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Abstract

Tracking the movement of objects using multiple sensors (such as tracking
vehicles or people using a distributed set of video cameras) is a topic of
importance in security and automation applications. A prime considera-
tion in these multi-sensor tracking networks is the timeliness of estimates,
as tracking is a time-sensitive task. Current methods for handling delayed
observations can be computationally intensive while minimally improving
the estimate. This work aims to develop methods for estimating the value
of delayed information. The value of observations from a variety of sensor
locations at time points in the past are evaluated using the proposed strat-
egy. We derive the relationships and trends that relate the ‘age’ of past
sensor data to its marginal contribution toward improving the accuracy of
an estimate of the current location of an object. Low-complexity methods
for assessing the value of delayed sensor information can impact applica-
tions in defense and national security, personal electronics, and financial
engineering where timely decisions are paramount.
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Chapter 1: Introduction

A common concern in tracking with sensor networks is the tradeoff between in-

tegrating informative observations and conserving power through reducing commu-

nications. This thesis considers selecting the observation we integrate using a priori

knowledge to predict the most informative observation. Specifically, it aims to accel-

erate the selection process when delayed observations are among those considered for

inclusion.

Chapter 2 examines the problem in more detail and summarizes existing related

literature. Chapter 3 details the proposed selection strategy and provides a theo-

retical example an example. Chapter 4 applies this strategy to a realistic tracking

scenario with multiple sensors and range-bearing observations. Chapter 5 evaluates

the performance of the proposed strategy. Chapter 6 draws conclusions and proposes

avenues of possible future research.
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Chapter 2: Background

This chapter covers a wide breadth of background knowledge used in our approach

to this problem.

Kalman filtering, a technique commonly used in tracking, iteratively refines a

statistical model and constructs probabilistic estimates of the target state as sensor

information becomes available. This statistical model consists of two parts: a dynam-

ics model, which describes the evolution of the target state over time, and a linear

observation model, which linearly relates the observations to the current state. Each

model accounts for uncertainties in either the target dynamics or the observations

using a Gaussian random variable. The amount of uncertainty is retained in an error

covariance matrix for both the target dynamics and the observation model. Obser-

vations may be delayed in time before they are received; the delay may be caused,

for example, by communication delays if the observation is taken by a distant sensor

node and is transmitted to the filter. Bayesian theory provides a mechanism for in-

corporating delayed information, but this approach is computationally intensive and

typically results in negligible improvement in the estimation accuracy.

Distributed sensor networks are commonly used for tracking-oriented applications.

These networks are comprised of nodes that are each capable of sensing, processing,
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storing data, and communicating with other nodes. Power conservation is a ubiq-

uitous concern in these systems, where the largest power draw is communication

between nodes [13].

‘Sleeping’ sensor networks are a particular type of network that attempts to min-

imize the amount of communication between nodes. Consider a network where all

nodes except one (called the leader node) are in a power-saving ‘sleep’ mode. The

leader node is responsible for generating a local estimate of the target. In addition

to the leader node’s current observation, this estimate can also incorporate past or

present observations from other nodes. At each time step, the leader node has to

select the next leader node and select a subset of all available observations to in-

corporate into the local estimate. The subset of observations should be chosen in a

principled manner, as the acquisition and processing of each additional observation

is very costly in terms of both time and energy.

The value of information, defined by the utility function ϕ, is central to both of

the decisions to be made. As utility can’t be explicitly calculated without knowing

the observation (which is not freely available to all nodes), we must use an estimate

of the utility function to aid in these decisions. The proposed work aims to develop

methods for estimating the value of delayed information. More specifically, we seek

to develop low-complexity methods to indicate when assimilating a delayed measure-

ment will improve the estimate by some non-negligible amount. These methods for

assessing the value of delayed information could impact many fields where such eval-

uation would save time, power, money, or other valuable resources. For example,

certain applications in national defense, security systems, and consumer electronics

may benefit from of the low-complexity methods to be developed in this work.
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2.1 Bayesian Filtering

We assume that a target is moving throughout some finite state space {xi}Ni=1. At

each time step t we denote the true target state by xk. Each of the M sensors makes

a noisy observation of the target state zkj ; a measurement may or may not be added

to a set of measurements maintained by the tracker, Zk =
{
z0, z1, . . . , zk

}
.

The state transition model, generally, is given as

xk+1 = F
(
xk,vk

)
→ f

(
xk+1 | xk

)
. (2.1)

Similarly, the general form of the observation model is

zkj = Hj

(
xk,wk

)
→ hj

(
zkj | xk

)
. (2.2)

In Bayesian filtering frameworks, we compute a predicted target state distribution for

time step k + 1:

p
(
xk | Zk−1

)
=

∫
i

f
(
xk | xk−1

i

)
p
(
xk−1
i | Zk−1

)
dxk−1. (2.3)

This is followed by computing the posterior distribution, or the estimate of the target

state at time t+ 1 based on the observation from time t+ 1:

p
(
xk | Zk

)
∝ hj

(
zk | xk

)
p
(
xk | Zk−1

)
.

The Bayesian criterion is based on minimizing the expected uncertainty at each time

step.

This work investigates the inclusion of delayed or old measurements into this

framework. The intuition here is that we have to ‘roll back’ the tracker to the time

step of the new measurement, and then ‘roll forward’, propagating the new estimate

and re-incorporating all of the previous data. The recursive nature of integrating
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observations of more than one time-step behind is clearly computationally intensive.

This can be partially mitigated by allowing the sensor to have some memory stack in

which it can store n prior state estimates for use in updating. The computational de-

mands of this approach drive the search for a low-complexity metric for the usefulness

of old measurements.

2.2 Sensor Selection and Utility

Tracking with sensor networks often requires the system to make decisions about

which sensors to query at each time. As specified by the Bayesian tracking criterion,

we select the sensor that maximally reduces our uncertainty. The value of information,

defined by the utility function ϕ, is an expression of that reduction in uncertainty

provided by querying a specific sensor.

Durrant-Whyte, in [9] and [3], advocates for the use of a distribution’s log-

likelihood as its utility. Then, its expected utility is its negative entropy or Shannon

information. This entropy-based definition is both simple and intuitive, yet imprac-

tical as it requires the measurement itself to evaluate its information content.

In [16], Zhao et al. examine several utility measures within their Information-

Driven Sensor Querying (IDSQ) approach. Instead, [16] proposes to select the next

leader node based on the expected state estimate of the next time step. Ertin et al.

extend this work in [4], demonstrating that selection based on the expected updated

state estimate at the next time step is just an indirect way of selection based on the

predicted state estimate at the next time step. Instead they propose selecting the

sensor ĵ such that

ĵ = arg max
j∈V

E
{
−H

(
p
(
xk | Zk−1 ∪ zkj

))
| Zk−1

}
. (2.4)

5



It is shown that it is more computationally tractable to select the next leader node

based on the expected updated state covariance, which simplifies to selecting the

sensor with maximum mutual information with the predicted state estimate.

Several other papers have improved performance by using these approaches over

a range of time steps. In doing so, they try to maximize the long-term information

gain of the tracker. Williams et al. build on this by using a dynamic programming

algorithm approximation to simultaneously solve for the next leader node and the

subset of other nodes over a rolling time horizon [13]. Similarly, Liu et al. apply

the IDSQ approach to a series of values and obtain similar improvement over the

single-step, ‘greedy’ alternative. None of these works provide explicit treatment of

the delayed sensor measurements considered here.
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Chapter 3: Approach

Our approach expands on the approaches discussed above in two ways. First,

we apply principles of utility to sensor models where a sensor is not guaranteed to

observe the target. Then we discuss the extension of these principles to delayed data.

Finally, our approach is illustrated in an example.

In this work we are interested in evaluating the performance of a tracker that is

able to use both current and past information. The problem described here is tailored

to facilitate this comparison but the results should apply generally.

3.1 Sensor Selection

We consider a system that is tracking a single target as it progresses through some

space. The true target state at time tk is denoted xk. A sensor network is deployed

over this space in a distributed manner, that is, the state estimate is maintained by a

‘leader node.’ At each time step k, which is the discretized time tk, each sensor node

j makes a noisy measurement zjk of the target’s location. Additionally, we assume

that every sensor node has some finite memory stack and retains both its current

observation zjk and its prior observation zjk−1.

At each time step k, the current leader node must choose one observation to

incorporate into the estimate. The leader node, which at time k has the updated
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state estimate from the previous time step k − 1, can choose any observation from

the current time step k or from the previous time step k − 1. In either case, the

leader node uses some utility measure ϕ to select an observation to integrate. As in

most real-world tracking scenarios, this utility measure must be able to estimate the

information content of this observation without explicit knowledge of the observation.

This constraint aims to reduce the amount of communication between nodes and

assumes that the sensor modalities and locations are known by all nodes.

Regardless of whether a current or prior observation was selected, the leader node

transmits the state estimate to the sensor node that made the observation. An in-

dication of whether it has selected the current or prior observation for integration is

also sent. The receiving node becomes the new leader node; if the leader node selects

its own current observation it remains the leader node.

If a current observation is desired, the new lead node propagates the state estimate

from time step k − 1 to time step k and then updates the state estimate using the

observation. Propagating the state estimate reduces its information content; updating

the state estimate with the current observation then increases the state estimate’s

information content. If a prior observation is desired, the lead node updates the

state estimate using the observation from time step k − 1 and then propagates this

updated state estimate forward to time step k. Updating the state estimate with

the old observation increases the estimate’s information content; some portion of this

information gain is lost when the estimate is propagated forward to time step k. Once

the state estimate has been propagated and updated (or updated and propagated)

the system advances to time step k+1 and must select one observation to incorporate

into the estimate.

8



3.2 Expected Information Utility

In many sensor networks there is no guarantee that every sensor can detect the

target over the entire state space. This is caused by a variety of factors including

occlusion and signal attenuation. Many standard tracking algorithms simply refrain

from updating upon not receiving an observation. We, however, argue that there is

actually information to be obtained in this case. Specifically, a non-detection tells us

where the target is not.

We consider this information when deriving a utility measure. Assume the sys-

tem is currently at time step k and has the most recent posterior distribution,

p (xk−1 | Zk−1). Then the actual information utility from integrating an observation

zjk−γ from sensor node j and from time k − γ, where γ ∈ {0, 1}, is given by

ϕ
(
xk | Zk−1 ∪ zjk−γ

)
, ϕ

(
p
(
xk | Zk−1 ∪ zjk−γ

))
= log2 p

(
xk | Zk−1 ∪ zjk−γ

)
.

Ideally we would like to find the sensor j∗ for which

j∗ = arg max
j∈V

ϕ
(
xk | Zk−1 ∪ zjk−γ

)
,

but this is unreasonable to compute directly. Instead, we consider the expected infor-

mation utility , given by

Φ
(
xk | Zk−1 ∪ zjk−γ

)
, E

{
ϕ
(
xk | Zk−1 ∪ zjk−γ

)}
=
∑

Detect?

p
(
z
j (?)
k−γ

)
log p

(
xk | Zk−1 ∪ z

j (?)
k−γ

)
= p

(
z
j (+)
k−γ

)
ϕ
(
xk | Zk−1 ∪ z

j (+)
k−γ

)
+p
(
z
j (−)
k−γ

)
ϕ
(
xk | Zk−1 ∪ z

j (−)
k−γ

)
(3.1)

where the superscript j (+) means that sensor j detected the target and, likewise,
j (−) means that sensor j did not detect the target. For a shorthand notation we can
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write

Φ
(
xk | Zk−1 ∪ zjk−γ

)
= PDϕ

(
xk | Zk−1 ∪ z

j (+)
k−γ

)
+(1− PD)ϕ

(
xk | Zk−1 ∪ z

j (−)
k−γ

)
(3.2)

where PD = p
(
z
j (+)
k−γ

)
is the probability that sensor j will detect the target and

(1 − PD) = p
(
z
j (−)
k−γ

)
is the probability that sensor j will not detect the target.

Including both detections and non-detections in the expected utility estimate should

facilitate more reasonable sensor selection and improved track retention.

It should be noted that the definition of expected utility for detections and non-

detections are relatively convenient quantities for certain types of probability distri-

butions. For discrete state spaces, the expected utility for the detection and non-

detection posteriors is simply the posterior entropy. For multivariate Gaussian dis-

tributions the expected utility is, similarly, the determinant of the inverse covariance

matrix.

3.3 Conceptual Example

To motivate our approach we first consider a simple example in a discrete state

space. Suppose we have some target that is traversing a tree. Specifically, at each time

step, it transitions from its current node to one of that node’s children. Additionally,

without loss of generality, assume that each node has four children and that the

target transitions to its leftmost child with probability 1 − P . The probability of

transitioning to one of the three rightmost branches is equally split between them.

This is the state dynamics model state dynamics model f
(
x(t+1) | x(t)

)
illustrated in

Figure 3.1. Assume for simplicity that 0 < P < 0.5.
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3
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Figure 3.1: The state transition model for tracking a target down a tree.

Assume that we have one sensor in each of the discrete nodes. These sensors either

detect the target if the target is in the same node as the sensor, or not if the target

is in some other node. The observation model hj
(
z

(t)
j | x(t)

)
returns a 1 if the target

is in the same state as the sensor and a 0 otherwise. At each time tk, we may query

a single sensor to receive an observation from time tk or tk−1.

Assume that at time tk−1 we knew that the target was at the blue node in Fig-

ure 3.1. Now, at time tk, we are trying to select a sensor to query. Since 0 < P < 0.5,

the sensor with the highest probability of detection is the green node in Figure 3.2a.

If querying that sensor reveals that the target was not in that node then we can infer

that it was in one of the red children at time tk. The posterior distribution for the

target state at time tk is shown by nodes in the bottom row of the white nodes in

Figure 3.2b.

The time advances to tk+1 after we query the sensor at tk. We now need to select

a sensor to query from either time tk or tk+1. The proposed expected utility metric is

used to determine which sensor and time provides the most informative observation.

We will first consider the utility of old measurements from time tk as shown in

Figure 3.3. The green and red nodes in the middle row are all possible target locations

at tk. As they are equally likely and equally informative, we arbitrarily select the green

node. The definition for expected utility from Equation 3.2, reproduced below, is used

11
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0
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3
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(b)

Figure 3.2: Figure 3.2a shows the tracker attempting to integrate a current obser-
vation from the green node. Figure 3.2b shows the posterior state distribution after
discovering that the (previously) green node did not detect the target.

to compute the estimated utility of selecting this node.

Φ
(
xk | Zk−1 ∪ zjk−γ

)
= PDϕ

(
xk | Zk−1 ∪ z

j (+)
k−γ

)
+ (1− PD)ϕ

(
xk | Zk−1 ∪ z

j (−)
k−γ

)
The likelihood of the target being at the green node at time tk is 1

3
, so PD = 1

3
.

If the target was at the green node at time tk there are four possible nodes that it

could have transitioned to by time step k + 1: these are the four light-green nodes

in the bottom row of Figure 3.3. This is the effect of propagation, or making a state

prediction, that introduces additional uncertainty into the estimate. We quantify

the potential information content ϕ
(
xk | Zk−1 ∪ z

j (+)
k−γ

)
of this distribution using the

negative entropy

H(X ) = −
∑
i

p(xi) log p(xi),

where X = {x1, x2, . . . , xn} is the set of possible states and the probabilities p(xi)

have been normalized so that
∑

i p(xi) = 1.

The likelihood of the target not being at the green node at time step k is equivalent

to the likelihood that it is at either of the two red nodes in Figure 3.3. This gives us

(1 − PD) =
(
1− 1

3

)
= 2

3
. In this case, by time tk+1, the target may be in any of the

eight light red nodes on the bottom row. This uncertainty is also quantified using

12



0

0 1
3

1-P P
3

P
3

P
3

1
3

1-P P
3

P
3

P
3

1
3

1-P P
3

P
3

P
3

Figure 3.3: Posterior state distribution at time step k (middle row). Each state at
time k could transition to one of its four children at time k+ 1. These possible k+ 1
states are shown in the bottom row.

negative entropy. The expected utility from an old measurement is, therefore,

Φk =
1

3
H

(
1− P,

{
P

3

}
3

)
+

2

3
H

(
α

〈
{1− P}2 ,

{
P

3

}
6

〉)
, (3.3)

where α is the normalizing factor required so that all probabilities inside the angle

brackets sum to 1 and the subscripts outside the curly brackets indicate the number

of possible states with that unnormalized probability.

We could alternatively select a current measurement from a sensor at time tk+1.

This is again computed using the expected utility defined in Equation 3.2. As shown

in Figure 3.4, there are many more sensors to ask for a measurement at time k + 1.

Since 0 < P < 0.5, the most likely nodes have probability of 1−P
3

. We arbitrarily select

the green node in Figure 3.4; the probability of detection PD = 1−P
3

. No propagation

follows this selection because we are already at the current time (tk+1).

We again use the negative entropy to quantify the information content of the

distribution. Under the assumption that the target is at the green node at tk+1, the

green node is the only possible node in the posterior distribution. In this case its

negative entropy is zero, indicating that there is no uncertainty in the distribution.
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Figure 3.4: Suppose at time k + 1 we select the green node shown at time k + 1 (in
the bottom row).

Therefore, the entire first term of the expected utility is zero. For the second term

we assume that the target is not at the green node but one of the eleven red nodes.

The likelihood of this occurring is (1 − PD) =
(
1− 1−P

3

)
. The uncertainty is again

quantified using negative entropy over the red nodes.

Accordingly, the expected utility of the most likely measurement at time tk+1 is:

Φk+1 =
1− P

3
H

(
α

〈
1− P

3

〉)
+

[
1− 1− P

3

]
H

(
α

〈{
1− P

3

}
2

,

{
P

9

}
9

〉)
=

2 + P

3
H

(
α

〈{
1− P

3

}
2

,

{
P

9

}
9

〉)
. (3.4)

The expected information of our posterior, described in Equations 3.3 and 3.4,

is plotted in Figure 3.5. This figure shows the information gain, or the amount of

information added to the estimate, assuming that we have no information to begin

with. The y-axis quantities have little bearing on any physical interpretation since

this specific problem is so abstracted.

On average, for all values of P in the allotted range, more information can be

obtained by integrating an older measurement. It is important to note that these

are expected values: it is certainly possible to have newer observations provide more

14
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Figure 3.5: The expected utility of querying for a measurement at time tk and tk+1,
and the change with respect to turning probability P .

information than older observations. Importantly, once we have lost the track of

the target, it is better to query a sensor about an old observation regardless of the

probability P . In this discrete state space, the degree of the benefit obtained is highly

impacted by the number of possible states and the predictability of the target (here

controlled by P ). In the next chapter we consider the application of similar techniques

to a more complex problem.
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Chapter 4: Application

This chapter examines the application of the approach outlined in Chapter 3 to

a realistic tracking scenario. The object dynamics and sensor models are identified,

the tracking and sensor selection approach are described, and results are provided.

4.1 Problem Formulation

The system is characterized by a linear process model and a non-linear observation

model. These are defined as follows.

4.1.1 Object Dynamics

The target being tracked is modeled in two dimensions with a position and a

velocity in each dimension. Changes in velocity are provided by an additive velocity

noise term in each dimension. The model also imposes discrete timing, where time

step k corresponds to time tk and ∆T = tk+1 − tk. The state of the system is given

by

xk = Fkxk−1 + Gkvk (4.1)

where

• the n× 1 state vector xk =
[
xk ẋk yk ẏk

]>,
16



• the n× n state transition matrix Fk =


1 ∆T 0 0
0 1 0 0
0 0 1 ∆T
0 0 0 1

,

• the n× q process noise matrix Gk =


(∆T )2

2
0

∆T 0

0 (∆T )2

2

0 ∆T

,
• the q × 1 process noise vector vk =

[
vx vy

]>, and
• the q × q process noise covariance matrix Qk =

[
σ2
vx 0
0 σ2

vy

]
.

These equations comprise a matrix form of the standard kinematics equations of par-

ticle motion with an additional velocity noise term in both the x− and y− directions.

The process noise is modeled by a random process that is zero-mean, temporally

uncorrelated (i.e. white), has known covariance, and is uncorrelated with the initial

state. Formally, the following hold:

1. E{vk} = v̄ = 0

2. E{viv>j } = 0 for i 6= j since the noise is temporally uncorrelated

3. E{vkv>k } = Qk

4. E{vkx>0 } = 0 for all k.

4.1.2 Sensor Model

The sensor network uses homogeneous sensors that track the range and bearing of

the target. Additionally, each sensor at each time step determines whether or not the

target is detected or not. In many real sensor applications, a node may not receive

an observation for a variety of reasons, including occlusions or communication delays.
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This is modeled here by assuming that the target emits a beacon with some known

amplitude and that this signal amplitude is attenuated with distance. Additionally,

this signal amplitude is subject to additive noise. The received signal amplitude is

compared to a threshold to determine whether or not the target was detected. If the

sensor detects the target it produces an observation of range-bearing data; otherwise,

no observation is produced. These two models are discussed here.

Observation Model

The sensors take noisy observations of the range and bearing from the sensor

to the target. At time step k we model the observation of the target state xk =[
xk ẋk yk ẏk

]> by some sensor i with location si =
[
Xi,k Yi,k

]> for i ∈ {1, . . . , S}

with the following equation:

zk = h(xk,wk), (4.2)

where

• the m× 1 observation vector zk =
[
zr zθ

]>,
• the m× 1 non-linear observation model vector function

h(xk,wk) =

√(xk −Xi,k)2 + (yk − Yi,k)2

atan2
(
yk − Yi,k
xk −Xi,k

) + wk,

• the r × 1 observation noise vector wk =
[
wr wθ

]>, and
• the r × r observation noise covariance matrix Rk =

[
σ2
r 0

0 σ2
θ

]
.

The observation noise is modeled by a random process that is zero-mean, temporally

uncorrelated (i.e. white), has known covariance, and is uncorrelated with the initial

state. Symbolically, the following hold.
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1. E{wk} = w̄ = 0

2. E{wiw
>
j } = 0 for i 6= j since the noise is temporally uncorrelated

3. E{wkw
>
k } = Rk

4. E{wkx
>
0 } = 0 for all k

Detection Model

The sensors collect radius and bearing measurements zk, specified as above. The

sensors also collect an amplitude zk that is used to determine whether or not the

target was actually detected. This amplitude is attenuated with distance and subject

to additive noise n ∼ N (0, σn).

Sensor i receives the amplitude zi = s(ri) + n, where the k subscript has been

dropped for convenience of notation. The received signal amplitude is given by

s(ri) =
a

‖x− si‖2
2 + b

=
a

(xk −Xi,k)2 + (yk − Yi,k)2 + b
.

Without loss of generality, we assume that a = 1 and b = 1 for simplicity.

We define a cutoff τ that allows us to differentiate between two hypotheses: H0,

in which we cannot detect the target and believe the signal is dominated by noise,

and H1, in which the target is visible over the noise. We write this as

zi
H1

≷
H0

τ,

where for H0 we believe that zi = n and for H1 we believe zi = s(ri) + n. The end

product of the detection model is a binary guess as to whether the target was or was

not detected.

We can set this threshold τ to tune performance as specified by
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PFA(τ) = Pr {declare H1 |H0 is true}
= Pr {zi > τ |H0 is true}
= Pr {n > τ}

= Φ

(
τ

σn

)
(4.3)

and

PD(τ) = Pr {declare H1 |H1 is true}
= Pr {zi > τ |H1 is true}
= Pr {n > τ − s(ri)}

= Φ

(
τ − s(ri)

σn

)
(4.4)

where the function Φ(x) is the standard normal CDF. The tradeoff between the false

alarm probability PFA and the detection probability PD is shown in Figure 4.1, the

sensor’s receiver operating characteristics (ROC) curve. We set the noise level and

threshold to achieve a sensor detection radius of R = 50 meters and a false alarm

probability of PFA = 0.001. With a sensor detection radius R and zero noise contri-

bution assume, when the target is a distance R away from the sensor its likelihood of

detection is 0.5. Targets closer than R to the sensor will be declared H1 and targets

further from the sensor will be declared H0, assuming zero noise contribution. The

threshold and noise level are then set as

τ =
1

R2 + 1
and σn =

τ

Φ−1(PFA)
,

respectively. This provides the sensor response curve shown in Figure 4.2.

4.2 Filtering Techniques

The target is tracked as it moves through a field of sensors as described above.

The Extended Information filter (EIF), a variant of the Kalman filter, is used. The
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Figure 4.1: Plots of detection probability vs. the probability of a false alarm for
several distances.
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Kalman filter tracks the state by iteratively refining a state estimate x̂ and a state

estimate covariance matrix P. The covariance matrix P retains information about

the uncertainty of the estimate. The track is then given as a series of multivariate

Gaussians distributions N (x̂k|k,Pk|k). The information filter instead uses the inverse

of the covariance matrix:

Yi|j = P−1
i|j .

We also define the information state vector as an analog to the state estimate:

ŷi|j = Yi|jx̂i|j = P−1
i|j x̂i|j.

It is stressed that the Kalman filter and the information filter are mathematically

equivalent.

The Information filter described has a linear process model and a nonlinear obser-

vation model. The filter proceeds by repeating a sequence of two steps: a propagation

step and an update step.

• Propagate:

ŷk|k−1 = [1−ΩkG
>
k ]F−>k ŷk−1|k−1 + Yk|k−1Bkuk (4.5)

Yk|k−1 = Mk −ΩkΣkΩ
>
k (4.6)

where

– the propagated information

Mk = F−>k Yk−1|k−1F
−1
k

– the ‘information propagation gain matrix’

Ωk = MkGkΣ
−1
k
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– the ‘information innovation covariance matrix’

Σk = G>k MkGk + Q−1
k

• Update:

ŷk|k = ŷk|k−1 + ik (4.7)

Yk|k = Yk|k−1 + Ik (4.8)

where

– the information state contribution

ik = ∇h>x,kR
−1
k

[
νk +∇hx,kx̂k|k−1

]
– the information matrix contribution

Ik = ∇h>x,kR
−1
k ∇hx,k

– the innovation

νk = zk − h
(
x̂k|k−1

)
– the predicted observation

h(x̂k|k−1) =

√(x̂k|k−1 −Xi,k)2 + (ŷk|k−1 − Yi,k)2

atan2
(
ŷk|k−1 − Yi,k
x̂k|k−1 −Xi,k

) 
– the Jacobian of the observation model vector function with respect to the

predicted state x̂k|k−1

∇hx,k =

 x̂k|k−1 −Xi,k

r̂
0

ŷk|k−1 − Yi,k
r̂

0

−
ŷk|k−1 − Yi,k

r̂2
0

x̂k|k−1 −Xi,k

r̂2
0


where r̂ =

√
(x̂k|k−1 −Xi,k)2 + (ŷk|k−1 − Yi,k)2 is the distance from the i-th

sensor to the target. For delayed observations measured at time k− d, we

linearize around x̂k−d|k−d.
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Using the inverse covariance provides several benefits. First, it allows the filter to

be initialized with no information. The equivalent covariance matrix, by comparison,

would have to be initialized with infinite uncertainty. Many sensor networks used in

tracking also use the information matrix because it significantly simplifies the state

update procedure. Granted, this comes at the cost of increased complexity in the

state prediction, but it is much more common to update the filter with multiple

observations and only update once.

Conceptualizing the estimate uncertainty with the information matrix also make

information-based metrics more intuitive. We can directly state that the maximiza-

tion of mutual information between sensor output and the target state can be achieved

by maximizing the determinant of the information matrix for a Gaussian posterior.

4.3 Sensor Selection

Sensor selection is determined by the expected utility condition outlined in Chap-

ter 3. At each time step the tracker can integrate only one observation. This obser-

vation can be from time k or time k − 1. Recall that the lead node maintains the

recent estimate yk−1|k−1 and Yk−1|k−1. Further, each sensor knows all of the sensor

locations and retains its own two most recent observations: one from time step k and

one from time step k − 1.

At each time step the lead node computes either 2M or 2M − 1 expected utilities

are computed, assuming M possible sensors with two cached observations at each.

2M are computed if at time step k − 1 we selected a prior observation; 2M − 1 are

computed if at time step k we selected a current observation. The sensor with the
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maximal value becomes the next lead node, regardless of whether the highest expected

utility was from time step k or time step k − 1.

The expected utility calculation is performed according to Equation 3.2, repro-

duced here:

Φ
(
xk | Zk−1 ∪ zjk−γ

)
= PDϕ

(
xk | Zk−1 ∪ z

j (+)
k−γ

)
+ (1− PD)ϕ

(
xk | Zk−1 ∪ z

j (−)
k−γ

)
.

In this context, PD and (1−PD) are the probability of detection, Pr{zi > τ}, and

the probability of a non-detection, Pr{zi > τ}, for some sensor i. These probabilities

are computed using a Monte Carlo simulation.

The information content of a multivariate Gaussian distribution is given by the

determinant of the inverse covariance matrix, or equivalently, the determinant of the

information matrix Y. The information matrix of a detection can be directly com-

puted from sensor locations and target estimate. As such, the information matrix of

the posterior after integrating a measurement from sensor i is ϕ
(
xk | Zk−1 ∪ z

j (+)
k−γ

)
=

det
(
Yk|k−1 + Ik−d

)
. For a non-detection, we estimate the posterior covariance matrix

by Monte Carlo sampling and computing the covariance Σ of the sample population.

Inverting this provides the approximate posterior information matrix Y
(−)
k that is

used to compute ϕ
(
xk | Zk−1 ∪ z

j (−)
k−γ

)
= det

(
Y

(−)
k

)
. Similar techniques are used to

actually incorporate a non-detection event into the current estimate.

To estimate the utility of a current observation the information contribution I

of the sensor is added to the predicted information matrix Yk|k−1 (for a detection

event) or by computing the non-detection posterior (for a non-detection event). For

an old measurement, the observation’s information contribution is added to the previ-

ous updated information matrix to producing an enhanced Yk−1|k−1 (for a detection

event) or by computing the non-detection posterior. This is propagated forward to
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the current time k|k−1 and designated the estimate at time k without incorporating

a current observation.

4.4 Experimental Results

The implemented algorithm was used to track moving targets over many different

sensor distributions. The target trajectories are driven by Brownian velocity and

heading, which are used to compute the trajectory in x and y with velocities ẋ and

ẏ.

Two types of sensor distributions were used. The first type of distribution places

sensors in a uniform grid, separated by the sensor detection radius. The second type

of distribution is a random field, with positions generated by a uniform random sensor

distribution.

The performance of three different types of trackers are compared. The first type

follows the approach discussed above and incorporates delayed measurements and

non-detection events. The second type of tracker works similarly but excludes delayed

measurements from consideration. The third type of tracker, used as a baseline,

selects sensors using expected utility but does not incorporate delayed measurements

or non-detection events.

Table 4.1 provides the sum-of-squares errors for each of the different sensor distri-

bution and tracker configurations. The columns each correspond to one of the three

tracker types. The data is provided for both types of sensor distributions. The mean

sum-of-squared error of each configuration is computed from all of the trials in which

the track was never lost.
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Table 4.2 shows the track retention ability of each of the different tracking al-

gorithms. We consider a track to have been retained if it is never lost, or if the

information content of the estimate never below a certain value η:

det (Yk) ≤ η.

Table 4.1: Sum of squared errors performance indicators.

Sensor Distr. Current & Old Current Only Standard
Grid 2,400.7 2,439.65 4,632.3
Random 2,442.3 3,029.5 3,713.6

Table 4.2: Number of tracks retained out of the total.

Sensor Distr. Current & Old Current Only Standard
Grid 19/50 18/50 15/50
Random 17/50 19/50 16/50

Figures 4.3-4.5 show an example of tracker performances over one specific target

trajectory and a grid-like sensor distribution. Figures 4.6 and 4.7 show an example

of the inclusion of old observation leading to the loss of a target that would have

otherwise been tracked successfully.
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Figure 4.3: Target tracking with delayed observations permitted. Sensors arranged
as a grid.

Figure 4.4: Target tracking with delayed observations prohibited. Sensors arranged
as a grid.

29



Figure 4.5: Target tracking with standard EIF approach. Sensors arranged as a grid.

Figure 4.6: Target tracking considering missed detections and both old and new
observations.
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Figure 4.7: Target tracking considering missed detections and only new observations.
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Chapter 5: Discussion

The expected utility metric, Φ was applied to problems in both discrete and real

state spaces. We now establish the conditions leading to finding value in delayed

measurements and consider how useful delayed information actually is.

5.1 Conditions for Integrating Delayed Information

According to our sensor selection criteria a delayed observation will be selected

when

Φk−1 > Φk.

Intuitively, the information value of detecting the target is much greater than

the value of not detecting it. A detection contributes some amount of information

that is inversely related to the observation noise covariance matrix. Lower observation

noise covariances provide greater information contributions or, equivalently, provide a

more drastic reduction in the estimate’s uncertainty. A non-detection event generally

contributes less information because it rarely provides a drastic reduction in the

estimate’s uncertainty.

If the target is out of the sensor’s range or it is within range with a sufficiently

large covariance, then the posterior is very close to that of the prior distribution.

Instead, if the target covariance is small and the target is within range of the sensor,

32



then the posterior reflects the masking. It will usually have a mean outside of the

main sensor response area and a slightly smaller covariance ellipse. In these cases,

where there is an increase in information, the weighting factor 1 − PD ≈ 0 because

the target is within close range of the sensor.

By this intuition, the above criteria will produce similar selections to

P k−1
D ϕ

(
xk | Zk−1 ∪ z

(+)
k−1

)
> P k

Dϕ
(
xk | Zk−1 ∪ z

(+)
k

)
.

Using a simplified notation, the above is rewritten as

P k−1
D ϕk−1 > P k

Dϕ
k. (5.1)

This highlights the two most important factors governing the selection of an old

observation: the loss of information during the propagation step and the sensor dis-

tribution.

Propagation generally decreases our information content. As time passes, an old

observation has a decreasing relevance to the current state. This is evident from the

Kalman filter propagation equation:

Pk|k−1 = FkPk−1|k−1F
>
k + GkQkG

>
k (5.2)

where P is the state estimate covariance, Fk is the state transition matrix, Gk is

the process noise propagation matrix, and Qk is the process noise covariance matrix.

For the values used in Chapter 4, this grows quickly: Fk grows on the order of

∆T , so FkPk−1|k−1F
>
k grows as ∆T 2; Gk grows on the order of ∆T 2, so GkQkG

>
k

grows on the order of ∆T 4! The uncertainty of an estimate grows quickly as it ages,

although the order of growth is governed by the relative magnitudes of Pk−1|k−1 and

Qk. Conversely, the information utility of an estimate will be reduced quickly as it
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ages. Therefore, the following relationship generally holds:

ϕk−1 < ϕk. (5.3)

We will only select an old observation when P k−1
D ϕk−1 > P k

Dϕ
k. Given that

Equation 5.3 holds, for an old observation to be selected,

P k−1
D � P k

D. (5.4)

More accurately, since we select the sensor with the maximum expected utility, we

rewrite this condition for some sensor j as

P k−1
D,j � P k

D,i ∀i ∈ {1, . . . , S}. (5.5)

This specifically happens when the target transitions from an area of sensor cov-

erage into an area with no sensor coverage. At the same time, sufficient coverage in

the preceding area is needed so that there exists another sensor whose observation we

want to integrate.

Although it is generally true that ϕk−1 < ϕk, delayed information is more likely

to be selected when ϕk−1 is very close to ϕk as possible. This happens when an old

measurement exists with a high information content, generally because the target

was observed by multiple close sensors at the previous time. We also observe ϕk−1

being very close to ϕk when the propagation penalty is low. This penalty, obtained

by rearranging and inverting the factors of Equation 5.2, has both a multiplicative

component and an additive component. By definition, the magnitudes of Fk and Gk

increase with the sample period ∆T . Thus, having a higher sampling rate can reduce

the propagation penalty. Decreasing the magnitude of the process noise covariance

matrix can also lower the propagation penalty.
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Satisfying these conditions increases the likelihood that a delayed observation will

have an information utility comparable to that of many current observations.

5.2 The Value of Delayed Information

Above we identified several conditions that can result in the tracker incorporating

delayed measurements into the state estimate. Empirical evidence for the benefits of

using delayed measurements in general tracking algorithms have also been acquired.

Table 4.1 shows that the tracker including both current and old observations has,

on average, lower error rates than the others. The tracker that does not include

delayed information but still estimates the posteriors from non-detection events also

does better, on average, compared to the standard method.

Table 4.2 shows the track retention capabilities of each sensor. For the sensors

arranged on a uniform grid, the tracker with delayed information achieves the highest

overall retention rate. It is expected that with more trials, a similar pattern would

occur for the random sensor distribution. In general, it was observed that sparser

sensor distributions resulted in higher values of delayed information but that valuable

delayed information was also harder to obtain.

It is important to note that the described approach is a ‘greedy’ algorithm. Specif-

ically, this sensor selection approach guaranteed to always select the observation that

maximizes the short-term information gain by maximizing estimated by the expected

utility function. Repeated application of this sensor selection criteria is not, however,

guaranteed to maximize long-term information content.

Under all three approaches considered here, incorporating an observation that

maximizes expected utility is maximizing the immediate information content of the

35



posterior distribution. As a side effect, the observation may introduce some bias to the

estimate that, over time, results in degraded tracking performance. This is especially

the case for targets with relatively unpredictable trajectories: the more dynamic a

trajectory, the greater the risk that this bias will result in the loss of some useful

observation. Occasionally this will cause the tracker to lose the target completely, as

shown in Figure 4.6 and 4.7.

Although it may not be suitable for all situations, delayed information appears

particularly well-suited for scenarios where targets are more predictable or have a

restricted state space, like tracking vehicles on a road.
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Chapter 6: Conclusion

This thesis set out to find low-complexity methods for estimating the value of

delayed information. Through the development of the metric of Expected Informa-

tion Utility, delayed information was shown to be valuable in several circumstances.

These circumstances are often identifiable through certain attributes of the sensor

distribution or the target dynamics. Delayed information has high value in situations

where the sensor distribution is sparse or the target motion is relatively predictable.

However, it is also noted that the expected utility metric established here is a ‘greedy’

constraint and is only guaranteed to maximize short-term information gain. In certain

situations, incorporating a measurement that is optimal according to the constraint

might result in worsening tracker performance, up to and including track loss.

Future work might seek to quantify the intuitions developed in this thesis. The ex-

pected utility metric could be extended to differently-configured systems with more

explicit communication costs or asynchronous observations. Additionally, dynamic

programming could be applied to differentiate between cases where delayed informa-

tion will improve versus degrading track quality over a long-term horizon.
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