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Abstract—For the robots to be part of our daily lives, their
ability to form safe and successful collaborations with humans
is a necessity. To ensure smoother collaborations, we provide
a framework for human-robot teams using the concept of
explicability. Explicability outlines that an agent’s perception of
another agent’s model may be different from the actual model
and that this should be factored into the agent’s planning process.
Our contributions include extending explicability formulation to
support interactive human-robot teaming and implementing the
framework on a physical robotic platform. We make a reasonable
assumption that an agent might only have an approximate version
of other agent’s model, i.e. the robot not only has to learn
human’s preconceptions about its own model, but also has to
work with incomplete human planning preferences.

I. INTRODUCTION

As more and more robots are being placed in human society,
it has become crucial to address the challenges of human-
robot interaction. An important challenge is to ensure that
the robot always behaves in expected and intuitive fashion
when interacting with humans. Unexpected behaviors in robots
can raise safety concerns. Especially in human-robot teams, to
ensure co-ordination and good teamwork between the agents,
generation of explicable behavior can be of utmost importance.
For a team to achieve their common goal efficiently, it is
necessary that the agent is aware of the other agents’ individual
goals. In a human-robot team, robot has to be mindful of
human’s tasks, and avoid hampering human’s personal goals
while achieving its own goals. In essence, there has to be a
mutual understanding between the participating agents regard-
ing what actions to take at every step.

The notion of human-robot teaming has been a popular
research direction. There have been many works involving
human-robot teams with robots as proactive agents [9], [10],
[1]. In most such works, the assumption is that the human
model is provided and complete for inferring about the human
intent and plan. This is often not true. However, [11], presents
a new outlook on human-robot teaming, where the robot
also factors in human’s mental model of the robot’s model
in its decision making, in order to generate plans that are
more explicable and comprehensible to humans. This work
is closely related to “legible” motion in motion planning
[5] and generating socially acceptable behaviors for robots
[7], [6]. While our work is inspired by [11], we extend the
framework to support interactive human-robot teaming instead
of the human just being an observer as in [11]. We extend
the formulation of explicablity to capture other behaviors that
may be important for successful teaming like altruism [2],
opportunism [3], compliance [2], etc. To this end, we learn
a model that is able to capture both human mental model
of the robot and to a limited degree the human planning

preferences. We then evaluate our model using a Fetch robot
on a blocksworld domain, where human and robot collaborate
to form meaningful words out of lettered blocks.

II. PROBLEM FORMULATION

We build on the formulation given in [11], please refer
section III of that paper. Here we consider two member peer-
to-peer human-robot teams. Here each problem can be written
as a planning problem PT = 〈I,MR, M̃H ,ΠC , GH , GR〉,
where I denotes the initial state of the planning problem,
GH and GR represent the goals of human and robot, MR

is the actual robot model, M̃H is the approximate human
planning model provided to the robot and ΠC represents a
set of annotated plans that are used to train the CRF model.
The plan for the entire team will be represented through a
composite plan. A composite plan is defined as follows:

Definition 1. A composite plan πC captures the actions
performed by both human and robot to achieve their goals
(common goals and individual) and is represented as πC =
{aφ1

1 , aφ2

2 , ..., aφi

i ..., a
φn
n }. Here aφi

i represents the ith action
in the plan performed by the agent φi (φi can be H or R).

Here we assume that only one agent is executing its action
at any given time and that the actions are performed alternately
i.e if φi = H then φi+1 = R. We allow a noop action, which
can be used any time an agent wants to skip its turn. The
robot has to generate a composite plan that is close to the plan
that the human might generate. It does this by embedding its
actions in a composite plan that includes its expectations of
the actions the human is likely to take:

arg min

π
MR,M̃H
C

cost(πMR,M̃H

C ) + α.dist(πMR,M̃H

C , πM̃R,MH

C ) (1)

where πMR,M̃H

C is the composite plan created by the robot
using MR and M̃H , while πM̃R,MH

C is the composite plan that
might be created by the human. As in [11], the distance func-
tion dist(πMR,M̃H

C , πM̃R,MH

C ) can be calculated as a function
of labels of actions in πMR,M̃H

C which gives us equation 2:

arg min

π
MR,M̃H
C

cost(πMR,M̃H

C )+

α.F ◦ L∗
CRF (πMR,M̃H

C |{Si|Si = L∗(πi∗C )})
(2)

As shown in equation 2, the label for each action is produced
by a CRF (L∗

CRF ) trained on a set of labeled execution traces
({πiC∗}). Each action was labeled by human subjects and
each label was chosen from T = {tH1 , tR2 , ..., tRm}, where T
is the set of all high level sub-goals. Equation 2 represents



the objective of the problem, where the g value is given by
the term cost(πMR,M̃H

C ) and h value is given by the distance
function (i.e α.F ◦ L∗

CRF (πMR,M̃H

C |{Si|Si = L∗(πi∗C )})).
In addition to capturing whether humans can relate a specific

action to a specific subgoal, we also try to reason about
usefulness of sub-goal to team goal. To do this, we introduce
a set of higher level semantic class labels S, where S =
{S1, S2, . . . , Sk} and we have ∀t ∈ T, ∃Si ∈ S, such that t ∈
Si. For example, an action like Pickup A could correspond to
a sub-goal Fetch next block, which in turn could fall under a
class label like Robot working on its goal. By introducing these
semantic class labels, we extend explicability formulation
to capture behaviors like altruism, opportunism, compliance,
etc. We use explicability score to generate our heuristic for
the planning. We compute this score by assigning different
weights for each class label. The exact weights of each class
label depends on the desired behavior. For example, if altruistic
behavior is desired, we can set high value for class label that
comprises of actions where robot is helping human in her goal,
else if opportunistic behavior is desired we can set high value
for class label that comprises actions where human helps robot.

III. EVALUATION

To evaluate our system, we test it on modified blocksworld
domain, with lettered blocks. The goal was to form different
words by stacking the blocks with the required letters. For
each scenario, both agents were assigned unique words, and
each agent was aware of other’s goal. We used Fetch robot
as the robot agent. The entire workspace is divided into two
sections near and far, where accessing the blocks at farther
region incurs some extra cost. The domain model for each
agent was based on the IPC blocksworld domain with four
standard actions (Stack, Unstack, Pickup and Putdown)
and an additional noop action which had no precondition
and effects. All training examples were collected from human
subjects, with random initial and goal states. We collected an
initial set of 70 traces, which was used to produce more unique
plan traces by substituting the blocks-IDs, changing the block
letters and final goal. After this process we had a total of
14,000 traces, which were used to train CRF model.

Use case: Consider a scenario (demo video1), where the
initial state is as shown in the Figure 1. The robot’s goal is to
form the word EAT , while the human has to form PEN . The
initial state has two E’s such that one E is near and another is
farther away. Here we consider two plans: one optimal plan,
another explicable plan generated by modified FF planner [8]
sensitive to explicability. With altruistic behavior desired from
the robot, we test the explicability score of both the plans.

Here the robot should use farther away E to complete
its goal, or it should bring the farther E to nearer region
for the sake of the human. In essence, the robot should not
inconvenience the human by leaving farther block for her. The
optimal plan involves robot picking the closer block to reduce
its plan cost. On the other hand, in the explicable plan the

1https://www.dropbox.com/s/bl6fyrlp052h0za/EXP-VIDEO.mp4?dl=0

Fig. 1. In first case human picks farther E, in the other robot picks it

robot helps the human by picking the farther E and then
further helps the human by stacking E on human’s blocks.
We use trained CRF model to get class labels for actions. If
class labels represent inexplicable or disruptive actions on part
of the robot, weight assigned is −3, if agent is working on
it’s own goal, weight is 1, if an agent is helping other agent
complete its goal, weight is 3. For the optimal plan, the score
is 0.111, whereas for explicable plan it is 0.818.

IV. DISCUSSION

Although we have mainly focused on two member teams,
we believe that this framework can be easily extended to larger
team sizes. One of the main challenges in larger team sizes
would be to maintain the order in which agents may choose
to perform actions. Another assumption was that all action
executions were sequential, it would be interesting to see
if this formulation can be extended to support simultaneous
action executions. One way to achieve this would be by
using temporal planners [4]. In conclusion this work aims at
introducing a way of creating plans for human robot teams,
that are naturally more explicable and preferred by the humans.
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