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Wafter-Scale Integration of Systolic Arrays
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Abstract — VLSI technologists are fast developing wafer-scale
integration. Rather than partitioning a silicon wafer into chips as
is usually done, the idea behind wafer-scale integration is to as-
semble an entire system (or network of chips) on a single wafer,
thus avoiding the costs and performance loss associated with indi-
vidual packaging of chips. A major problem with assembling a
large system of microprocessors on a single wafer, however, is that
some of the processors, or cells, on the wafer are likely to be
defective. In the paper, we describe practical procedures for inte-
grating “around” such faults. The procedures are designed to
minimize the length of the longest wire in the system, thus
minimizing the communication time between cells. Although the
underlying network problems are NP-complete, we prove that the
procedures are reliable by assuming a probabilistic model of cell
failure. We also discuss applications of the work to probleins in
VLSI layout theory, graph theory, fault-tolerant systems, planar
geometry, and the probabilistic analysis of algorithms. '

Index Terms — Channel width, fault-tolerant systems, matching,
probabilistic analysis, spanning tree, systolic arrays, traveling
salesman problem, tree of meshes, VLSI, wafer-scale integration,
wire length.

I. INTRODUCTION

LSI technologists are fast developing wafer-scale inte-

gration [32]. Rather than partitioning a silicon wafer
into chips as is usually done, the idea behind wafer-scale
integration is to assemble an entire system (or network of
chips) on a single wafer, thus avoiding the costs and per-
formance loss associated with individual packaging of chips.
A major problem Wwith assembling a large system of micro-
processors on a single wafer, however, is that some of the
processors, or cells, on the wafer are likely to be defective.
Thus, a practical procedure for integrating wafer-scale sys-
tems must have the ability to configure networks “around”
such faults.

This paper considers a variety of problems involving the
construction of systolic arrays [18]. Systolic arrays are a
desirable architecture for VLSI because all communication is
between nearest neighbors. In a wafer-scale system, how-
ever, all the nearest neighbors of a processor may be dead,
and thus the prime advantage of adopting a systolic array
architecture may bei lost if a long wire connects electrically
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adjacent processors. In general, the longest interconnection
between processors will be a communication bottleneck in
the system. Of the many possible ways in which the live cells
on a wafer can be connected to form a systolic array, there-
fore, the one that minimizes the length of the longest wire is
most desirable. :

To illustrate the subtleties inherent in configuring systolic
arrays, consider the problem of constructing a linear (i.e.,
one-dimensional) array using all of the live cells in an N-cell
wafer. Unfortunately, if we wish to minimize the length of
the longest wire, the problem is NP-complete [13]. Even
more discouraging is that there are some arrangements of live
and dead cells for which even the optimal linear array has
unacceptably long wires. Thus optimal solutions—even if
they could be found quickly — are not always practical.

By assuming a probabilistic model of cell failure, how-
ever, many positive results can be proved. For example,
Fig. 1 illustrates a possible solution to the problem of con-
necting the live cells of a wafer into a linear systolic array.
The live cells, which are denoted by small squares, are con-
nected together, one after another, in a snake-like pattern.
Dead cells, denoted by X’s, are skipped over. With proba-
bility 1 — O(1/N), the length of the longest wire is O(lg N),
where N is the number of cells in the wafer and where each
cell independently has a 50 percent chance of failure.'

This bound comes from the observation that the length of
the longest wire that connects two cells in the array is just the
length of the longest sequence of dead cells in the snake-like
string. For a given set of k cells, the probability that all are
dead is 1/2*, and thus the probability that any set of 2 1g N
cells are dead is 1/N?. Since there are less than N sets of

"2 1g N consecutive cells, the chances are thus less than one

in N of having to skip more than 2 1g N cells in the entire
snake-like path of length N. Hence, the maximum wire
length is O(lg N) with probability 1 — O(1/N).

To say that “with probability 1 — O(1/N) the maximum
wire length is O(Ig N)” is a substantially stronger statement
than saying that the expected maximum wire length is
O(lg N). This is because no wire can ever have length greater
than O(VITI), even in the worst case. Hence, the expected
maximum wire length is at most

(1 — O(1/N)) X O(Ig N) + O(1/N) X O(VN)
= O(lgN).

'Here and throughout the paper, we use O(f(N)) to denote a function that is
bounded above by ¢f(N) for a fixed constant ¢ and all sufficieritly large N. We
also use (f(N)) to denote a function that is bounded below by ¢f(N), and
O(f(NV)) to denote a function that is bounded above by ¢, f(N) and below by
c,f (N) for some fixed constants ¢, ¢;, and c¢,, and all sufficiently large N.
We also use Ig N to denote log, N, 1g’N to denote (Ig N)?, and Ig 1g°N
to denote (Ig lg N)*. Lastly, |x] denotes the largest integer less than or
equal to x, and [x] denotes the smallest integer greater than or equal to x.
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A simple means of constructing a linear systolic array from the live
cells on a wafer.

Fig. 1.

Moreover, the chances that the maximum wire length is much
greater than O(lg N) are minuscule. In particular, the proba-
bility of having to skip more than &k 1g N dead cells at a fixed
point in the snake-like path is less than one in N*. Hence,
every wire has length at most k Ig N with probability
1 - 1/N¥1,

Not surprisingly, there are algorithms which, under similar
assumptions of cell failure, produce far better results than the
algorithm illustrated in Fig. 1. For example, we will describe
in Section III another simple procedure which, with high
probability, constructs a linear array using wires of length
O(Vlg N). We will also show that, up to the leading con-
stant, the algorithm is the best possible of its kind. By relax-
ing the constraint that all live cells be connected into the
linear array, however, we can do much better. In fact, we will
also show in Section III that with high probability a linear
array containing any constant fraction (less than one) of the
live cells on an N-cell wafer can be constructed using wires
‘of constant length.

Although there are numerous uses for linear systolic arrays
[24], two-dimensional systolic arrays are also important. Not
only can the two-dimensional array be used as a powerful
communications structure for parallel computation [18], but
it can also serve as an all-purpose structure in which arbitrary
networks can be embedded [3], [23], [45], [47]. As one might
expect, the problem of constructing a two-dimensional array
from the live cells of a wafer is more difficult than the corre-
sponding problem for linear arrays. Specifically, Section IV
contains a proof that with high probability a two-dimensional
array that uses any constant fraction of the live cells must
have wires of length (Vg N).

Although we do not know how to construct two-
dimensional arrays from most of the live cells using wires of
length O(V1g N) or channels of constant width, we can come
close. We show in Section VI that with high probability, a
two-dimensional array can be constructed on an N-cell wafer
using:

1) all the live cells with wires of length O(Ig N 1g 1g N)
and channels of width O(lg 1g N),

2) any constant fraction less than one of the live cells with
wires of length O(VIg N Iglg N) and channels of width
O(lg Ig N), and

3) at least Q(1/1g 1g°N) of the live cells with wires of
length O(Vl1g N) and channels of width 1.

The remainder of the paper is divided into seven sections.
Section II more formally describes our model for wafer-scale
integration and discusses the practicality of the modeling
assumptions. The algorithms for constructing linearly
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connected systolic arrays are presented in Section III. Sec-
tion IV contains the lower bound result for wire length in
two-dimensional systolic arrays. In Section V we present a
worst case (nonprobabilistic) upper bound on the channel
width necessary to configure a two-dimensional array. This
result also has application to the fault-tolerant encoding of
two-dimensional arrays in complete binary trees [34]. Sec-
tion VI gives algorithms for constructing two-dimensional
arrays in the probabilistic model. In Section VII, we mention
some related problems in geometric complexity, graph the-
ory, and the probabilistic analysis of algorithms. The related
problems are nice theoretically in that some of them have
tight upper and lower bounds. They also suggest a wealth of
interesting questions concerning the design of fault-tolerant
systems. We conclude the paper with some additional re-
marks in Section VIII.

II. THE WAFER-SCALE MODEL

Laser programming the interconnect of a wafer is a promis-
ing means of achieving wafer-scale integration. This technol-
ogy was pioneered at IBM [26] and pursued in the direction
of wafer-scale integration at M.I.T. Lincoln Laboratory [32],
[33]. Fig. 2 shows a scanning electron microscope photo-
graph of a portion of a wafer with programmable intercon-
nect. Laser welds can be made between two layers of metal,
and by using the beam at somewhat higher power, wires can
be cut. Defective components can thus be avoided by pro-
gramming connections among only the good components.

Fig. 3 shows a typical organization of a wafet-scale sys-
tem with programmable interconnections. The components
are organized as a matrix of cells, and between the cells are
channels through which the interconnect runs. Fig. 4 is a
close-up of the channel structure. At the intersection of a
horizontal and vertical channel, laser-programmable con-
nections can make a horizontal and a vertical wire electrically
equivalent. Between two cells, connections can be made
from the wires in the channel to the inputs and outputs of the
two cells. Given that the interconnect is programmable, we
shall adopt a usage of the term “wire” to mean an electrically
equivalent portion of the programmable interconnect.

The preassighment of wire segments to layers such that
wires in one layer run horizontally and in the other run verti-
cally is commonly referred to as Manhattan wiring [19]. This
wiring model has been studied extensively, but in this paper
the details of the wiring are not the central issue. It will be
sufficient to understand one fact about Manhattan wiring: the
width of a channel need only be a constant factor times
the maximum number of wires that occupy any portion of
the channel. ‘

A natural question to ask about the use of programmable
interconnections to avoid defective cells is, “If cells are
unreliable, why might not the interconnect fail also?” The
answer is that, indeed, interconnect does fail. But the re-
liability of the interconnect is much higher than the reliability
of the cells. The interconnect in the M.I.T. Lincoln Laborato-
ries project [33], for example, takes three masking steps to
fabricate, but manufacturing the active devices requires well
over a dozen steps. This project targets yields of 30 to
50 percent for cells and over 95 percent for wires. And even
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Fig. 2. A close-up of laser-programmable interconnect.

Fig. 3. A wafer-scale system of cells and programmable interconnect.

Fig. 4.

The channel structure of a wafer-scale system.

if a wire fails at one point, it is often possible to break it into
two useable pieces.

In this paper we shall assume that the interconnect has
sufficient redundancy so that the inability to interconnect
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cells arbitrarily is a rare phenomenon. In this sense, we are
making the same assumption that is used to substantiate re-
dundancy in any fault-tolerant system. The idea is not that the
system will be completely reliable, but that its failure will
depend on the failure of the most reliable component instead
of the least reliable component.

Another assumption that must be examined more closely is
that the probability of cell failure is independent and the same
for all cells. Failures can be attributed to one of several
causes. Here we consider two material defects during manu-
facturing and mask misalignment. Material defects are
spread uniformly, but the size of the region affected by a
defect is a separate random variable. This means that if one
point on the wafer is flawed, neighboring points are also
likely to be flawed. Nevertheless, independence of cell fail-
ures is quite a reasonable assumption because the area of a
cell is substantially larger than the expected area of a defect.

Mask misalignment is a somewhat more serious problem
with respect to our modeling assumptions. The reason is that
misalignment is a global failure mode. Misalignment due to
translation of the axes of one mask relative to the others poses
no real problem in terms of the modeling assumptions, how-
ever, because the effect is the same for all cells. The real
problem is misalignment due to angular rotation of one mask
with respect to the others. Those cells near the center of
rotation are much more likely to be good than those far from
the center. Experimental evidence indicates, however, that
the effects from angular rotation that cannot be accounted for
by our model are minimal.

The two cost functions we shall examine in this paper are
channel width and maximum wire length. Minimizing chan-
nel width is important because the available wafer area is
essentially fixed. If the channel width is large, the size of the
system, and hence its functionality, is reduced. In addition,
larger channel widths require longer wires to cross them, and
minimizing the length of the longest wire is our other cost
criterion.

Minimizing the length of the longest wire in a wafer-scale
system is important because communication delays can be
the limiting factor of the performance of the system. Since
both resistance and capacitance increase with the length of
wire, the time required to drive a wire might grow as fast
as the square of the length of the wire [29]. (See [5] for a
discussion of propagation delays through wires.) In particu-
lar, a designer who chooses a two-dimensional systolic array
architecture is counting on low overhead for communication,
and will not want communication down a long wire to de-
grade the performance of the system. Moreover, for reasons
of electrical correctness, cells must be designed with signal
buffers capable of driving the maximum length wire. As-
suming the speed of a circuit is to be maximized, the size of
a buffer must vary with the size of the load being driven.
Thus, a substantial amount of area in a cell can be saved if the
maximum length wire is known to be short. As was argued
previously, this saving in area translates to larger systems
with greater functionality.

Throughout the paper, we will consider cells that occupy
an s X s square region on the wafer and that have (indepen-
dently) a probability p of failure. Unless specifically stated
to the contrary, we will assume for simplicity thats = 1 and
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p = 1/2. As we will later observe, these restrictions have
little bearing on the analysis. In addition, we will use the term
“high probability” to mean “with probability at least
1 — O(1/N)” where N is the number of cells on the wafer.

We conclude this section with a simple result that places
the rest of this paper in a proper context. Given a circuit of
a given area, composed of active components and wires, it is
possible to construct a wafer of not much more area (asymp-
totically) which is fault tolerant. If there are N active compo-
nents, expand the layout of the circuit in each dimension by
c¢Vlig N where ¢ is a constant chosen large enough that
2 1g N copies of a given active component fit in the space
designated to that component in the original circuit. The
probability that every one of the 2 Ig N copies is bad is 1/N?,
and thus with high probability, one of the copies of every
component is good. It only remains to hook them up in the
space left for wires.

This scheme works even if components are different, but
is not very practical since only one in every 2 1g N cells is
used. For typical values of N = 100, this is grossly ineffi-
cient. The results in this paper are much better because we
can utilize substantially more of the live cells at less cost;
some of our algorithms use all of the live cells, and others use
a considerable proportion.

III. WAFER-SCALE INTEGRATION OF LINEARLY CONNECTED
SYSTOLIC ARRAYS

With high probability, the snake-like scheme described in
the introduction connects all the live cells on an N-cell wafer
into a linear array with wires of length at most O(lg N). This
section substantially improves and generalizes this result. We
commence by showing that this bound can be improved to
O(Vlg N), which is optimal to within a constant factor.

Theorem 1: With probability 1 — O(1 /N), the live cells
on an N-cell wafer can be connected in a linear array using
wires of length O(Vig N). Up to the leading constant, this
bound is the best possible. ‘

Proof: We first show how to construct a linear array
using wires of length O(VIg N). Partition the wafer into
square regions containing 2 Ig N cells each as is shown by
the dashed lines in Fig. 5. The probability that each of the
2 1g N cells is dead in one or more of the squares is at most

N —21g¥ _ 1
21gN 2N IgN’

which is less than 1/N. Thus, with probability 1 — O(1/N),
each of the squares contains at least one live cell.

Construct a linear array out of the live cells in each square
using the “transpose” of the algorithm from Section I, except
that when an empty column is encountered, the column is
skipped. In Fig. 5, these connections are shown with solid
lines. Since any pair of cells in the same square can be linked
with a wire of length at most 2V2 1g N, the wires in each
array have length O(VIg N). Next, add wires, shown by
dotted lines in the figure, which connect the small arrays into
one large array. Because each region contains at least one live
cell, these connections can be made with wires of length at
most 3V2 Ig N. Thus, every wire in the completed linear
array has length O(V1g N) with high probability.
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Fig. 5. A scheme for constructing linear arrays from all live cells on a wafer

with wires of length O(VIg N) and constant channel widths.

That the bound cannot be improved by more than a con-
stant factor is due to the observation that with high proba-
bility some live cell will be at the center of a region of
Q(lg N) dead cells. Thus, a wire of length Q(VIg N) will be
required to link the isolated live cell to any other live cell.
To demonstrate this bound more formally, we again partition
the wafer into square regions, but this time the squares
are rotated by 45° in the plane to form diamond-shaped
regions containing g N — 2 1g g N cells each, as is shown
in Fig. 6.

Suppose a linear array can be constructed using wires of
length at most V'1/2 Ig N — Ig Ig N. Then in any given dia-
mond, the center cell is not the only live cell in the diamond.
The probability that every diamond avoids this condition is at
most

(1 _ 2—lgN+21glgN)N/(lgN-2lgIgN) — (1

ngN)N/(lgN—zlg igN)
N

<= e(—1g21v)/NxN/(1g1v—2|g1gN)

=¢ —(1g2N)/(1gN—21g1gN)

= e—lgN
1
=—.
N
Thus, the probability that the optimal linear array has a wire
of length (Vg N) is at least 1 — O(1/N). n

If all the cells are incorporated in a linear array, then the
maximum wire length is @(VIg N) with high probability.
But the proof of the lower bound suggests that isolated cells
induce the long wires. Instead of insisting that a/l live cells
be incorporated in the linear array, suppose we only require
that most of the live cells be included. A linear array that
incorporates most of the live cells can be constructed with
constant-length wires. The proof is indirect, and depends on
the following lemma. (The lemma is essentially equivalent to
the result of Sekanina [39], which states that the cube of a
nontrivial connected graph always has a Hamiltonian circuit.
This result was later reproved by Karaganis [14] and Rosen-
berg and Snyder [38].)

Lemma 2: A spanning tree T with maximum wire length L
can be transformed into a linear array with maximum wire
length 6L.

Proof: We show that, without regard for wire widths,
the linear array can be constructed using wires of length 3L
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Fig. 6. An example of an isolated cell.

by tracing over wires in 7 no more than twice each. Since
every wire is traced over at most twice, the channel widths
could (at worst) double in the resulting wiring, thus in-
creasing the maximum wire length from 3L to 6L when wire
widths are accounted for.

Choose a node v to be the root of T, and let T, T5, - - -, T,
be the subtrees of v as is shown in Fig. 7. (Degenerate cases
not like Fig. 7 are easily handled, but we do not include the
details here.)

Assume as an inductive hypothesis that we have con-
structed linear arrays on the nodes of 7', T, - * -, T,,, such that
no wire has length greater than 3L, and so that the endpoints
of the array in T; are v; and u;, for | = i =< m. Join the arrays
in the subtrees by adding the following wires: (v, uy;),
(vy, U21), (Vg Uz1), * * *, (Um—1, Umi). (These wires are shown as
dashed lines in Fig. 7.) Each of these wires has length at most
3L, and the resulting network is a linear array on the nodes of
T with endpoints v and v,,, which completes the induction.
For completeness, we remark that the basis of the induction
is easily verified. ]

The problem of constructing a linear array with constant
maximum wire length that contains most of the live cells has
now been reduced to the problem of constructing a spanning
tree with constant maximum wire length that contains most of
the live cells. The next lemma shows that such a spanning
tree can be formed with high probability.

Lemma 3: There exists a positive constant ¢ such that for
any d (which might be a function of N), with probability
1 — O(1/N), at least I — O(2™°%) of the live cells on an
N-cell wafer can be connected in a spanning tree using wires
of length at most d. Up to the constant factors, this is the best
possible bound.

Proof: We first show that up to constant factors, the
bound is the best that one could hope for. In fact, we show
something stronger —that for any constant ¢ > 2 with
probability 1 — O(1/N), no more than [N — OQ2~*N)] of
the live cells on an N-cell wafer can be connected in any
network using wires of length at most d. The proof is based
on showing that with high probability, there are Q(N/d?2**")
live cells, each of which is located at the center of a region
of dead cells whose radius is at least d for any d such that
d*2*" < N/(16 1g N). For larger d and sufficiently large N,
[N — O(27N)] = N, and the claim is trivially true.

Partition the wafer into diamond-shaped regions, as was
done in Fig. 6 to prove the lower bound of Theorem 1, except
make the size of each region be 2d? cells. The probability that
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Fig. 7. Constructing a linear array from a spanning tree.

any particular region consists of an isolated live cell at the
center of 2d% — 1 dead cells is 272#. The probability that T
or fewer of the N/2d? regions are like this is thus

é(N/de) (-1 — 22w

X

x=0

NV n
u <2d2>2

1 - 2—2:12 N/2d2
( ) %(1 — 27y

x=

IA

T x
- 29242 N
< o N% 2

o[2d%(2 — DFx!”

These calculations are made using the standard inequalities
) =n"/r'and 1" — € < ¢ . When T assumes the value
N/8d*2** | the largest term in the series occurs forx = T, and
thus the preceding expression can be bounded above by

(T + 1) ,N,wzw( N '>r _
T ¢ @@ — ) = oM
whenever N/(84%2%") = 2 1g N by a simple application of
Stirling’s formula for 7'!.

In order to prove the upper bound, consider the graph
whose vertices are live cells on the wafer and whose edges
connect cells which are within distance d of each other on the
wafer. In what follows, we will show that there is one main
connected component in this graph, and that the total size of
all other isolated components is a small fraction of N. More
specifically, we will show that there exist constants ¢ and ¢’
such that the probability that more than ¢'2 N live cells are
isolated is O(1/N).

This means that, without regard for wire widths, 1 —
027 of the live cells can be connected in a spanning tree
with wires of length d or less. As in the proof of Lemma 2,
extending the result to wires of unit width only changes
the overall wire lengths by a constant factor, which can be
accounted for by choosing ¢ appropriately.

First, partition the wafer into d/8 X d/8 blocks of cells.
(By adjusting the value of ¢, we can always assume that d is
amultiple of 8.) Call a block live if it contains at least one live
cell and dead otherwise. By definition, every isolated region
of live cells must be surrounded by a contiguous rectilinear
path of dead blocks. Define the outer boundary of an isolated
region to be the rectilinear path of dead blocks that encom-
passes the fewest blocks overall. Then it is easily checked
that the outer boundaries for distinct isolated regions do not
overlap one another. For example, see Fig. 8.

Our approach will be to find a crude upper bound on the
number of rectilinear paths of blocks that can define the outer
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Fig. 8. Examples of isolated regions.

boundary of an isolated region. For any given path which
defines the outer boundary of a potentially isolated region,
the probability is very small that all the blocks are actually
dead in the path. In particular, the longer the path that defines
a potentially isolated region, the smaller the probability that
the region is actually isolated. Hence, we will be able to
conclude that very few (and only small) regions are isolated
overall. .

Because there are 64N/d* < N blocks at which a path can
start and at most four ways it can continue at each step, there
are at most N4 paths consisting of r consecutive blocks.
Thus, there are at most

<N4r) Nk4rk
<=
k k!

sets of k different paths of length .

The number of paths of length r is quite a formidable
number, and at first glance it seems unlikely that our ap-
proach will work. The probability is quite small, however,
that each of k given paths actually defines a region which is
both isolated and contains at least one live block. For aregion
to be isolated, its outer boundary must consist of at least
rd*/64 dead cells where r = 3. The probability that all
krd?/64 cells are dead in the outer boundaries of k poten-
tially isolated regions with a boundary of length r is 27464,
Thus, the probability that there are actually k isolated re-
gions, each containing one or more live blocks, with outer
boundaries of length r, is at most

Nk22rk—krd2/64
k! ’

which for k = eN/2%” and d = 32 is less than 1/N?2.

Observe that a region with an outer boundary of length r
contains O(d?*r?) live cells. Thus, for d = 32, with proba-
bility 1 — O(1/N), at most

X eN d°’N

S5m0t = o{ oz

r=3

live cells are isolated from the largest component on the

wafer, which implies that for a sufficiently small constant

¢ > 0, at most O(2™°“N) live cells are isolated. Ford < 32

the same result holds by simply adjusting the constant

factors. ]
By choosing d to be a sufficiently large constant, Lemma 3

ensures that with high probability a constant fraction of the
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live cells on the wafer can be connected -into a spanning tree
with constant wire length. Because we know all wires will be
constant length, Prim’s minimum spanning tree algorithm
[30] can be modified to construct a spanning tree in linear
time instead of the normal OWV?).

Theorem 4: With probability I — O(1/N), any constant
fraction (less than 1) of the live cells on an N-cell wafer can
be connected in a linear array with constant-length wires.

Proof: Straightforward from Lemmas 2 and 3. n

To conclude this section, we provide a theorem which
states our results on constructing linear arrays in their fullest
generality. The proof is similar to that of Lemma 3, and is not
included here.

Theorem 5: With probability]1 — O(1/N), at least] — €
of the live cells on an N-cell wafer can be connected in a
linear array using wires of length O(s V log, € ) and channels
of width 2, where p is the probability of a particular cell
dying, s is the side length of each cell, and 1/N = € =
p < 1. This bound cannot be improved by more than a con-
stant factor for any p, €, or s.

IV. A LOWER BOUND FOR WAFER-SCALE INTEGRATION OF
Two-DIMENSIONAL SYSTOLIC ARRAYS

The problem of linking the live cells on a wafer to form a
square two-dimensional array is substantially more difficult
than the corresponding problem for linear arrays. The main
difficulty with constructing two-dimensional arrays is that
constant length wires no longer suffice when we throw away
some of the live cells. In this section we provide a lower
bound on the length of the longest wire required by a two-
dimensional array. This bound was first discovered by
Greene and Gamal [10]. Our proof (which is similar to but
more general than that in [10]) was obtained independently
from an idea due to Spencer [44].

Theorem 6: With probability 1 — O(1/N) every real-
ization of any m-cell two-dimensional array on an N-cell
wafer has a wire of length Q(VlIg m), for allm = Q(Ig°N).

Proof: The proof consists of two parts. In the first, we
show that with high probability, the wafer contains a large
number of regularly spaced square regions of 1/4 Ig m cells,
each of which is dead. In the second part of the proof, we
show that any realization of an m-cell two-dimensional array
must contain a cycle of four cells that surrounds the center of
one of these dead regions. Thus, one of the wires in the
four-cycle will have length at least 1/2VIg m.

First, partition the N-cell wafer into square regions with
m/32 cells each, and then partition each of these regions into
square subregions with 1/4 Ig m cells each. We claim that
with high probability, every m/32-cell region contains a
1/4 1g m-cell subregion in which every cell is dead, as is
illustrated in Fig. 9.

The probability that any particular 1/4 1g m-cell subregion
contains at least one live cell is 1 — m~"*. Thus, the proba-
bility that each of the 1/4 1g m-cell subregions in a particular
m/32-cell region contains at least one live cell is

- —m3/4,
(1 -m 1/4)m/81gm <e m34/8lgm

since 1 + x = e” for all x. The probability that one or more
of the 32N/m m/32-cell regions fail to contain a totally dead
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Fig. 9. The distribution of dead 1/4 lg m-cell subregions.

1/4 1g m-cell subregion is at most

%e_my‘%lgm = O(1/N)

form = Q(Ig’N), which completes the first half of the proof.

If we can show that a four-cycle of the two-dimensional
array encloses the center of one of the 1/4 g m-cell dead
regions, the proof will be complete because one of the wires
of the four-cycle will have length at least 1/2V1g m . More
generally, however, if any cycle in the array surrounds the
center of a dead subregion, then some wire in the array
must have length 1/2VIg m. This observation follows
because

1) every directed cycle in a two-dimensional array can be
decomposed into the sum of directed four-cycles, and

2) the number of times a cycle “wraps” around a point in
the plane is equal to the sum of the number of wraps for each
four-cycle in its decomposition.

Thus, a two-dimensional array with a cycle that encloses
the center of a dead region must also contain a four-cycle that
surrounds the center of the dead region.

We must now show that with high probability, every real-
ization of an m-cell two-dimensional array contains a cycle
that encloses the center of a square region of 1/4 1g m dead
cells. We already know that with high probability a wafer
contains a dead subregion of this size in every square region
of m/32 cells. Assume for the purposes of contradiction that
an m-cell two-dimensional array can be realized on such a
wafer so that no cycle of the array surrounds the center of one
of the dead regions. Consider a line drawn between the cen-
ters of two dead regions. If any wires cross this line, their
removal will disconnect the two-dimensional array into two
or more components, as is shown in Fig. 10.

Among all pairs of neighboring dead regions (i.e., pairs
contained in m/32-cell regions that share an edge or corner),
there is at least one pair for which removal of the wires
passing between them disconnects the array into two pieces,
each with at least m/3 cells. Since at most 4Vm/32 =
Vm/2 wires can cross the line between the centers of two
neighboring dead regions, by removing only Vm/2 wires,
we can disconnect an m-cell two-dimensional array into two
pieces, each with at least m/3 cells. But it is well known that
any such disconnection requires Vm wires to be removed,
and we have obtained the contradiction that completes
the proof. [
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Fig. 10. Disconnecting a two-dimensional array.

The most interesting case of Theorem 6 is when the two-
dimensional array to be constructed has m = O(N) cells.

Corollary 7: With probability 1 — O(1 /N) every real-
ization of any two-dimensional array that utilizes any con-
stant fraction of the live cells on an N-cell wafer has a wire
of length Q(VIig N ).

It is worth noting that Theorem 6 and Corollary 7 are true
even if wires have no width. To prove this claim, we break
the wafer into square regions with m/lg’m cells each and
then into subregions with 1/4 1g m cells each. Otherwise,
the proof is as before (there will still be a totally dead
(1/4 1g m)-cell subregion in every (m/lg*m)-cell region with
high probability, for example) except that we must reargue
that fewer than V/m wires can cross the line between any pair
of neighboring dead subregions. This is not difficult since
only O(d*V'm /1g**m) length d wires can cross such a line.
This is because crossing wires must link two cells (which do
have width) that are located within distance d of the line.
There are at most O(d*Vm /1g*?m) such cells, each with
degree at most four. Since d = O(VIg m), the number of
wires crossing the line is O(Vm /g m), which is much less
than Vm for all sufficiently large m.

V. A DIVIDE-AND-CONQUER METHOD FOR CONSTRUCTING
TwoO-DIMENSIONAL SYSTOLIC ARRAYS

The principal focus of this paper is the construction of
systolic arrays on wafers such that the maximum wire length
is minimized. In this section we ignore maximum wire length
as a cost measure and look at the problem of constructing
systolic arrays when only channel width is at issue. In doing
so, we shall extend the general VLSI layout results of [3] and
[23] to the wafer-scale situation where some of the cells may
be faulty. Furthermore, the analysis of this section is worst
case and not probabilistic, and thus all possible configura-
tions of live and dead cells, however unlikely, can be han-
dled. We have included this material in the paper because we
use it heavily in Section VI when we need to bound the worst
case behavior of our algorithm on very small portions of
the wafer.

The basic result of this section is that a two-dimensional
array can always be constructed from all the live cells of an
N-cell wafer if the channels have width Q(Ig N). The proof
technique is based on the divide-and-conquer paradigm and
is a special case of Theorem 15 in [3].

The proof consists of two parts. First, we show how to
encode (a la Rosenberg [34]) any two-dimensional array
(square or otherwise) into a complete binary tree where some
of the leaves may be dead. We then show how this encoding
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can be used to obtain the desired embedding of the array on
a wafer.

An encoding of agraph G = (V,E)inatree T is a one-to-
one mapping f from the vertices V to the leaves 7. In our
case, f must map V to live leaves of 7. Such a mapping can
be extended naturally to map E to the paths of 7, where f
maps (u, v) to the unique simple path connecting f(u) to f(v).

Lemma 8: Let T be a complete binary tree with each of its
N leaves labeled as either “live” or “dead,” and let M be the
number of live leaves. Then for any M-element two-
dimensional array G, there exists an encoding fof G in T such
that only O( Vk ) edges of E are mapped by f to an edge of T
that has k descendant leaves.

Proof: We consider first the special case when all the
leaves of T are live and G is a square array. The encoding is
constructed by a simple induction on the number of cells in
an array of the form shown in Fig. 11 for which the length is
at most twice the width.

Assume for the inductive hypothesis that such an array
with N/2 cells can be encoded in an N/2-leaf binary tree so
that only O(Vk) edges of the array are mapped to an edge of
the tree with & descendant leaves, and so that the “cut-wires”
incident to the border cells of the array are routed to the root
of the tree. Then consider an N-cell array of the same form.
By cutting at most O(VN) wires, we can partition the N-cell

array along its shorter dimension into two (N/2)-cell arrays -

of the desired form. Using the induction hypothesis to encode
the subarrays and cut-wires in the left and right subtrees of 7,
we can complete the encoding by connecting the O(VN)
cut-wires through the root of T. The inductive hypothesis is
thus established.

The previous result is easily extended to nonsquare arrays
by partitioning subarrays along their shorter dimension dur-
ing each inductive step. Extension to the case when N > M
is a bit more difficult and is explained in the following.

For general values of N and M, assign labels 1,2, -+, M
to the live cells of T in order from left to right. Similarly label
the cells of G so that were N = M, the ith cell of G would
be mapped to the ith cell of T by the encoding algorithm for
the special case when N = M. The encoding of G into T for
general N and M is then given by simply mapping the ith cell
of G into the ith live cell of T. :

We now verify that at most o(Vk) edges of G traverse
through any edge of T with k descendant leaves. Let e be an
edge of T with k descendant leaves, k' < k of which are live.
Consider the encoding of G in an all-live M-leaf tree T', and
let S be the interval of leaves in 7' corresponding to the live
leaves under e in 7. By rémoving at most two edges from each
of the bottom Ig k' levels of 7', S can be disconnected from
the rest of 7'. (For example, see Fig. 12.) Hence, at most

O(W-I- \/k’/2+\/k—’/Z+...+ 1)=0(\/17)

edges link cells below e in T to cells in the rest of 7. Thus,
at most 0(\/k) paths cross ¢ in 7, and the proof is
complete. [

The encoding of a two-dimensional array in an N-leaf com-
plete binary tree corresponds naturally to an embedding of
the array in an O(N)-leaf tree of meshes [3], [20], [21]. The
tree of meshes is constructed from a complete binary tree by
replacing nodes with meshes and single edges with groups of
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cut-wires

Fig. 11. A 6 X 6 array that is missing some border cells.

Tl
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Fig. 12. Removing an interval of leaves from a tree in the proof of
Lemma 8.

Fig. 13. The 16-leaf tree of meshes.

edges linking the meshes. For example, Fig. 13 shows a
16-leaf tree of meshes.

The root of the complete binary tree in the encoding of
Lemma 8 has O(V/N) connections passing through it from
one side to the othér. In the corresponding tree of meshes, the
switching of these connections is accomplished by a
@(\/N) X G)(\_/N) mesh at the root. The two subtrees of the
root of the complete binary tree correspond recursively to the
two subtrees of the root of the tree of meshes. The leaves of
the complete binary tree correspond to small meshes at a
fixed constant distance from the leaves of the tree of meshes.

The complete binary tree and the tree of meshes differ in
depth by an addi@ive constant so that the tree of meshes can
be made large enough to accommodate the wiring of the
array. In particular, the upper level meshes of the tree of
meshes containr only wires, the bottom level meshes are
empty, and the small meshes near the bottom contain the cells
of the two-dimensional array. If we chop off the unused lower
level meshes, we obtain a truncated tree of meshes whose
leaves correéspond to the cells of the two-dimensional array.
The next lemma shows that a truncated tree of meshes can be
embedded on a wafer with channels of width O(lg N).

Lemma 9: An N-leaf truncated tree of meshes can be con-
structed on an N-cell wafer that has a uniform channel width
of O(lg N) so that the leaves of the truncated tree of meshes
correspond in a one-to-one manner with the cells of the
wafer.
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Proof: The first step is to construct a @(Ig N)-layer
three-dimensional layout [22], [35] of the truncated tree of
meshes. Fold the connections between the root of the trun-
cated tree of meshes and each of its two sons so that the sons
fit naturally on a second layer over the root. Fold the con-
nections to each of the grandsons so that they fit naturally
over the sons on a third layer, and so forth. This generates a
O(lg N)-layer three-dimensional layout where each layer has
linear area. By projecting the three-dimensional layout onto
a single layer i the manner of [46, pp. 36—38], channels
with a uniform width of ®(lg N) are obtained. [ ]

The next theorem is the major result of this section.
Theorem 10: Any M-cell two-dimensional array can be
constructed from any M-subset of the live cells on an N-cell
wafer using wires of length O(N'N lg N) and channels of
width O(lg N).
Proof: Immediate from Lemmas 8 and 9. ]

VI. UpPPER BOUNDS FOR WAFER-SCALE INTEGRATION OF
Two-DIMENSIONAL SYSTOLIC ARRAYS

Theorem 6 from Section IV gives a lower bound of
Q(Vlg N) on the length of a wire in any realization of a
two-dimensional systolic array that utilizes all or most of the
live cells of an N-cell wafer. We do not know how to achieve
this lower bound, but we can come close. This section gives
three nontrivial upper bounds for wire length and channel
width. Of the three methods, however, only the algorithm in
the proof of Theorem 13 achieves the lower bound of
Theorem 6. Unfottunately, this algorithm utilizes only
m = O(N/1g 1g°N) of the live cells.

We first presént a divide-and-conquer algorithm that con-
structs a square two-dimensional array using all the live
cells on a wafer. In the first stage, the wafer is recursively
bisected, and the number of live cells in each half is counted.
Based on the count of live cells in each half of the wafer, the
algorithm computes the dimensions of the two subarrays that
must be constructed, and then recursively constructs the sub-
arrays. The two subarrays are then linked together to form the
complete array.
~ The algorithm remains in the first stage until subproblems
with @(1g N) cells are encountered. At this point, the tech-
niques used in Theorem 10 are used to complete the wiring of
a O(lg N)-cell subarray. The exact crossover point between
the first and second stages can be set at subproblems of size
c lg N, where c is any constant sufficiently large to ensure
that with high probability every ¢ 1g N-cell region contains
Qg N) live cells. (For example, a choice of ¢ = 2 will
suffice.) . :

Figs. 14 through 17 illustrate the divide-and-conquer pro-
cedure. Fig. 14(a) shows a 64-cell wafer which contains
36 live cells. In what follows; we step through the algorithm
as it constructs a 6 X 6 array, which is identified as the
“overall target” in Fig. 14(b). ' :

The first step is to bisect the wafer vertically, which gives
19 live cells in the left half and 17 in the right. Therefore, we
wish to construct a 19-cell subarray in the left half of the
wafer and a 17-cell subarray in the right half of the wafer.
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(a) A 64-cell wafer that contains 36 live cells. (b) The target: a
6 X 6 systolic array.
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Fig. 16. Partitioning the left target.
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Fig. 17. Completed cell assignment and wiring of the 6 X 6 array.

Since we want the two subarrays to fit together nicely after
they haye been constructed, we choose the shapes of the two
subarrays that are determined by the partition of the 6 X 6
array shown in Fig. 15.

We now invoke the procedure recursively on the two sub-
arrays, but this time we bisect each of the halves horizontally.
For example, when the left half of the wafer is bisected, the
19 live cells are divided into 9 cells above and 10 cells be-
low, as displayed in Fig. 16. The algorithm continues in this
fashion, alternating between horizontal and vertical di-
visions, until the wafer and the target have been partitioned
into @(lg N)-cell regions, at which point the algorithm pro-
ceeds to the second stage, and the technique of Theorem 10
is applied.

In this example the number of cells is small enough that the
second stage construction can be performed by inspection.
The inspection strategy can also be used effectively in prac-
tice. Since the second stage operates on regions of size
O(lg N), the routings of this size can be precomputed. The

second stage then consists of a single table lookup. At worst,’

this strategy costs polynomial time and space.

Fig. 17 shows the final solution to the problem in Fig. 14.
For clarity the wires have not been routed within the channels
of the wafer. Notice that each quadrant contains the specified
targets for the second level of recursion. The dashed lines
represent wires that connect cells in different quadrants of
the wafer.

The next theorem describes how well the divide-and-
conquer algorithm performs with respect to wire length and
channel width.

Theorem 11: With probability I — O(1/N) a two-
dimensional array can be constructed from all the live cells
on an N-cell wafer using wires of length O(lg N lg Ig N) and
channels of width O(lg Ig N).

Proof: The divide-and-conquer algorithm just de-
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scribed provides the bounds in the theorem. The analysis is
divided into two parts corresponding to the two stages of the
algorithm.

We begin at the first level of recursion. Consider the wires
that link a cell in the left subarray to a cell in the right
subarray, as is illustrated by the two examples in Fig. 18. For
the most part, the connecting wires can be routed in the
channel that separates the left and right halves of the wafer.
The length of the longest wire in the channel, as well as the
width of the channel itself, is proportional to the longest
vertical distance that a single wire must traverse.

The length of the longest wire in the center channel de-
pends on the distribution of cells in each quadrant. For exam-
ple, if we are extremely lucky and the live cells are regularly
spaced, the longest wire may have constant length, as in
Fig. 18(a). But if we are very unlucky, half the live cells
might occur in the upper right quadrant and the other half in
the lower left quadrant [Fig. 18(b)].. To connect the two
halves, some wire will have length Q(\/IT/).

The length of the longest wire in the center channel can
also be influericed by the distribution of cells within a quad-
rant. For example, if the upper left quadrant contains VN /8
live cells (about the right number), but they are distributed as
in Fig. 19, then the center channel still contains a wire of
lerigth Q(VN).

Most often, we are not so unlucky that a wire in the center
channel has length Q(VN), but neither are we lucky enough
that all wires have constant length. We now show that with
High probability, we are more lucky than unlucky becapse the
length of the longest wire in the center is O(lg N). To prove
this claim, we first observe that for all positive r, with proba-
bility 1 — O(e~?") the four quadrants in an ith subproblem
eachhavem/4 + O(rVm) live cells, where m = Qg N)is
the number of live cells in the subproblem overall. This can
be proved by a standard analysis of binomial distributions.
Since each row and column of the subarray to be constructed
in the subregion contains O(Vm) cells, every variation of
Vm cells in the four quadrants causes an O(1) distortion in
the corresponding channels. Thus, with probability
1 — O(e™®), an Q(1g N)-cell subproblem contributes O(r)
distortion of wires in these channels. There are O(lg N)
Q(lg N)-cell subproblems that can contribute to the dis-
tortion of a given wire in the center channel, and the distor-
tion caused by each can be treated as an independent random
variable.

Using standard combinatorial arguments involving sums
of random variables, it is now possible to show that the sum
of the distortions is O(Ig N) with probability 1 — O(1/N).
That is because the probability of having total distortion
rn+r,+ -+ r, =tisat most

ritrgt =t

2

where s = O(lg N). Applying standard asymptotic in-
equalities, this can be seen to be at most

<t + s)e_m,s)2 - ((t + Sge)s'
s seZ(l/s) /

For t = s, this is at most e " < ¢~". Thus, the probability

e —2r}-2r3—--- —2r2
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Fig. 18. (a) A distribution of live cells which might allow a narrow center
channel. (b) A distribution of live cells which requires a wide center channel.
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Fig. 19. Another distribution of live cells which requires a wide
center channel.

that the distortion in a channel is greater than 2 Ig N is very
small.

The same analysis can be used to prove a high-proba-
bility bound of O(V1g N 1g m) on the distortion of wires that
connect subarrays of size m = Q(lg N). In this case,
s = O(g m), and e ~"* becomes very small when ¢ =
2Vs lg N=0O(Vlg m 1g N). Thus, it is sufficient that the
channels. between subproblems with m cells have width
O(Vlg N 1g m). By summing over all Q(Ig N)-sized sub-
problems, it can be checked that at this point the average
channel width on the wafer is O(1), which is because the
channels inside O(lg N)-sized subproblems have not been
used at all. The constant average channel width can be
achieved as a maximum without increasing the length of any
wire by more than O(lg N). The idea is to distribute the
O(VIig N lg m)-width channels across neighboring unused
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channels. As the details of this argument are somewhat te-
dious, we have omitted them. This concludes the first stage
of the analysis.

The analysis of wires that link cells within a @(Ig N)-cell
subproblem differs substantially from the preceding analysis
because live cells within a small region can have arbitrarily
irregular distributions with high probability. The regions of
irregularity are small enough, however, that the worst case
distributions are not really all that bad. For example, if a
O(lg N)-cell region has the structure shown in Figs. 18(b) or
19, then the maximum distortion of a wire at the top level of
the recursion is just O(VIg N).

In fact, the analysis of Section V ensures that the algorithm
constructs a two-dimensional array in each m = Q(lg N)-
cell region using wires of length 0(Vm lg m) =
O(Vlig N 1glg N) and channels of width O(lg m) =
O(lg 1g N). Thus, the entire two-dimensional array is con-
structed using wires of length O(lg N 1g 1g N) and channels
of width O(lg 1g N). The extra lg 1g N factor in the wire
length bound comes about because a wire with O(lg N) dis-
tortion crosses O(lg N) channels, each of width O(lg l1g N).

]

The wire length analysis of the algorithm in Theorem 11
is fairly tight. For example, it can be shown that the algorithm
requires wires of length (Ig N) with high probability. Thus,
if the lower bound in Theorem 6 is to be achieved, a different
algorithm must be discovered. It may be possible to improve
the channel width bound, however. Any improvement in
Theorem 10 would directly lead to an improvement in the
channel width bounds in both Theorem 11 and the next theo-
rem, which shows how to construct a two-dimensional array
from most of the live cells on a wafer.

Theorem 12: With probability 1 — O(1/N) a two-
dimensional array can be constructed from any constant
fraction (less than 1) of the live cells on an N-cell wafer using
wires of length O(Vlig N lg lg N) and channels of width
O(lg lg N).

Proof: The key idea is to partition the wafer into
N/c lg N square regions, each containingm = ¢ Ig N cells
where c is a sufficiently large constant. We expect each such

~ region to contain 1/2¢ 1g N live cells. Of course, there will

be variations. Using standard techniques, however, it is not
difficult to show that with probability 1 — O(1/N) each of
the regions contains at least m’ = 1/2m — VmVigN =
1/2¢(1 = 2/Vo) lg N live cells. Using the technique of
Theorem 10, we can therefore construct an m’-cell two-
dimensional array in each region using wires of length
0(\/; lgm) = O(VIgN lglg N) and channels of width
O(lg m) = O(lg lg N). The N/c 1g N two-dimensional ar-
rays are then connected together into one large array with
1/2N(1. - 2/ \/Z) live cells. The added wires have length at
most O(VIg N 1g 1g N), and the channel width is not sub-
stantially increased. ' |

For each of the two previous results, the channels on the
wafer have width O(lg 1g N). The next theorem shows that
with high probability a two-dimensional array can be con-
structed from many of the live cells on a wafer using channels
of unit width. Furthermore, the lower bound of ((Vig N)
on wire length given in Theorem 6 is achieved by this
construction.
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Theorem 13: With probability 1 — O(1/N) at least a
fraction Q1 /1g 1g*N) of the live cells on an N-cell wafer can
be connected into a two-dimensional array using wires of
length O( Vg N) and channels of unit width.

Proof: The proof is similar to that of Theorem 12. As
before, we partition the wafer into square regions with ¢ 1g N
cells each. The constant ¢ must be chosen large enough to
ensure that with high probability each region contains 1g N
live cells. We next partition each ¢ lg N-cell region into
square subregions with ¢’ 1g 1g’N cells each. Consider all
pairs of indexes i andj intherange 1 = i,j = Ve’ Ig lg N.
For a given region of ¢ lg N cells, at least one pair (i, )
satisfies the condition that at least 1/c of the cells in the (i, j)
positions of the subregions are alive. (Otherwise, it is impos-
sible for 1g N of the cells in the region to be alive.) Notice
that by ignoring those cells not in the (i, j) positions of a
subregion, the (i, j)-positioned cells, together with all of the
channels of the region, form a “subwafer” with

1) m = c lg N/c' 1g Ig’N cells total,

2) atleast m/c = Ig N/c' g 1g°N live cells, and

3) channels of width V¢’ Iglg N = O(lg m).

By choosing ¢’ large enough, the technique of Theorem 10
can be applied to construct within each ¢ Ig N-cell region a
two-dimensional array with1g N/c' 1g 1g’N cells using wires
of length oVm Ig m) = O(Vlg N). These arrays can then
be easily connected together to form a two-dimensional array
with N/cc’ 1g 1g°N cells and wires of length O(VIg N). =

By setting m = Q(N/Ig 1g?N), it can be checked that
Theorem 13 achieves the lower bounds for wire length
proved in Theorem 6. The cell utilization, however, leaves
something to be desired.

We have summarized the results of this section in Table I.
Each bound is achieved with probability 1 — O(1/N), where
N is the number of cells on the wafer, p is the probability that
a particular cell is dead, and s is the side length of each cell.
(Wires are assumed to have width one.)

VII. RELATED MODELS AND PROBLEMS

The problem of incorporating all the live cells of a wafer
into a linear array so that the maximum wire length is mini-
mized has been studied in more standard graph-theoretic
models and has come to be known as the bottleneck traveling
salesman problem [8]. In addition, the wafer-scale model of
N cells which fail independently with probability 1/2 is es-
sentially equivalent to the well-studied geometric model in
which N points are thrown down randomly in a unit square
[2], [11], [15], [31], [40], [48]. Thus, the algorithms for con-
structing linear arrays described in Section III can also be
applied to the bottleneck traveling salesman problem in the
geometric unit-square model. For example, our results can be
modified to show that with high probability, all of the points
in the unit square can be joined into a Hamiltonian path using
wires of length O(V1g N/V/N), the least possible. In addi-
tion, most of the points can be joined in a linear array using
wires of length O(1/ V/N), again the least possible. Although
neither of thes¢ results have been explicitly stated in the
literature, the first result is really just a minor extension to the
prior work of Karp [15] and Bentley et al. [2]. The latter
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TABLE I
BounDs ON WIRE LENGTH AND CHANNEL WIDTH FOR
Two-DIMENSIONAL ARRAYS

Portion of Live
Cells Used

All

Wire Length
O(log,, N(s + log, log,, N))

Channel Width
O(log; log,, N)
O(Vf(m (s + log, log, N)) Of(log, log ., N)

Constant fraction
(less than one)

Q(1/(log, log., N)?) O(Vlog,, N) 1

result of joining most of the points differs substantially from
previous work, however. To the best of our knowledge, the
only result of a similar nature is due to Erdds and Renyi [6],
who showed that most graphs with N vertices and N edges
have large connected components.

The analysis used to prove Theorem 11 has recently been
found to have applications to a variety of matching and bin
packing problems. For example, the same analysis can be
used to bound the expected minimum maximum edge length
in a matching of N random points in a unit square to N fixed
points arranged in a square grid [1]. (In this model, wires
have no width and the 1g Ig N factors disappear.) This prob-
lem in turn has important applications in the analysis of the
expected behavior of a variety of bin packing algorithms
[16], [41].

The techniques developed in this paper can also be ex-
tended to prove results about average wire length. For linear
arrays, it is easily argued that the average wire length is
constant. This is because the overall area is linear in the
number of wires. By similar reasoning, it can be seen that
the square of the average channel width is an upper bound
on the average wire length. Hence, the two-dimensional
arrays constructed in Section VI have average wire length
O(lg 1g°N) with high probability. In models where wires have
no width, an O(lg lg N) average wire length can be achieved
for two-dimensional arrays.

The problems considered heretofore in this paper also have
an interpretation in a purely graph-theoretic model. Suppose
we are given a two-dimensional grid graph, and assume that
each node in the grid has independently a probability p
of being bad. We wish to find a subgraph of the grid that
contains only good nodes and that forms a smaller two-
dimensional grid. For example, Fig. 20 illustrates the em-
bedding of a good 3 X 3 grid in a partially bad 4 X 4 grid.

The objectives we might choose to optimize in such a
problem are

1) maximizing the size of the good grid,

2) minimizing the maximum distance between neighbors,

3) minimizing the total distance between all pairs of
neighbors, and

4) minimizing the maximum number of times an edge in
the partially bad grid is utilized.

These parameters roughly correspond in the wafer-scale
model to the usage of live cells, maximum wire length, total
wire length, and maximum channel width, respectively.

The beauty of the graph-theoretic model, however, is that
it generalizes naturally to broader classes of graphs. For
example, the same kinds of questions can be reasonably
asked about the class of k-dimensional grids for any k, the
class of complete binary trees, or the class of hypercubes. In
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Fig. 20. A good 3 X 3 grid formed in a partially bad 4 X 4 grid. Good
i nodes are denoted by black dots.

each case, the appropriate problem might be

" “A network in the class is given, but some portion of the
nodes fail. How do we use the edges and good nodes of the
network to construct a somewhat smaller network of the same
type?”

For linear graphs the answer to the question is straight-
forward. This paper provides a starting point for two-
dimensional grids. For other classes, the answers are as yet
unknown. Also of interest is the problem of embedding a
graph from one class in a partially bad graph from a different
class. Research in this area should lead to a greater under-
standing of the fault tolerance of networks.

Despite the extended period of time since the research
reported in this paper was completed, two central questions
have remained unresolved. The first concerns the maximum
channel width needed to embed an N-cell two-dimensional
array in a worst case wafer with N live cells. In Section V, we
prove an O(lg N) upper bound for this problem, but we know
of no nontrivial lower bound. The second question concerns
the maximum edge length needed for a random instance of
the same problem. The bounds for this problem are
O(lg N 1g 1g N) and (Vg N), although the upper bound
can be improved to O(lg N) if wire widths are ignored. Im-
provements to any of these bounds could well have applica-
tions to random matching [1] and bin packing [41] problems,
in addition to wafer-scale integration of systolic arrays.

VIII. CONCLUDING REMARKS

For all the theoretical analysis in this paper, some of the
algorithms described are quite practical. Not only are they
fast, but they produce good results because the constants are
small. For example, the methods of Séction III can be used
to show that there is a simple, linear-time algorithm to con-
nect most of the live cells on an N-cell wafer into a linear
array using wires of length 1, 2, or 3 and channels of width
at most 2. In addition, the method from Section VI for con-
necting all the live cells into a two-dimensional array, modi-
fied to do table lookup on small subproblems, appears to be
substantially better than what has been used in practice [42].
The same techniques should also work well for other natural
structures, such as trees and hypercube-based networks.
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Some of the problems mentioned in this paper have been
studied independently by Greene and Gamal. In their recent
paper [10], they prove most of the results found in Section III
as well as the lower bound in Section IV. More recently,
Greene [9] has shown how to remove the O(lg 1g N) terms in
the upper bound for two-dimensional systolic arrays contain-
ing a constant fraction of the live cells. The result is difficult,
and is solved using a clever probabilistic analysis of certain
network flow problems.

Manning [27], [28], Hedlund [12], Koren [17], and Fussell
and Varman [7] have also looked at the basic problem of
constructing functioning arrays from defective arrays. Each
gives algorithms but little theoretical or statistical analysis.
Rosenberg [36], [37] has investigated issues of fault toler-
ance, and Bhatt and Leighton [3] recently extended the re-
sults in Section V to general graphs.
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