on.

o If the node status is not achieved, but active, this informa-
tion will be communicated to all corresponding nodes on
the other robots. Depending of the type of the node and
its class (whether it is a joint goal or not), the other robots

will use this information as described next. Goal nodes
that are not joint are those that could be performed by
a single robot. Therefore, if a robot is currently engaged
in working on such a goal, the activation sent to sibling
nodes on other robots will be zero, indicating that this
goal is currently being tended to. For joint goals, the
activation sent to sibling nodes on other robots will be
identical to the activation level of the node, indicating to
other robots that help is needed with this part of the task.
This allows robots to infer when others need assistance
and provides them with awareness of the current needs
of the robot team.

This process seamlessly enables the self organization of the
robot team: as one robot begins working on a part of the
overall task, the messages between their representations allow
all the robots in the team to know what parts of the task are
being worked on by others and what parts are still left to be
done. Within each robot’s own representation, the activation
messages from the un-achieved goals will lead the robot to
select the appropriate sub-task to work on. The proposed
approach works identically in situations in which the overall
team task is composed of multiple root goal nodes, as different
teammates can choose to work on different high-level goals.

V. CONCLUSION

We have proposed an control architecture and task represen-
tation that will address many collaborative robotics challenges.
The task representation compactly encodes complex tasks.
This representation allows for multiple paths of execution and
creates a general description of tasks with different constraints.
The use of this task representation allows for collaborative
teams of robots to work on the same task together. The robots,
using the activation spreading mechanism can communicate
between active behaviors to allow for seamless and distributed
self-organization in real-world environments. With the pro-
posed architecture robots will be capable of working together
to complete common goals.

REFERENCES

[1] R. Murphy, “Human-Robot Interaction in Rescue Robotics,” IEEE Sys-
tems, Man and Cybernetics Part C: Applications and Reviews, special
issue on Human-Robot Interaction, vol. 34, no. 2, may 2004.

[2] R. Ambrose, H. Aldridge, R. Burridge, W. Bluethman, M. Diftler,
C. Lovchik, D. Magruder, and F. Rehnmark, “ROBONAUT: NASA’s
Space Humanoid,” IEEE Intelligent Systems Journal, aug 2000.

[3] H. Krebs, B. Volpe, M. Aisen, and N. Hogan, “Increasing productivity and
quality of care: robot-aided neurorehabilitation,” Journal of Rehabilitation
Research and Development, vol. 37, no. 6, 2000.

[4] D. Wilkes, A. Alford, R. Pack, T. Rogers, R. Peters, and K. Kawamura,
“Toward socially intelligent service robots,” Applied Artificial Intelli-
gence, vol. 12, no. 7-8, 1998.

[5] K. Erol, J. A. Hendler, and D. S. Nau, “UMCP: A Sound and Complete
Procedure for Hierarchical Task-network Planning.” in AIPS, vol. 94,
1994, pp. 249-254.

[6] M. Weser and D. Off, “HTN robot planning in partially observable
dynamic environments,” in 2010 IEEE International Conference on
Robotics and Automation. 1EEE, may 2010, pp. 1505-1510. [Online].
Available: http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=5509770

[7] L. Kaelbling and T. Lozano-Pérez, “Hierarchical task and motion
planning in the now,” Robotics and Automation, 2011. [Online].
Available: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5980391



