
Beyond Pixels: Exploring New Representations and

Applications for Motion Analysis

by

Ce Liu

Submitted to the Department of Electrical Engineering and Computer Science in partial

fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

June 2009

c© 2009 Massachusetts Institute of Technology

All Rights Reserved.

Signature of Author:

Department of Electrical Engineering and Computer Science

May 21, 2009

Certified by:

William T. Freeman, Professor of Computer Science

Thesis Supervisor

Certified by:

Edward H. Adelson, John and Dorothy Wilson Professor of Vision Science

Thesis Supervisor

Accepted by:

Terry P. Orlando, Professor of Electrical Engineering

Chair, Department Committee on Graduate Students

2

3

To my parents

4

Beyond Pixels: Exploring New Representations and

Applications for Motion Analysis

by

Ce Liu

Submitted to the Department of Electrical Engineering

and Computer Science on May 21, 2009

in Partial Fulfillment of the Requirements for the Degree

of Doctor of Philosophy in Electrical Engineering and Computer Science

Abstract

The focus of motion analysis has been on estimating a flow vector for every pixel by match-

ing intensities. In my thesis, I will explore motion representations beyond the pixel level and

new applications to which these representations lead.

I first focus on analyzing motion from video sequences. Traditional motion analysis suf-

fers from the inappropriate modeling of the grouping relationship of pixels and from a lack of

ground-truth data. Using layers as the interface for humans to interact with videos, we build

a human-assisted motion annotation system to obtain ground-truth motion, missing in the lit-

erature, for natural video sequences. Furthermore, we show that with the layer representation,

we can detect and magnify small motions to make them visible to human eyes. Then we move

to a contour presentation to analyze the motion for textureless objects under occlusion. We

demonstrate that simultaneous boundary grouping and motion analysis can solve challenging

data, where the traditional pixel-wise motion analysis fails.

In the second part of my thesis, I will show the benefits of matching local image structures

instead of intensity values. We propose SIFT flow that establishes dense, semantically meaning-

ful correspondence between two images across scenes by matching pixel-wise SIFT features.

Using SIFT flow, we develop a new framework for image parsing by transferring the metadata

information, such as annotation, motion and depth, from the images in a large database to an

unknown query image. We demonstrate this framework using new applications such as predict-

ing motion from a single image and motion synthesis via object transfer. Based on SIFT flow,

we introduce a nonparametric scene parsing system using label transfer, with very promising

experimental results suggesting that our system outperforms state-of-the-art techniques based

6

on training classifiers.

Thesis Supervisor: William T. Freeman

Title: Professor of Computer Science

Thesis Supervisor: Edward H. Adelson

Title: John and Dorothy Wilson Professor of Vision Science

Acknowledgments

This thesis is not possible without the support, guidance and love from so many people

around me.

I want to especially thank my thesis advisors, Prof. William T. Freeman and Prof. Edward

H. Adelson. In his patience and wisdom, Bill has spent great effort to guide me during my

doctoral thesis, from mathematical equations to how to give professional presentations. His

words of encouragements and guidance have helped me through many obstacles during my

thesis. I have learned from him not only how to conduct high-quality research, but also how

to be a man of humility, integrity, kindness and patience. With his broad knowledge in science

and engineering, Ted has shown me his genuine motive and profound wisdom for pursuing

scientific truth. I deeply appreciate the words he shared with me when our ICCV submission

got rejected: “We are to discover the truth of God’s creation. It is the process of pursuing

the truth that we ought to enjoy, not the recognition that comes with the discovery.” I am very

thankful to both Bill and Ted for their generous support.

My deep gratitude also goes to my other thesis committee members, Prof. Antonio Torralba

and Dr. Richard Szeliski. Having been working on several projects together, Antonio is a great

mentor and friend to me personally. I am always encouraged by his attitude towards research,

especially when we were frustrated. One of his famous sayings “bugs are good” (because bugs

may indicate that the algorithm we designed still has hope) motivates me to debug even late at

night. It was a very memorable summer when I interned at Microsoft Research in Redmond

with Dr. Richard Szeliski. Already exceptionally knowledgeable in computer vision and com-

puter graphics, Rick is till very passionate about new technologies. He also gave me many

insightful comments on my thesis.

I want to thank other professors and researchers with whom I worked together during my

thesis: Dr. Harry Shum, Prof. Frédo Durand, Prof. Yair Weiss, Prof. Marshall Tappen, Prof.

Rob Fergus, Dr. Sing Bing Kang, Dr. Larry Zitnick, Dr. Josef Sivic, Dr. Bryan Russell, Jenny

Yuen and Dr. Sylvain Paris. Frédo has generously shared his knowledge about photography

as well as his equipments to allow me to experience the fantastic world of digital photography.

Yair taught me a very unique perspective towards research. Once he decided not to make an

7

8 ACKNOWLEDGMENTS

ICCV submission because the preliminary results he got was too good to comprehend why.

So he would rather believe that there was something he still did not understand, than thinking

he made some great discoveries. Marshall has been a very good friend to me since we were

labmates at MIT. I really cherish the time we spent together in Cambridge, UK.

I feel very privileged to share office with Bryan Russell, Michael Siracusa, Biliana Kaneva,

and Clare Poynton. We have altogether shared so much joy and laughter. I am particularly

grateful to Bryan who has helped me generously on things including Linux, MATLAB and

English writing since I came to MIT. We have spent great time together at conferences in NYC,

Beijing, Minneapolis, Pasadena, Marseille, and Paris.

I want to thank Prof. Randall Davis, my academic advisor, and other MIT faculty, Prof.

Victor Zue, Prof. Eric Grimson, Prof. Gilbert Strang, Prof. Polina Golland, and Prof. Seth

Teller. I am also thankful to my labmates (including previous members) in vision and graphics

at CSAIL: Xiaogang Wang, Xiaoxu Ma, Jiawen Chen, Robert Wang, Wanmei Ou, Thomas Yeo,

Erik Sudderth, Gerald Dalley, Biswajit Bose, Mario Christoudias, Peter Sand, Soonmin Bae,

Tilke Judd, Sara Su, Taeg Sang Cho, Anat Levin, Hyun Sung Chang, Kevin Murphy, Barun

Singh, Leo Zhu, Sam Hasinoff, Roger Grosse, Kimo Johnson, Lavanya Sharan, Yuanzhen Li

and Alvin Raj. In addition, Microsoft Research and Xerox Incorporation have kindly granted

me fellowships to support my graduate study.

This thesis is impossible without my parents’ love and sacrifice. My gratitude to them is

beyond what I can express in words. Lastly, I want to thank my fiancée, Irene Liaw, for her

love and support.

Contents

Abstract 5

Acknowledgments 7

List of Figures 13

1 Introduction 29

1.1 Thesis Theme . 31

1.2 Thesis Overview . 33

1.3 Other Work not in the Thesis . 36

2 Human-Assisted Motion Annotation 37

2.1 Introduction . 37

2.2 Related Work . 39

2.3 Human-Assisted Motion Annotation System 41

2.3.1 Semiautomatic Layer Segmentation with Occlusion Handling 41

2.3.2 Objective function . 42

2.3.3 Linearization and Optimization . 42

2.3.4 Multi-channel, multi-resolution image representation 45

2.3.5 Occlusion handling . 46

2.3.6 Layer-wise Optical Flow Estimation 48

2.3.7 Semiautomatic Motion Labeling . 50

2.3.8 System Design and Human Judgement 52

2.4 Methodology Evaluation . 52

2.5 A Human-Annotated Motion Ground-Truth Database 54

2.6 Conclusion . 57

9

10 CONTENTS

3 Layer and Contour Representations for Motion Analysis 59

3.1 Motion Magnification . 59

3.1.1 Related Work . 60

3.1.2 Overview . 61

3.1.3 Robust Video Registration . 64

3.1.4 Robust Computation and Clustering of Feature Point Trajectories . . . 65

3.1.5 Segmentation: Assignment of Each Pixel to a Motion Cluster 70

3.1.6 Magnification and Rendering . 73

3.1.7 Experimental Results . 73

3.1.8 Applications . 77

3.1.9 Conclusion . 80

3.2 Contour Motion Analysis . 81

3.2.1 Boundary Fragment Extraction . 83

3.2.2 Edgelet Tracking with Uncertainties 84

3.2.3 Boundary Fragment Grouping and Motion Estimation 85

3.2.4 Experimental Results . 89

3.3 Conclusion . 90

4 SIFT Flow: Dense Correspondence Across Scenes 93

4.1 Introduction . 93

4.2 Related Work . 96

4.3 The SIFT Flow Algorithm . 98

4.3.1 Dense SIFT descriptors and visualization 98

4.3.2 Matching Objective . 100

4.3.3 Coarse-to-fine matching scheme . 101

4.3.4 Neighborhood of SIFT flow . 104

4.3.5 Scene matching with histogram intersection 104

4.4 Experiments on Video Retrieval . 105

4.4.1 Results of video retrieval . 105

4.4.2 Evaluation of the dense scene alignment 109

4.5 Applications . 109

4.5.1 Predicting motion fields from a single image 111

4.5.2 Quantitative evaluation . 111

4.5.3 Motion synthesis via object transfer 115

CONTENTS 11

4.6 Experiments on Image Alignment and Face Recognition 116

4.6.1 Image registration of the same scene 116

4.6.2 Face recognition . 120

4.7 Discussions . 122

4.8 Conclusion . 123

5 Nonparametric Scene Parsing via Dense Scene Alignment 125

5.1 Introduction . 125

5.2 Scene Parsing through Label Transfer . 127

5.3 Experiments . 129

5.4 Conclusion . 134

6 Conclusion 139

A Estimating Optical Flow 143

A.1 Two-Frame Optical Flow Computation . 143

A.1.1 Problem formulation . 143

A.1.2 Iterative Reweighted Least Squares (IRLS) 144

A.1.3 Multi-channel and Lucas-Kanade . 146

A.2 Temporal Constraints: Multiple Frames . 146

A.2.1 Constant velocity model . 147

A.2.2 Second-order data term . 148

B The Equivalence between Variational Optimization and IRLS 149

B.1 Introduction . 149

B.2 Variational Optimization . 150

B.3 Iterative Reweighted Least Square (IRLS) . 152

B.4 Variational Inference and IRLS are Identical 152

Bibliography 153

12 CONTENTS

List of Figures

1.1 Human-assisted motion analysis. In Chapter 2, we designed a system to allow

the user to specify layer configurations and motion hints (b). Our system uses

these hints to calculate a dense flow field for each layer. We show that the flow

(c) is repeatable and accurate. (d): The output of a representative optical flow

algorithm [22], trained on the Yosemite sequence, shows many differences from

the labeled ground truth for this and other realistic sequences we have labeled.

This indicates the value of our database for training and evaluating optical flow

algorithms. 31

1.2 Motion magnification is a visual system to magnify small motions in video

sequences [67]. See details in Chapter 3.1. 32

1.3 Analysis of contour motions [61]. Column (a): boundary fragments are ex-

tracted using our boundary tracker. The red dots are the edgelets and the green

ones are the boundary fragment ends. Column (b): boundary fragments are

grouped into contours and the flow vectors are estimated. Each contour is

shown in its own color. Column (c) & (d): the illusory boundaries are gen-

erated for the first and second frames. See details in Chapter 3.2. 33

1.4 SIFT flow for dense scene alignment. In Chapter 4, we extend the concept

of “motion” to the correspondence across scenes. (a) and (b) show images

of similar scenes. (b) was obtained by matching (a) to a large image collec-

tion. (c) shows image (b) warped to align with (a) using the estimated dense

correspondence field. (d) Visualization of pixel displacements using the color

coding scheme of [7]. Note the variation in scene appearance between (a) and

(b). The visual resemblance of (a) and (c) demonstrates the quality of the scene

alignment. 34

13

14 LIST OF FIGURES

1.5 Nonparametric scene parsing. For a query image (a), we designed a system

to find the top matches (b) (three are shown here) using a coarse-to-fine SIFT

flow matching algorithm. The annotations of the top matches (c) are transferred

and integrated to parse the input image as shown in (d). For comparison, the

ground-truth user annotation of (a) is shown in (e). See Chapter 5 for details. . 35

2.1 We designed a system to allow the user to specify layer configurations and mo-

tion hints (b). Our system uses these hints to calculate a dense flow field for

each layer. We show that the flow (c) is repeatable and accurate. (d): The out-

put of a representative optical flow algorithm [22], trained on the Yosemite se-

quence, shows many differences from the labeled ground truth for this and other

realistic sequences we have labeled. This indicates the value of our database

for training and evaluating optical flow algorithms. 38

2.2 A weighting function, rk(q), a.k.a. region of support, for each feature point is

used in the data term of the contour tracking. The weight function is a product

of whether a pixel being inside the contour and a Gaussian modulation. Left:

the user specified the contour of a van. Right: the weighting function of each

key point. The darker the pixel value, the higher the weight. 43

2.3 Multi-channel and multi-resolution representation for tracking. We use four

channels for image presentation, where the first three are RGB (a), and the

fourth one is the Laplacian filtering response of the brightness image (b). A

Gaussian pyramid is built for initialization and acceleration. Notice that the

Laplacian channel has to be obtained from each level of the RGB image, as

described in [23]. The Laplacian channel becomes blurred and useless if the

pyramid is directly built upon the finest level Laplacian image. 46

2.4 The system allows the user to dynamically change the depth of the object. The

user selects the key frames to specify the value of depth, and the system auto-

matically interpolates to the rest of the frames. We use color in HSV space to

indicate the depth, by fixing S and V as 255, and letting H (hue) reflect the depth

value. Intuitively, warmer color (red) indicates smaller value of depth, closer to

the camera, whereas colder color (blue) indicates larger value of depth, further

to the camera. 47

LIST OF FIGURES 15

2.5 Occlusion reasoning is crucial for the correct tracking. Top row: the depth of

the person is specified to be less than that of the car. The tracking was correct

even though the car becomes occluded. Bottom row: the depth of the person

is specified to be greater than that of the car. The tracking becomes wrong at

the occlusion because the appearance of the person was mistakenly used for the

appearance of the feature points of the car. 47

2.6 A screenshot of our motion annotation system. From (a) to (e) is the main

window, depth controller, magnifier, flow field viewer and control panel. 51

2.7 Clockwise from top left: the image frame, mean labeled motion, mean absolute

error (red: high error, white: low error), and error histogram. 51

2.8 For the RubberWhale sequence in [7], we labeled 20 layers in (b) and obtained

the annotated motion in (c). The “ground-truth” motion from [7] is shown in

(d). The error between (c) and (d) is 3.21◦ in AAE and 0.104 in AEP, exclud-

ing the outliers (black dots) in (d). (e): The color encoding scheme for flow

visualization [7]. 53

2.9 The marginal ((a)∼(h)) and joint ((i)∼(n)) statistics of the ground-truth optical

flow in our database (log histogram). 54

2.10 Some frames of the ground-truth motion database we created. We obtained

ground-truth flow fields that are consistent with object boundaries, as shown in

column (3), the horizontal component of flow, and column (4), flow colorization

using Figure 2.8 (f). In comparison, the output of an optical flow algorithm [22]

is shown in column (5). The error between the ground-truth motion (4) and

flow estimation (5) is as follows (AAE, AEP), (a): 8.996◦, 0.976; (b): 58.904◦,

4.181; (c): 2.573◦, 0.456; (d): 5.313◦, 0.346; (e) 1.924◦, 0.085; (f): 5.689◦,

0.196; (g): 5.2431◦, 0.3853; and (h): 13.306◦, 1.567. Most of the errors are

significantly larger than the errors with the Yosemite sequence (AAE 1.723◦,

AEP0.071) . The parameter of the flow algorithm in column (5) is tuned to

generate the best result for each sequence. 55

3.1 Summary of motion magnification processing steps. 61

16 LIST OF FIGURES

3.2 Learned regions of support allow features (a) and (b) to reliably track the leaf

and background, respectively, despite partial occlusions. For feature (b) on the

stationary background, the plots show the x (left) and y (right) coordinates of

the track both with (red) and without (blue) a learned region of support for ap-

pearance comparisons. The track using a learned region of support is constant,

as desired for feature point on the stationary background. 66

3.3 Top images show a feature point on the stationary background layer becoming

occluded during frames 6 and 7. Below are the x- and y- coordinates of the

tracked feature, showing outlier positions. These can be identified from the

inlier probabilities shown as a bar plot (repeated for comparison with each plot)

and replaced with smoothed values. 68

3.4 Layered representation for the swing sequence. Only the background and two

layers (out of six) are shown. 72

3.5 (a) Outlier locations, not well described by our model. Pixel intensities from

these locations are passed through from the registered video into the rendered

model (b) to yield the final composite output sequence, (c). The user specifies

at which depth layer the outliers belong, in this case, above the background and

below the other layers. 72

3.6 The magnification result (right) for a handstand (left). The motion magnified

sequence exaggerates the small postural corrections needed to maintain balance. 75

3.7 Under hand pressure, the bookshelf (on aluminium supports) undergoes mo-

tions that are made visible when magnified by a factor of 40 using motion mag-

nification. User editing of reference frame masks refined the upper boundary

between the books and the shelf. Also, the background layer required manual

texture completion as little background is visible during the sequence. 75

3.8 Section of the x, y, t volume from the original sequence (left) and the sequence

after motion magnification. The detail shows a vertical section of the beam.

The volume illustrates the amplification of the oscillation and also the filling

of the texture behind the beam. Notice that after magnification, the motion is

almost periodic despite the noise. So, the real motion of the beam is not just

one single harmonic but a mixture. The original motion is amplified by a factor

of 40. 76

LIST OF FIGURES 17

3.9 Details from frames of original and motion magnified swingset sequence, show-

ing (a) beam curvature, (b) proper handling of occlusions, and (c) an artifact

from imperfect automatic segmentation (before correction by the user). 76

3.10 Motion magnification is applied to revealing the almost unnoticeable motion of ear’s

tectorial membrane at nanometer-scale displacement. The 18th frame of the original

and magnified sequences is displayed in (a) and (b), respectively. To visualize the

motion magnification effect, we take a slice at the same location, shown as orange and

red line in (a) and (b), and plot how the line evolves with respect to time in (c) and (d),

respectively. The motion becomes much more visible in (d) than in (c). 78

3.11 Motion magnification is applied to magnify the temporal deformation of faults under-

ground to help find oils. The original sequence (a) contain six frames taken over the

past two decades from Shell Research. We can magnify the motion of each pixel indi-

vidually (b), or fit a truss model to the pixels so that the spatial regularity is respected

in the magnification, as shown in (c) and (d). 79

3.12 We use the human-assisted motion annotation in Chapter 2 to label the contour of a

moving car running through a speed bump, with a normal load (a) and a heavier load

(b), respectively. If we only magnify the difference between the vertical axis of each

point, we can the magnified result as shown in (c), where the motion is magnified but

inconsistent with respect to the shape of the car. After a shape regularity is imposed,

we obtain magnified motion effect and respect the shape of the car in (d). 80

3.13 Before running the motion magnification system for the samples in Figure 3.12, we

need to first align the two sequences because the sequences with heavier load is slower

and has more frames. Let us look at the y-displacement of one feature point for the

two sequences. Before we do anything, the two signals are not aligned as shown in (a).

After applying a 1D version of the Lucas-Kanade algorithm [71], the two signals are

aligned and ready for magnification. 81

3.14 Illustration of the spurious T-junction motion. (a) The front gray bar is moving to

the right and the black bar behind is moving to the left [127]. (b) Based on a local

window matching, the eight corners of the bars show the correct motion, whereas the

T-junctions show spurious downwards motion. (c) Using the boundary-based repre-

sentation our system is able to correctly estimate the motion and generate the illusory

boundary as well. 83

18 LIST OF FIGURES

3.15 The local motion vector is estimated for each contour in isolation by selectively com-

paring orientation energies across frames. (a) A T-junction of the two bar example

showing the contour orientation for this motion analysis. (b) The other frame. (c) The

relevant orientation energy along the boundary fragment, both for the 2nd frame. A

Gaussian pdf is fit to estimate flow, weighted by the oriented energy. (d) Visualization

of the Gaussian pdf. The possible contour motions are unaffected by the occluding

contour at a different orientation and no spurious motion is detected at this junction. . . 84

3.16 A simple example illustrating switch variables, reversibility and fragment chains. The

color arrows show the switch variables. The empty circle indicates end 0 and the filled

indicates end 1. (a) Shows three boundary fragments. Theoretically b
(0)
1 can connect

to any of the other ends including itself, (b). However, the switch variable is exclusive,

i.e. there is only one connection to b
(0)
1 , and reversible, i.e. if b

(0)
1 connects to b

(0)
3 ,

then b
(0)
3 should also connect to b

(0)
1 , as shown in (c). Figures (d) and (e) show two

of the legal contour groupings for the boundary fragments: two open contours and a

closed loop contour. 86

3.17 An illustration of local saliency computation. (a) Without loss of generalization we as-

sume the two ends to be b
(0)
1 and b

(0)
2 . (b) The KL divergence between the distributions

of flow vectors are used to measure the motion similarity. (c) An illusory boundary γ

is generated by minimizing the energy of the curve. The sum of square curvatures are

used to measure the curve smoothness. (d) The means of the local patches located

at the two ends are extracted, i.e. h11 and h12 from b
(0)
1 , h21 and h22 from b

(0)
2 , to

compute contrast consistency. 87

3.18 Input images for the non-synthetic examples of Figure 6. The dancer’s right leg is

moving downwards and the chair is rotating (note the changing space between the

chair’s arms). 90

3.19 Experimental results for some synthetic and real examples. The same parameter set-

tings were used for all examples. Column (a): Boundary fragments are extracted using

our boundary tracker. The red dots are the edgelets and the green ones are the bound-

ary fragment ends. Column (b): Boundary fragments are grouped into contours and the

flow vectors are estimated. Each contour is shown in its own color. Columns (c): the

illusory boundaries are generated for the first and second frames. The gap between the

fragments belonging to the same contour are linked exploiting both static and motion

cues in Eq. (3.14). 91

LIST OF FIGURES 19

4.1 Image alignment resides at different levels. Researchers used to study image align-

ment problem at pixel level (a) where the two images are taken at the same scene

with slightly different time or perspective [98]. Recently, correspondence has been

established at object level (b) for object recognition [12]. We are interested in image

alignment at scene level, where two images come from the same scene category but

different instances. As shown in (c), scene alignment is a challenging problem; the

correspondence between scenes is not as obvious to human eyes as the correspondence

at pixel and object levels. SIFT flow is proposed to align the examples in (c) for scene

alignment. 95

4.2 Mapping from SIFT space to RGB space. To visualize SIFT images, we compute

the top three principal components of SIFT descriptors from a set of images, and then

map these principal components to the principal components of the RGB space. . . . 99

4.3 Visualization of SIFT images. We compute the SIFT descriptors on a regular dense

grid. For each pixel in an image (a), the descriptor is a 128-D vector. The first 16

components are shown in (b) in a 4×4 image grid, where each component is the output

of a signed oriented filter. The SIFT descriptors are quantized into visual words in (c).

In order to improve the clarity of the visualization, cluster centers have been sorted

according to the first principal component of the SIFT descriptor obtained from a large

sample of our dataset. A visualization of SIFT image using the mapping function in

Figure 4.2 is shown in (d). We will use (d) as our visualization of SIFT descriptors for

the rest of the chapter. 99

4.4 An illustration of coarse-to-fine SIFT flow matching on pyramid. The green square is

the searching window for pk at each pyramid level k. For simplicity only one image is

shown here, where pk is on image s1, and ck and w(pk) are on image s2. See text for

details. 100

4.5 We generalized distance transform function for truncated L1 norm [36] to pass mes-

sage between neighboring nodes that have different offsets (centroids) of the searching

window. 102

4.6 Coarse-to-fine SIFT flow not only runs significantly faster, but also achieves lower

energies most of the time. In this experiment, we randomly selected 10 samples in the

test set and computed the lowest energy of the best match with the nearest neighbors.

We tested both the coarse-to-fine algorithm proposed in this chapter and the ordinary

matching scheme in [69]. Except for sample #8, coarse-to-fine matching achieves

lower energy than the ordinary matching algorithm. 103

20 LIST OF FIGURES

4.7 SIFT flow for image pairs depicting the same scene/object. (a) shows the query image

and (b) its densely extracted SIFT descriptors. (c) and (d) show the best (lowest energy)

match from the database and its SIFT descriptors, respectively. (e) shows (c) warped

onto (a). (f) shows the warped SIFT image (d). (g) shows the estimated displacement

field with the minimum alignment energy shown to the right. 105

4.8 SIFT flow computed for image pairs depicting the same scene/object category where

the visual correspondence is obvious. 106

4.9 SIFT flow for challenging examples where the correspondence is not obvious. 107

4.10 Some failure examples with semantically incorrect correspondences. Although the

minimized SIFT flow objectives are low for these samples (compared to those in Figure

4.9), the query images are rare in the database and the best SIFT flow matches do

not belong to the same scene category as the queries. However, these failures can be

overcome through increasing the size of the database. 107

4.11 Alignment typically improves ranking of the nearest neighbors. Images enclosed by

the red rectangle are the top 10 nearest neighbors found by histogram intersection, dis-

played in a scan-line order (left to right, top to bottom). Images enclosed by the green

rectangle are the top 10 nearest neighbors ranked by the minimum energy obtained by

the alignment algorithm. The warped nearest neighbor image is displayed to the right

of the original image. Note how the returned images are re-ranked according to the

size of the depicted vehicle by matching the size of the bus in the query. 108

4.12 For an image pair such as row (1) or row (2), a user defines several sparse points in

(a) as “+”. The human annotated matchings are marked as dot in (b), from which a

Gaussian distribution is estimated and displayed as an ellipse. The correspondence

estimated from SIFT flow is marked as “×” in (b). 110

4.13 The evaluation of SIFT flow using human annotation. Left: the probability of one

human annotated flow lies within r distance to the SIFT flow as a function of r (red

curve). For comparison, we plot the same probability for direct minimum L1-norm

matching (blue curve). Clearly SIFT flow matches human perception better. Right: the

histogram of the standard deviation of human annotation. Human perception of scene

correspondence varies from subject to subject. 110

4.14 Multiple motion field candidates. A still query image with its temporally estimated

motion field (in the green frame) and multiple motion fields predicted by motion trans-

fer from a large video database. 112

LIST OF FIGURES 21

4.15 Evaluation of motion prediction. (a) and (b) show normalized histograms of predic-

tion rankings (result set size of 15). (c) shows the ranking precision as a function of

the result set size. 113

4.16 Motion instances where the predicted motion was not ranked closest to the ground

truth. A set of random motion fields (blue) together with the predicted motion field

(green, ranked 3rd). The number above each image represents the fraction of the pixels

that were correctly matched by comparing the motion against the ground truth. In this

case, some random motion fields appear closer to the ground truth than our prediction

(green). However, our prediction also represents a plausible motion for this scene. . . 113

4.17 Motion from a single image. The (a) original image, (b) matched frame from the

video data set, (c) motion of (b), (d) warped and transferred motion field from (b), and

(e) ground truth for (a). Note that the predicted motion in (d) is inferred from a single

input still image, i.e. no motion signal is available to the algorithm. The predicted

motion is based on the motion present in other videos with image content similar to the

query image. 114

4.18 Motion synthesis via object transfer. Query images (a), the top video match (b), and

representative frames from the synthesized sequence (c) obtained by transferring the

moving objects from the video to the still query image. 115

4.19 SIFT flow can be applied to aligning satellite images. The two Mars satellite im-

ages (a) and (b) are taken at four years apart with different local appearances. The

results of sparse feature detection and matching are shown in (c) to (g), whereas the

results of SIFT flow are displayed in (h) to (k). The mean absolute error of the sparse

feature approach is 0.030, while the mean absolute error of SIFT flow is 0.021, signif-

icantly lower. Visit webpage http://people.csail.mit.edu/celiu/SIFTflow/NGA/ for the

animations of the warping. 117

4.20 SIFT flow can be applied to image registration of the same scene but under dif-

ferent lighting and imaging conditions. Column (a) and (b) are some examples from

[130]. Even though originally designed for scene alignment, SIFT flow is also able to

align these challenging pairs. Visit webpage http://people.csail.mit.edu/celiu/SIFTflow/NGA/

for the animations of the warping. 118

22 LIST OF FIGURES

4.21 SIFT flow can serve as a tool to account for pose, expression and lighting changes

for face recognition. (a): Ten samples of one subject in ORL database [93]. Notice

pose and expression variations of these samples. (b): We select the first image as the

query, apply SIFT flow to aligning the rest of the images to the query, and display the

warped images with respect to the dense correspondence. The poses and expressions

are rectified to that of the query after the warping. (c): The same as (b) except for

choosing the fifth sample as the query. 119

4.22 SIFT flow is applied for face recognition. The curves in (a) and (b) are the per-

formance plots for low-res and high-res images in the ORL face database, respec-

tively. SIFT flow significantly boosted the recognition rate especially when there are

not enough training samples. 121

5.1 For a query image (a), our system finds the top matches (b) (three are shown

here) using a modified, coarse-to-fine SIFT flow matching algorithm. The an-

notations of the top matches (c) are transferred and integrated to parse the input

image as shown in (d). For comparison, the ground-truth user annotation of (a)

is shown in (e). 126

5.2 For a query image, we first find a K-nearest neighbor set in the database using

GIST matching [82]. The nearest neighbors are re-ranked using SIFT flow

matching scores, and form a top M -voting candidate set. The annotations are

transferred from the voting candidates to the query image. 128

5.3 Above: the per-pixel frequency counts of the object categories in our dataset

(sorted in descending order). The color of each bar is the average RGB value

of each object category from the training data with saturation and brightness

boosted for visualization. Bottom: the spatial priors of the object categories in

the database. White means zero and the saturated color means high probability. 130

LIST OF FIGURES 23

5.4 System overview. Our algorithm computes the SIFT image (b) of an query im-

age (a), and uses GIST [82] to find its K nearest neighbors in our database. We

apply coarse-to-fine SIFT flow to align the query image to the nearest neigh-

bors, and obtain top M as voting candidates (M = 3 here). (c) to (e): the

RGB image, SIFT image and user annotation of the voting candidates. (f): the

inferred SIFT flow. From (g) to (i) are the warped version of (c) to (e) with

respect to the SIFT flow in (f). Notice the similarity between (a) and (g), (b)

and (h). Our system combines the voting from multiple candidates and gen-

erates scene parsing in (j) by optimizing the posterior. (k): the ground-truth

annotation of (a). 131

5.5 The per-class recognition rate of our system and the one in [106]. (a) Our sys-

tem with the the parameters optimized for pixel-wise recognition rate. (b) Our

system with α=β=0, namely, with the Markov random field model turned off.

(c) The performance of the system in [106] also with the conditional random

field turned off, trained and tested on the same data sets as (a) and (b). (d) Our

system, but matching RGB instead of matching SIFT. We may observe that the

our optimized system (a) is biased towards “stuff”, large-region objects such

as sky, building, mountain, and tree, because of the biased prior distribution of

the classes as illustrated in Figure 5.3. When we sacrifice the overall perfor-

mance by turning off the Markov random field model in Eqn. 5.1, our system

performs better for small-size objects. To compare, we downloaded the code

of a state-of-the-art object recognition system [106] based on training per-pixel

classifiers using texton features, and ran the code on our dataset with the results

shown in (c). Notice that the conditional random field model described in [106]

is not available in the publicly available code. The fair comparison of (b) and

(c) (both with spatial regularization turned off) suggests that our system, which

is established upon dense scene alignment, outperforms [106], which relies on

training pixel-wise classifiers. Lastly, we modified our system by matching

RGB instead of SIFT without changing anything else, and showed the results

in (d). Clearly, SIFT flow (a) results in better performance than optical flow

(d), although optical flow produces reasonable results compared to [106]. . . . 132

24 LIST OF FIGURES

5.6 (a): Recognition rate as a function of the number of nearest neighbors K and

the number of voting candidates M . (b): recognition rate as a function of the

number of nearest neighbors K. Clearly, prior and spatial smoothness help

improve the recognition rate. 134

5.7 The ROC curve of each individual pixel-wise binary classifier. Red curve: our

system after being converted to binary classifiers; blue curve: the system in

[31]. We used convex hull to make the ROC curves strictly concave. The

number (n,m) underneath the name of each plot is the quantity of the object

instances in the test and training set, respectively. For example, (170, 2124) un-

der “sky” means that there are 170 test images containing sky, and 2124 training

images containing sky. Our system obtains reasonable performance for objects

with sufficient samples in both training and test sets, e.g., sky, building, moun-

tain and tree. We observe truncation in the ROC curves where there are not

enough test samples, e.g., field, sea, river, grass, plant, car and sand. The per-

formance is poor for objects without enough training samples, e.g., crosswalk,

sign, boat, pole, sun and bird. The ROC does not exist for objects without

any test samples, e.g., desert, cow and moon. In comparison, our system out-

performs or equals [31] for all object categories except for grass, plant, boat,

person and bus. The performance of [31] on our database is low because the

objects have drastically different poses and appearances. 135

5.8 Some scene parsing results output from our system. (a): query image; (b): the

best match from nearest neighbors; (c): the annotation of the best match; (d):

the warped version of (b) according to the SIFT flow field; (e): the inferred

per-pixel parsing after combining multiple voting candidates; (f): the ground

truth annotation of (a). The dark gray pixels in (f) are “unlabeled”. Notice how

our system generates a reasonable parsing even for these “unlabeled” pixels. . . 136

5.9 Some scene parsing results output from our system. (a): query image; (b): the

best match from nearest neighbors; (c): the annotation of the best match; (d):

the warped version of (b) according to the SIFT flow field; (e): the inferred

per-pixel parsing after combining multiple voting candidates; (f): the ground

truth annotation of (a). The dark gray pixels in (f) are “unlabeled”. Notice how

our system generates a reasonable parsing even for these “unlabeled” pixels. . . 137

LIST OF FIGURES 25

5.10 Our system fails when no good matches can be retrieved in the database. Since

the best matches do not contain river, the input image is mistakenly parsed as a

scene of grass, tree and mountain in (e). The ground-truth annotation is in (f). . 138

A.1 The factor graph of optical flow estimation. Notice that the flow fields are coupled in

(b) and (c) in different ways. 147

B.1 Both power function φ(x2) = (x2)α and Lorentzian function φ(x2) = log(1 +

x2) can be upper-bounded by quadratic functions. 151

26 LIST OF FIGURES

List of Tables

4.1 SIFT flow outperforms the state-of-the-art [24] when there are only few (one or two)

training samples. 122

27

28 LIST OF TABLES

Chapter 1

Introduction

We are interested in motion analysis, namely to study the projected motions of objects in digital

images. Our goal is to make computers understand the motion of the visual world as humans

perceive it.

Motion perception is an important task in our daily lives. When we stand on a street, we

can perceive how fast cars move and predict their trajectories to avoid being hit. As we walk,

we constantly perceive the motion of the environment and we can locate where we are in the

environment as well as know the direction that we are moving in. There is sufficient evidence

that motion perception plays an important role in the early stage when humans start to know

and interact with the visual world [8].

Humans are experts at perceiving motion. Our visual system is more sensitive to moving

objects than still objects. We are good at predicting the direction and velocity of moving ob-

jects. In fact, motion perception provides reliable feedback for us to interact with the world.

Moreover, humans can easily perceive the boundary and shape of moving objects. Human mo-

tion perception is also very robust to transparency, shadow, noise, occlusion, lighting changes,

etc.

Because of the importance of motion perception for humans, motion analysis has been

one of the central topics in computer vision. From the early work of optical flow [71, 51],

researchers have developed a variety of models and computational tools to analyze motion,

especially from video sequences. Preliminary success has been achieved for estimating pixel-

wise flow, tracking features, and segmenting moving objects. The motion information of a

video sequence is the key for video compression, 3D geometry reconstruction [116], object

tracking [95], segmentation [30] and advanced video editing [94].

However, it is a nontrivial problem for computers to understand motion as humans do.

The true motion is ambiguous from only a local analysis, an effect referred to as the aperture

problem [51]. In order to reduce the ambiguity, motion estimation was constrained through

29

30 CHAPTER 1. INTRODUCTION

spatial regularization, namely neighboring pixels are likely to move together. But it is not

clear which pixels in a neighborhood should move together merely from local information.

Furthermore, in motion analysis, the brightness constancy assumption that pixel values are

invariant from one frame to another along with the motion, often breaks because of illumination

changes and noise. Although illumination invariant features such as image gradient are used

for motion estimation [20], it is still challenging to estimate motion (or correspondence) for

images with very different appearances.

Therefore, it is important to analyze motion beyond pixel levels. People have proposed

models such as layers [123, 127] to explicitly model the grouping relationship of pixels in

motion analysis. But automatic layer analysis remains a hard problem, and the current local

motion-based layer analysis framework cannot effectively estimate motion for even seemingly

simple cases, e.g., , textureless objects under occlusion. Other forms of motion analysis such

as motion particles [95] have been proposed, but they often rely on traditional motion analysis

algorithms such as optical flow, and therefore inherit the same drawback that motion is analyzed

without the right grouping.

Moreover, most motion analysis algorithms suffer from a lack of training datasets providing

ground-truth motions for challenging, real-world videos. The video sequences for which we

have ground-truth data are limited to controlled, indoor environments and constrained motions

[7]. Algorithm training on and evaluation of these datasets do not generalize well to videos of

uncontrolled, real-world environments. But obtaining the ground-truth motion for real-world

videos is a challenging problem.

Another field with great attention in computer vision is object recognition and scene pars-

ing. Traditional approaches to object recognition begin by specifying an object model, such as

template matching [121, 31], constellations [37, 35], bags of features [107, 57, 44, 109], shape

models [10, 12, 34], etc. These approaches typically work with a fixed-number of object cate-

gories and require training generative or discriminative models for each category given training

data. Is it possible to build an object recognition system without training any generative models

or classifiers? Object recognition and motion analysis used to be disjoint fields in computer

vision, but we are curious about how motion analysis algorithms can be integrated into building

an effective object recognition and scene parsing system.

Sec. 1.1. Thesis Theme 31

(a) A frame of a video sequence (b) User-aided layer segmentation

(c) User-annotated motion (d) Output of a flow algorithm [22]

Figure 1.1. Human-assisted motion analysis. In Chapter 2, we designed a system to allow the user to specify

layer configurations and motion hints (b). Our system uses these hints to calculate a dense flow field for each layer.

We show that the flow (c) is repeatable and accurate. (d): The output of a representative optical flow algorithm

[22], trained on the Yosemite sequence, shows many differences from the labeled ground truth for this and other

realistic sequences we have labeled. This indicates the value of our database for training and evaluating optical flow

algorithms.

� 1.1 Thesis Theme

Instead of improving existing models to achieve more accurate motion estimation, we feel that

it is important to look at motion analysis in a bigger picture. In particular, we want to expand

the frontier of motion analysis to beyond the pixel level in the following three aspects:

(a) Obtaining ground truth for real-world videos. We seek to measure the ground-truth

motion of real-world videos not only to benchmark algorithms and obtain the statistics

of the real-world motion, but also to learn how to make humans and computers work

together, a process to make automatic vision algorithms more mature and robust.

(b) Proposing new representations. We feel that motion analysis is not merely a correspon-

dence problem, but is rather entangled with groupings. We explore new representations

32 CHAPTER 1. INTRODUCTION

(a) Registered input frame (b) Clustered trajectories of tracked features

(c) Layers of related motion and appearance (d) Motion magnified, showing holes

(e) After texture in-painting to fill holes (f) After user’s modifications to segmentation map in (c)

Figure 1.2. Motion magnification is a visual system to magnify small motions in video sequences [67]. See details

in Chapter 3.1.

such as layers and contours 1 to analyze motion under some special conditions. We also

1We are not claiming that we invent layer or contour representations for motion analysis. Layer and contours

are “new” representations compared to the pixel-wise flow field representation. However, the algorithms to extract

layers and contours are new in this thesis.

Sec. 1.2. Thesis Overview 33

(a) Extracted boundaries (b) Estimated flow (c) Frame 1 (d) Frame 2

Figure 1.3. Analysis of contour motions [61]. Column (a): boundary fragments are extracted using our boundary

tracker. The red dots are the edgelets and the green ones are the boundary fragment ends. Column (b): boundary

fragments are grouped into contours and the flow vectors are estimated. Each contour is shown in its own color.

Column (c) & (d): the illusory boundaries are generated for the first and second frames. See details in Chapter 3.2.

try to match local image structures instead of image intensities, and obtain correspon-

dences between seemingly impossible examples.

(c) Exploring new applications. The representations beyond pixel-level lead to many new

applications that traditional pixel-wise algorithms cannot achieve. For example, we use

the layer representation to detect and magnify small motions, and a contour represen-

tation to analyze the motion of textureless objects under occlusion. Through matching

image structures, we are able to establish dense scene correspondence, which further

enables a large database-driven framework for image analysis and synthesis.

� 1.2 Thesis Overview

The thesis consists of several projects I explored during my PhD.

We first explore obtaining motion ground truth for real-world videos. In Chapter 2 Human-

Assisted Motion Annotation [63], we designed a human-computer interactive system to allow

users to annotate pixel-wise flow information for a video sequence (Figure 1.1). Our system

uses layers as the interface for humans to interact with computers. We used robust object track-

34 CHAPTER 1. INTRODUCTION

(a) Query image (b) Best match (c) Best match warped to (a) (d) Displacement field

Figure 1.4. SIFT flow for dense scene alignment. In Chapter 4, we extend the concept of “motion” to the

correspondence across scenes. (a) and (b) show images of similar scenes. (b) was obtained by matching (a) to a

large image collection. (c) shows image (b) warped to align with (a) using the estimated dense correspondence field.

(d) Visualization of pixel displacements using the color coding scheme of [7]. Note the variation in scene appearance

between (a) and (b). The visual resemblance of (a) and (c) demonstrates the quality of the scene alignment.

ing and layer-wise optical flow estimation algorithms to obtain pixel-wise flow. Our system

also allows users to annotate motion using sparse feature points when optical flow estimation

fails due to shadow, transparency and noise. The user feedback helps our system to accurately

quantify human perception of motion as ground-truth annotation. We have used our system to

annotate the ground-truth motion of a number of real-world videos, which can be further used

for benchmarking and obtaining motion statistics.

We are interested in exploring novel representations beyond pixel level, e.g., layers and

contours, for automatic motion analysis. In Chapter 3.1 we present a Motion Magnification

system [67] to magnify small motions to make them salient to human eyes (Figure 1.2). The

core of our motion magnification system is accurate, automatic layer motion analysis. After

a video sequence is parsed into layers and the user selects a particular layer, the system is

able to magnify the motion of the layer and fill in the missing pixels in the background. We

demonstrated broad applications of motion magnification in digital entertainment, surveillance,

Sec. 1.2. Thesis Overview 35

unlabeled

building

car

pole

road

sky

tree

window

(d) Derived labels

for (a)

(a) Input

(b) Database

matches

(c) Labels

(e) True labels

for (a)

Figure 1.5. Nonparametric scene parsing. For a query image (a), we designed a system to find the top matches

(b) (three are shown here) using a coarse-to-fine SIFT flow matching algorithm. The annotations of the top matches

(c) are transferred and integrated to parse the input image as shown in (d). For comparison, the ground-truth user

annotation of (a) is shown in (e). See Chapter 5 for details.

and visualization, as a tool to reveal the underlying physical mechanism of the visual world.

In Chapter 3.2 we introduce a Contour Motion Analysis system [61]2 to analyze motion for

textureless objects under occlusion (Figure 1.3). Traditional motion analysis algorithms such

as optical flow fail miserably for analyzing the motion of textureless objects under occlusion

because only one flow vector is allowed for one pixel, and pixels are grouped uniformly with

neighboring pixels. Stimuli such as T-junctions and illusory boundaries would confuse the

algorithms based on this single flow vector representation. We propose to analyze motion on

contours to deal with the aperture problem: local motion ambiguity is modeled during the

bottom-up process, and then resolved during the contour forming process. The success of our

contour motion analysis model on some challenging examples illustrates the importance of the

right representation for motion analysis.

Although much has been studied, the realm of motion analysis was limited to the corre-

spondence between adjacent frames in video sequences. In Chapter 4, we extend the concept

2The paper received the Outstanding Student Paper Award from Advances in Neural Information Processing

Systems (NIPS), 2006.

36 CHAPTER 1. INTRODUCTION

of “motion” to general images through proposing SIFT Flow (SIFT stands for Scale-Invariant

Feature Transform [70]), a method to align images across scenes (Figure 1.4). The SIFT flow

algorithm consists of matching densely sampled, pixel-wise SIFT features between two images,

while preserving spatial discontinuities. Through many examples, we demonstrate that SIFT

flow is able to establish semantically meaningful correspondence between drastically different

images. We propose novel applications such as predicting motion fields from a single image

and motion synthesis via object transfer based on SIFT flow. We also show how SIFT flow can

be applied to traditional image alignment problems such as satellite image registration and face

recognition.

There is a rich set of applications of dense scene alignment for computer vision. In Chapter

5 we study Nonparametric Scene Parsing [68]3 using the dense scene alignment model devel-

oped in Chapter 4 (Figure 1.5). Once we establish the dense correspondence between a query,

unlabeled image to the images in a large, labeled database, we are able to transfer the user

annotation of objects from the images in the database to the query image for scene parsing.

Our method is easy to implement, does not require training classifiers, has few parameters, and

outperforms the state-of-the-art object recognition algorithms on a challenging database.

� 1.3 Other Work not in the Thesis

During my doctorial training, I have also visited problems other than motion analysis. With

Dr. Richard Szeliski, Dr. Sing Bing Kang, Dr. Larry Zitnick and Prof. William T. Freeman,

I studied automatically estimating noise level functions (NLFs) from a single color image [64]

and applying NLFs for automatic noise removal [66]. Under the supervision of Dr. Heung-

Yeung Shum and Prof. William T. Freeman, I designed the first practical face hallucination

system [65] to detect, align and super-resolve small faces in photos. Prof. Marshall Tappen

and I co-developed a general framework for learning Gaussian conditional random fields for

low-level vision [115]. I also participated in object recognition by scene alignment [90] with

Dr. Bryan Russell, Prof. Antonio Torralba, Prof. Rob Fergus and Prof. William T. Freeman.

Interested readers can refer to these publications for details.

3The paper received the Best Student Paper Award from IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2009.

Chapter 2

Human-Assisted Motion Annotation

When you can measure what you are speaking about and express it in numbers,

you know something about it; but when you cannot measure it, when you cannot

express it in numbers, your knowledge is of the meager and unsatisfactory kind.

–Lord Kevin

� 2.1 Introduction

Motion analysis has been an essential component for many computer vision applications such

as structure from motion, object tracking/recognition, and advanced video editing. A variety of

computational models, e.g., optical flow fields [51, 71], layers [124] and boundaries [61], have

been developed to estimate the motion from a video sequence. It is important to evaluate the

performance of various motion analysis algorithms to gain insight and design better models.

However, little has been done for evaluating motion analysis algorithms compared to the

tremendous effort put into developing these algorithms. For example, researchers have tried to

optimize optical flow algorithms based on a synthetic sequence Yosemite, an overly simplified

example compared to real-life videos [6]. As a result, the performance of the optical flow algo-

rithms optimized for the Yosemite sequence may deteriorate significantly when sensor noise,

motion blur, occlusion, shadow, reflection, auto white balance and compression artifacts occur

in a sequence.

While it is important to have a ground-truth optical flow database consisting of real-world

videos, annotating the motion for real-life videos can be challenging. Recently, Baker et al.

designed a new database for optical flow evaluation [7]. Although the ground-truth flow of

several sequences was measured, their methodology of painting fluorescent materials to track

motion is limited to indoor scenes and artificial motion.

To address this problem, we propose a human-in-loop methodology to annotate ground-

37

38 CHAPTER 2. HUMAN-ASSISTED MOTION ANNOTATION

(a) A frame of a video sequence (b) User-aided layer segmentation

(c) User-annotated motion (d) Output of a flow algorithm [22]

Figure 2.1. We designed a system to allow the user to specify layer configurations and motion hints (b). Our system

uses these hints to calculate a dense flow field for each layer. We show that the flow (c) is repeatable and accurate.

(d): The output of a representative optical flow algorithm [22], trained on the Yosemite sequence, shows many

differences from the labeled ground truth for this and other realistic sequences we have labeled. This indicates the

value of our database for training and evaluating optical flow algorithms.

truth motion for arbitrary real-world videos. Our approach to obtaining motion ground truth is

based on three observations. First, humans are experts at segmenting layers in a video sequence

because we can easily recognize the moving objects and their relative depth relationships. Sec-

ond, we are sensitive to any differences between two images when these two images are dis-

played back and forth. Third, humans have a knowledge of the smoothness and discontinuities

of the motion that a moving object undergoes. In fact, computer vision researchers have im-

plicitly used these observations to inspect the accuracy of motion estimates when the ground

truth is missing, and even to verify the correctness of ground-truth annotation.

Labeling motion pixel by pixel and frame by frame can be tedious, and we designed a

computer vision system to ease the labeling process. Typically, it takes four steps to label the

motion of a video sequence with our system:

(a) Semi-automatic layer segmentation. The user specifies the contour and relative depth

of an object in one frame and the system automatically tracks the contour for the rest of

Sec. 2.2. Related Work 39

the frames with appropriate occlusion handing.

(b) Automatic layer-wise flow estimation. The user specifies a set of parameters for optical

flow estimation for each of the layers, and selects the flow field that both produces the

best visual match and agrees with the smoothness and discontinuity of a layer.

(c) Semi-automatic motion labeling. If the user is not satisfied with the flow estimation of a

layer in step (b), the user can specify sparse correspondence and the system automatically

fits parametric motion or interpolates a dense flow field until the user is satisfied with the

motion.

(d) Automatic compositing. The system automatically composes the labeled motion of each

layer into a full-frame flow field.

To evaluate our methodology, we provide quantitative evidence that human annotated mo-

tion is significantly closer to the real ground truth than any of the existing computer vision

algorithms, and that human annotations made using our system are consistent across subjects.

Using our system, we have obtained and carefully labeled 10 video sequences with 341

total frames for both indoor and outdoor scenes (and we continue to label sequences). We

also reported the performance of current optical flow algorithms on this database; we hope our

labeled dataset will provide the feedback necessary to improve the state of the art for motion

analysis in realistic video sequences. An additional byproduct of our system is ground-truth

layer segmentation that can be used for evaluating layer segmentation and occlusion boundary

detection algorithms. We make available the source code, labeling tool and database online for

public evaluation and benchmarking http://people.csail.mit.edu/celiu/motion/.

� 2.2 Related Work

Modeling and estimating dense optical flow fields have been intensively studied in the litera-

ture. Starting with Horn & Schunck [51] and Lucas & Kanade [71], researchers have developed

a variety of models for effective flow computation, including some recent work such as incorpo-

rating robustness functions [14], integrating gradient information [20], estimating a symmetric

flow field [4], combining local and global flow [22], and reasoning about occluded/disoccluded

pixels (outliers) [95]. The success of optical flow estimation has been shown on the Yosemite

sequence, with the average angular error (AAE) within 2◦, but this success does not reveal

many examples where optical flow algorithms may fail. One motivation of our work is to have

a ground-truth motion database with diverse examples to reveal these failures and understand

the cause.

http://people.csail.mit.edu/celiu/motion/

40 CHAPTER 2. HUMAN-ASSISTED MOTION ANNOTATION

Researchers have argued that higher level representations such as layers and contours should

be used to analyze motion. Since Adelson proposed the layer representation for videos [1],

many computational models have been developed for automatic layer estimation [124, 127,

117, 128, 67]. Recently, preliminary success was obtained using a boundary representation

for motion analysis [61]. Although most of the layer and boundary motion work focused on

obtaining the correct segmentation, these higher level representations should also result in bet-

ter full-frame motion estimation. Unfortunately, the goal of producing more accurate motion

is missing from the existing work. We want to obtain a database to evaluate layer/boundary

analysis algorithms, as well.

Closest to our goal is Baker et al. ’s recent work [7], where the authors designed an elegant

approach to obtaining ground truth optical flow. They painted fluorescent patterns onto objects

in an indoor experimental setup and used a computer-controlled stage to generate motion. By

taking two pictures simultaneously under ambient and UV light, they were able to capture both

a natural image and an image with rich textures from the fluorescent patterns. A feature track-

ing system was designed to produce the ground-truth motion. Although the motion of a few

sequences were successfully measured, their methodology is limited to controlled materials,

motion and lighting conditions. In parallel, Roth and Black [87] obtained a synthetic ground-

truth motion database using an existing depth database. In contrast, our approach is able to

generate ground-truth motion for real-world videos under much broader imaging conditions.

Image annotation has been explored in the literature, such as the Berkeley image segmenta-

tion database [75] and LabelMe object annotation database [91]. These ground-truth databases

have led to not only algorithm evaluation but also many other vision applications. One of our

goals is to provide a broad ground-truth motion database for the computer vision community.

Nevertheless, compared to these static image annotation tools which are relatively easy to de-

sign, designing a tool for motion annotation is nontrivial because accurate motion annotation

and temporal consistency are required.

Interactive object segmentation in video sequences has recently been explored in com-

puter graphics, including contour-based video rotoscoping [3], soft alpha matting [27], over-

segmentation [122] and 3D graph cut [59]. We use the contour-based model [3] in our system

because contours are intuitive to interact with. We allow the user to specify depth informa-

tion so that contours can be tracked appropriately under occlusion. The goal of our system

is to obtain both segmentation and motion, but our focus is motion, whereas these interactive

segmentation tools focused on segmentation.

Sec. 2.3. Human-Assisted Motion Annotation System 41

� 2.3 Human-Assisted Motion Annotation System

Accurately labeling every pixel in every frame of a video sequence is a nontrivial task, and we

designed a computer vision based system to allow the user to annotate motion in a reasonable

amount of time. We assume that a video sequence can be decomposed into layers, each of

which has a binary mask and smooth flow field. There are three main components in our sys-

tem: semiautomatic layer segmentation, automatic optical flow estimation and semiautomatic

motion labeling. The model that we designed for each of the components will be explained in

Sect 2.3.1 through 2.3.7. The human interaction and the graphical user interface will be briefly

described in Sect 2.3.8.

We used the state-of-the-art computer vision algorithms to design our system. Many of

the objective functions in contour tracking, flow estimation and flow interpolation have L1

norm for robustness concerns. Techniques such as iterative reweighted least squared (IRLS)

[22, 20], pyramid-based coarse-to-fine search [14, 22] and occlusion/outlier detection [95] were

intensively used for optimizing these nonlinear objective functions.

One core technique of our system is optical flow estimation. The details of deriving optical

flow using iterative reweighted least square (IRLS) can be found in Appendix A. This IRLS al-

gorithm is the same as the ones derived from traditional Euler-Lagrange equations [22, 20], but

derivation using IRLS is more succinct. In Appendix B, we show that IRLS is also equivalent

to variational optimization [115]. Therefore, we choose IRLS as the main optimization tool for

our system. In Sect 2.3.1, we shall go through the details of IRLS for contour tracking. We

omit the details of deriving a symmetric optical flow in Sect 2.3.6 as similar procedure can be

found in Appendix A.

� 2.3.1 Semiautomatic Layer Segmentation with Occlusion Handling

In this module, the user labels the contour of a moving layer in one frame, and the system

automatically tracks the contour for the rest of frames. By allowing the user to specify a time-

varying depth value for each layer, our system can handle contour tracking under occlusion.

The user can correct the tracking, and the system automatically propagates the correction to

other frames.

We feel that realtime performance is more important than accuracy for this user-interactive

tracker. Therefore, we did not choose slow but accurate trackers such as particle filtering [52].

Our contour tracker is designed based on the models for optical flow estimation with occlusion

handling incorporated.

42 CHAPTER 2. HUMAN-ASSISTED MOTION ANNOTATION

Suppose the user defined the contour of an object using landmarks, a set of points. Com-

puter’s job is to track the contour across the rest of the frames. We do not expect the computer

can do this tracking job perfectly. The user can always correct the tracking and let the computer

re-track the contour. However, we shall focus on the mathematical model of tracking contours.

We shall particularly focus on two-frame matching problem in this section for the basic model.

� 2.3.2 Objective function

Let polygon L = {zk : zk ∈ R
2}Nk=1 be the user-defined landmarks for frame I1. We are

interested at where {zk} would be at frame I2, and use {wk} to denote the flow vector from I1

to I2 associated with each landmark. Intuitively, we want the contour to move coherently and

match local image features. The objective function is thus

E({wk}) =
N
∑

k=1

∑

q∈Nk

rk(q)‖I2(zk +wk + q)− I1(zk + q)‖2 +α
N
∑

k=1

hk‖wk −wk+1‖2, (2.1)

where we have circular definition wN+1 =w1. The weight hk is used to take into account the

distance between point zk and zk+1. It is defined as

hk =
β

dk + β
, (2.2)

where dk = ‖zk − zk+1‖, and β = dk. Nk is the neighborhood for point zk, which is defined

as a square patch centered at each landmark. rk is the weighting function for each landmark,

defined as

rk(q) = 1[q + zk ∈ L] · exp{−‖q‖
2

2σ2
r

}, (2.3)

where 1[q+zk ∈ L] equals 1 if q+zk is inside the polygon L, and 0 otherwise. This weighting

function is also called region of support in tracking. An illustration of weighting function is

shown in Figure 2.2. In Eqn. (2.1), α is the coefficient for the regularization.

� 2.3.3 Linearization and Optimization

The objective function in Eqn. (2.1) is highly nonlinear. Similar to many of the optical flow

algorithms, we choose a coarse-to-fine searching scheme and iteratively update the flow flow

vectors {wk}. Suppose we already have an initial guess of {wk} and our goal is to compute

the optimal adjustment {dwk : dwk = [duk, dvk]
T } for each feature point. The new objective

Sec. 2.3. Human-Assisted Motion Annotation System 43

Figure 2.2. A weighting function, rk(q), a.k.a. region of support, for each feature point is used in the data term of

the contour tracking. The weight function is a product of whether a pixel being inside the contour and a Gaussian

modulation. Left: the user specified the contour of a van. Right: the weighting function of each key point. The

darker the pixel value, the higher the weight.

function becomes

E({wk}) =

N
∑

k=1

∑

q∈Nk

rk(q)‖I2(zk + wk + dwk + q)− I1(zk + q)‖2 +

α

N
∑

k=1

hk‖wk − wk+1 + dwk − dwk+1‖2, (2.4)

The data term of the objective function is still nonlinear. We can linearize the data term using

Taylor expansion

I2(zk+wk+dwk+q)−I1(zk+q) = Ix(zk+wk+q)duk+Iy(zk+wk+q)dvk+It(zk+wk+q), (2.5)

where each of the terms is defined as

Ix(zk+wk+q) =
∂I2(zk+wk+q)

∂x
(2.6)

Iy(zk+wk+q) =
∂I2(zk+wk+q)

∂y
(2.7)

It(zk+wk+q) = I2(zk+wk+q)− I1(zk+q) (2.8)

44 CHAPTER 2. HUMAN-ASSISTED MOTION ANNOTATION

We can now rewrite the data term in quadratic form:

N
∑

k=1

∑

q∈Nk

rk(q)
∥

∥I2(zk + wk + dwk + q)− I1(zk + q)
∥

∥

2

=
N
∑

k=1

∑

q∈Nk

rk(q)
∥

∥Ix(zk+wk+q)duk + Iy(zk+wk+q)dvk + It(zk+wk+q)
∥

∥

2

=
N
∑

k=1

∑

q∈Nk

rk(q)
∥

∥

∥

[

Ix(zk+wk+q) Iy(zk+wk+q)
]

duk

dvk

+ It(zk+wk+q)
∥

∥

∥

2

=

N
∑

k=1

∑

q∈Nk

rk(q)

{

[duk dvk]

I2
x(zk+wk+q) Ixy(zk+wk+q)

Ixy(zk+wk+q) I2
y (zk+wk+q)

duk

dvk

+

2[duk dvk]

Ixt(zk+wk+q)

Iyt(zk+wk+q)

}

+C

=

N
∑

k=1

{

[duk dvk]

Ψ
(k)
xx Ψ

(k)
xy

Ψ
(k)
xy Ψ

(k)
yy

duk

dvk

+ 2[duk dvk]

Ψ
(k)
xt

Ψ
(k)
yt

}

+ C

= [dUT dV T]

ΨxxΨxy

Ψxy Ψyy

dU

dV

+ 2[dUT dV T]

Ψxt

Ψyt

+ C, (2.9)

where C is a constant. Ψ
(k)
xx is defined as

Ψ(k)
xx =

∑

q∈Nk

rk(q)I
2
x(zk+wk+q). (2.10)

Ψ
(k)
xy , Ψ

(k)
yy , Ψ

(k)
xt and Ψ

(k)
yt are defined similarly. Ixy(zk +wk+q) is a shorthand of the product

Ix(zk +wk+q)Iy(zk +wk+q), and so for Ixt(zk+wk+q) and Iyt(zk +wk+q). The diagonal

matrix Ψxx is defined as

Ψxx =diag(Ψ(1)
xx , · · · ,Ψ(N)

xx), (2.11)

and Ψxy , Ψyy , Ψxt and Ψyt are defined similarly.

Now let us visit the smoothness term in the objective function. The smoothness term can

Sec. 2.3. Human-Assisted Motion Annotation System 45

also be rewritten in quadratic form

N
∑

k=1

hk‖wk+1−wk+dwk+1−dwk‖2

=

N
∑

k=1

hk

[

(uk+1−uk+duk+1−duk)
2+(vk+1−vk+dvk+1−dvk)

2
]

=
N
∑

k=1

hk

[

(duk+1−duk)
2+2(uk+1−uk)(duk+1−duk)+(dvk+1−dvk)

2+

2(vk+1−vk)(dvk+1−dvk)
]

+ C1

= dUTDTHDdUT+dV TDTHDdV T+2DT HDU+2DTHDV+ C1 (2.12)

where matrix D is a circular difference matrix, defined as

D =

−1 1

−1 1
. . .

. . .

−1 1

1 −1

. (2.13)

H is a diagonal matrix H=diag(h1, · · · , hN).

Therefore, we need to solve the following linear system to minimize the objective function

Ψxx + αDTHD Ψxy

Ψxy Ψyy + αDT HD

dU

dV

 = −

Ψxt + αDT HDU

Ψyt + αDT HDV

 (2.14)

Clearly, in this linear system Ax=bmatrix A is positive definite. So we use conjugate gradient

method to solve the linear system, which converges in 2N iterations. The model we developed

here is similar to optical flow estimation [51, 20].

� 2.3.4 Multi-channel, multi-resolution image representation

It has been shown in [20] that the gradient information can help improve optical flow algo-

rithm. We also want to use the full RGB channels to present the image I1 and I2. We extend

image channels to include Laplacian-filtering response of the brightness image, and rewrite

Eqn. (2.10) as

Ψ(k)
xx =

∑

q∈Nk

L
∑

l=1

rk(q)I
2
x(zk+wk+q, l). (2.15)

46 CHAPTER 2. HUMAN-ASSISTED MOTION ANNOTATION

(a) Image Pyramid of RGB channels (b) Laplacian channel (c) The incorrect way of obtaining Laplacian channel

Figure 2.3. Multi-channel and multi-resolution representation for tracking. We use four channels for image pre-

sentation, where the first three are RGB (a), and the fourth one is the Laplacian filtering response of the brightness

image (b). A Gaussian pyramid is built for initialization and acceleration. Notice that the Laplacian channel has to

be obtained from each level of the RGB image, as described in [23]. The Laplacian channel becomes blurred and

useless if the pyramid is directly built upon the finest level Laplacian image.

where Ix(z, l) indicates the lth channel of image Ix.

The objective function in Eqn. (2.1) can only be linearized to Eqn. (2.4) when the two

images I1 and I2 are close enough. This is not true in general for two consecutive frames.

Similar to optical flow algorithms, we take a hierarchical, multi-resolution approach. Image

pyramids are built for I1 and I2, and at the coarse level the two images are indeed close enough.

We optimize the linearized objective function for a number of iterations, and then propagate the

results to the next finer level.

This image representation is illustrated in Figure 2.3. Notice that we did not compute the

Laplacian image for the finest level and build the pyramid of Laplacian image on top of the

finest Laplacian image. This will make the Laplacian channel useless at the coarse level, as

shown in Figure 2.3 (c). Instead, we first build the standard image pyramid, and then compute

the Laplacian image for each level, as in (b).

� 2.3.5 Occlusion handling

The tracking can go wrong unless we model the occlusion appropriately. We designed a UI

to allow the users to specify the depth of each object at some key frames, and the system

automatically interpolates a smooth depth function based on the user specification. A snapshot

of this function is illustrated in Figure 2.4. We use HSV color space to visualize depth. We fix

S (saturation) and V (value) to be maximum, and let H (hue) to be the depth value. From the

Sec. 2.3. Human-Assisted Motion Annotation System 47

Closer to camera

Further to camera
255

0

128

Figure 2.4. The system allows the user to dynamically change the depth of the object. The user selects the key

frames to specify the value of depth, and the system automatically interpolates to the rest of the frames. We use

color in HSV space to indicate the depth, by fixing S and V as 255, and letting H (hue) reflect the depth value.

Intuitively, warmer color (red) indicates smaller value of depth, closer to the camera, whereas colder color (blue)

indicates larger value of depth, further to the camera.

t=27 t=28 t=29 t=30

Figure 2.5. Occlusion reasoning is crucial for the correct tracking. Top row: the depth of the person is specified to

be less than that of the car. The tracking was correct even though the car becomes occluded. Bottom row: the depth

of the person is specified to be greater than that of the car. The tracking becomes wrong at the occlusion because

the appearance of the person was mistakenly used for the appearance of the feature points of the car.

definition, warmer color (red) indicates smaller value of depth, closer to the camera, whereas

colder color (blue) indicates larger value of depth, further from the camera.

We used 1D membrane model to interpolate the depth curve. Suppose the user specified

the depth at frame t1, t2, · · · , tn in the range {1, 2, · · · , T}. Let x1 ∈ R
M be the set of the

depths that have been specified, and T1 ∈ R
T×M be the matrix to transform x1 to x. The ith

48 CHAPTER 2. HUMAN-ASSISTED MOTION ANNOTATION

column of T1 is 1 at the tith row, and is zero elsewhere. Likewise, let x2∈R
T−M be the depth

to interpolate and T2 be the matrix to transform x2 to x. So we have x= T1x1+T2x2. We

want to x2 to be interpolated so that the gradient energy is minimized

x2 = arg max(T1x1+T2x2)
T KTK(T1x1+T2x2)

= −(TT
2 KTKT2)

−1TT
2 KTKT1x1 (2.16)

where matrix K is a differential matrix corresponding to the first order derivative. We can also

extend K to other higher order differential matrices.

The system can infer the occlusion relationship with the depth curve obtained from user

specification and automatic interpolation. During the tracking, we use a 1st order motion model

to predict the position of the contour in the next frame. For each point of the predicted contour,

we run occlusion reasoning, i.e. to check whether the point is occluded by other contours with

smaller depth value. We define a point to be occluded by a contour if the local weighting

function remains less than 90% after running inpolygon function for the neighboring pixels.

If the kth feature point is occluded, we set the corresponding weighting function rk(q) to be 0,

so that the data term of this feature point is not counted in the tracking.

In Figure 2.5, the user can specify the right (top row) and wrong (bottom row) depth for

the person. If the person is specified to be behind the car, equivalent to the person not being

specified because a selected contour is assumed to be in front of other pixels, the tracking of

the car gets affected by the person. If the person is specified to be in front of the car, then

the tracking is correct even for the occluded feature points. Therefore, it is important to label

objects in the order of their occlusion relationship: foreground first, background second.

� 2.3.6 Layer-wise Optical Flow Estimation

The key difference between layer-wise optical flow estimation and traditional full-frame optical

flow estimation is a mask indicating the visibility of each layer. Only the pixels falling into this

mask are used for matching. Because the shape of the mask can be arbitrary and fractal, outlier

detection is performed to excluded occlusions in the flow computation.

We use the optical flow algorithms in [22, 20] as the baseline model for optical flow estima-

tion, while symmetric flow computation [4] is also incorporated to improve the accuracy. Let

M1 and M2 be the visible mask of a layer at frame I1 and I2, (u1, v1) be the flow field from I1

to I2, and (u2, v2) the flow field from I2 to I1. The objective function for estimating layer-wise

optical flow consists of the following terms. First, a data term is designed to match the two

Sec. 2.3. Human-Assisted Motion Annotation System 49

images with the visible layer masks:

E
(1)
data =

∫

g ∗M1(x, y)|I1(x+ u1, y + v1)− I2(x, y)|, (2.17)

where g is a Gaussian filter. The data term E
(2)
data for (u2, v2) is defined similarly. Notice that

L1 norm is used here to account for outliers in matching. Second, smoothness is imposed by

E
(1)
smooth =

∫

(

|∇u1|2 + |∇v1|2
)η
, (2.18)

where η varies between 0.5 and 1. Lastly, symmetric matching is required:

E(1)
sym =

∫

∣

∣u1(x, y)+u2(x+u1, y+v1)
∣

∣+
∣

∣v1(x, y)+v2(x+u1, y+v1)
∣

∣. (2.19)

The objective function is the sum of the above three terms:

E(u1, v1, u2, v2) =

2
∑

i=1

E
(i)
data+αE

(i)
smooth+βE

(i)
symtr. (2.20)

We use IRLS, equivalent to the outer and inner fixed-point iterations proposed in [20],

combined with coarse-to-fine search and image warping to optimize this objective function.

After the flow computation at each pyramid level, we update the visible layer mask M1 based

on the estimated flow:

• If M2(x+ u1, y + v1) = 0, then set M1(x, y) = 0;

• If the symmetry term in Eqn. (2.19) is beyond a threshold at (x, y), then set M1(x, y) =

0.

The same rule is also applied to update M2. As the algorithm runs from coarse to fine, we

obtain both bidirectional flow fields and trimmed visible layer masks that reflect occlusion.

We allow the user to adjust α, β and η in Eqn. (2.20) for each layer to handle different

elasticities. Intuitively, a larger α, β or η results in a smoother flow field, but it is smooth in

different ways. The user typically does not know which parameter setting produces the best

flow. Therefore, our system allows the user to specify a list of different parameter settings for

each layer, and the system computes the dense optical flow field for each parameter setting of

each layer at each frame. This computation is done offline.

Although our layer-wise optical flow estimation works well in general, we observe failures

where no parameter setting generates reasonable flow. The failures are mainly caused by the

following factors.

50 CHAPTER 2. HUMAN-ASSISTED MOTION ANNOTATION

• Specularity, shadow, noise and blurriness in real-life videos cause the brightness or

boundary preservation assumption to break.

• Due to occlusions, the visible layer mask may be very small or irregularly shaped, mak-

ing the global motion difficult to capture.

In such cases when optical flow estimation fails, we rely on semiautomatic motion labeling.

� 2.3.7 Semiautomatic Motion Labeling

When optical flow estimation fails, the user can specify sparse correspondence between two

frames using feature points, and our system automatically generates a parametric motion or

interpolates a dense optical flow field based on the sparse correspondence. The sparse corre-

spondence can be specified either with a computer’s assistance for efficiency, or manually, to

give the user full control of motion annotation.

When the user specifies one feature point in one frame, the system automatically searches

for the best match in the next frame using mininum-SSD matching and the Lucas-Kanade

transform [71] for sub-pixel accuracy. Based on the number of specified feature points, the

system automatically determines the mode of parametric motion−translation, affine transform

or homography−and estimates the motion parameters accordingly [113]. The user can also

select these modes, and even choose to produce a smooth flow field interpolated using the

preconditioned conjugate gradient algorithm described in [112].

However, specifying corner-like feature points [105] can be difficult for some sequences

when only line structures are present in the layer. To address this problem, we incorporate

uncertainty matching and probabilistic parametric motion estimation so that the user can freely

choose any pixel for correspondence. In uncertainty matching, the system generates a proba-

bility map pk(x) for the matching of feature point k at location qk ∈R
2. This probability map

pk(x) is approximated by a mean µk and covariance matrix Σk. In probabilistic motion estima-

tion, the system iterates between the following two steps. In the first step, motion is estimated

using the current estimate of mean and covariance. Mathematically, let h(qk; θ) : R
2 7→R

2 be a

parametric motion applied to qk. The motion parameter is estimated by

θ∗ = arg min
θ

∑

k

(

h(qk; θ)− µk

)T
Σk

(

h(qk; θ)− µk

)

. (2.21)

In the second step, the mean and covariance are estimated using a new probability map reweighted

by the current motion

{µk,Σk} ← pk(x)N (h(qk; θ∗), σ2I). (2.22)

Sec. 2.3. Human-Assisted Motion Annotation System 51

(d)(e)

(c)(b)
(a)

Figure 2.6. A screenshot of our motion annotation system. From (a) to (e) is the main window, depth controller,

magnifier, flow field viewer and control panel.

0 0.1 0.2 0.3 0.4
0

2

4

6

8

10
x 10

4

Figure 2.7. Clockwise from top left: the image frame, mean labeled motion, mean absolute error (red: high error,
white: low error), and error histogram.

This algorithm converges within a few iterations. The motion h(qk; θ) can also be a dense

optical flow field (i.e. θ). In addition, the feature points that the user labeled can be used for the

next frame. To perform the semiautomatic motion labeling, the user interacts with these tools

through an interface, described next.

52 CHAPTER 2. HUMAN-ASSISTED MOTION ANNOTATION

� 2.3.8 System Design and Human Judgement

A graphical user interface (GUI) is a key component of our system since intensive user inter-

action is needed for motion annotation. Our system is developed in C++ with QtTM 4.3 for the

GUI. A screenshot of the GUI is shown in Figure 2.6. Our system allows the user to label con-

tour and specify correspondence in the main window (a), change depth in a dialog window (b)

and modify parameters in an inspector window (e). We also provide a magnifier to see image

details (c) and a flow field viewer to check optical flow field and matching (d).

We found that two criteria must be satisfied for a computer-generated flow field, either from

dense optical flow estimation or from sparse correspondence, to be accepted by a human as the

right motion for a layer. First, the matching has to be correct. The flow field viewer, as shown

in Figure 2.6 (d), is used to display the current frame and the warped next frame based on the

flow field back and forth, to check whether this flow field produces the right match. Second,

the smoothness and discontinuities of the flow field must match the rigidity and boundary of

the object. This property can also be inspected in the flow field viewer.

The user interaction time depends on the number of frames, the number of layers and the

shape of the objects. Typically, it takes 10 to 40 minutes to label five or six objects in a 30-frame

sequence, depending on the shape complexity and the amount of occlusion. It takes several

hours of computation time to compute the dense flow field for every flow parameter setting,

every layer and every frame. It takes one minute or more to specify the sparse correspondence

for a layer, and fitting parametric motion in realtime.

� 2.4 Methodology Evaluation

We conducted two experiments to examine our methodology. First, we applied our system to

obtaining motion for the sequences that have been carefully annotated using other methods. We

downloaded the ground-truth motion of a sequence RubberWhale from the webpage of [7]. We

labeled the sequence using 20 layers, generated the layer-wise motion, and showed the results

in Figure 2.8. Most of the disagreement lies along the occluding boundaries of the objects, as

shown in Figure 2.8(e). The error between our annotation and their “ground-truth” flow is 3.21◦

in average angular error (AAE) and 0.104 in average endpoint error (AEP). For comparison, the

best optical flow algorithm achieves merely 11.09◦ in AAE for a similar sequence Seashell [7].

Notice that the authors in [7] generated the flow on high-res images and then down-sampled the

flow to produce the ground truth, whereas we directly worked on the low-res images.

Second, we tested the consistency of multiple users’ labelings. We asked nine subjects to

Sec. 2.4. Methodology Evaluation 53

(a) A selected frame (b) Layer labeling (c) User-annotated motion

(d) Ground-truth from [7] (e) Difference (f) Color map

Figure 2.8. For the RubberWhale sequence in [7], we labeled 20 layers in (b) and obtained the annotated motion in

(c). The “ground-truth” motion from [7] is shown in (d). The error between (c) and (d) is 3.21◦ in AAE and 0.104

in AEP, excluding the outliers (black dots) in (d). (e): The color encoding scheme for flow visualization [7].

use our tool to annotate motion for the sequence in Figure 2.10 (a). Since the subjects agreed

with the layer segmentation of the sequence, we labeled the layers and generated ten flow fields

for each layer by varying the smoothness parameters. The subjects were asked to choose the

best flow field for each layer, and they could label the sparse correspondence if they were not

satisfied with any of the flow fields. We found some subjects preferred smooth flow fields over

good matching, while others preferred good matching over smoothness, but all the subjects

tried to balance between smoothness and correct matching. The subjects were unanimously

unsatisfied with the flow field of the table, and all of them labeled the motion of the table using

feature point matching.

The per-pixel mean and standard deviation of these nine subjects’ annotations are shown in

Figure 2.7. The mean of the standard deviation is 0.0934 pixel. Most of the disagreement is at

the table area, where some subjects labeled more than 10 points and some only labeled five. We

also measured the error between each annotation and the mean flow field. The mean error is

0.989◦ in AAE and 0.112 in AEP. This AEP value is consistent with the previous experiment:

the accuracy of human annotation is around 0.1 AEP.

54 CHAPTER 2. HUMAN-ASSISTED MOTION ANNOTATION

−30 −20 −10 0 10 20 30
−10

−8

−6

−4

−2

0

−15 −10 −5 0 5 10 15
−10

−8

−6

−4

−2

0

−20 −10 0 10 20

−15

−10

−5

0

−5 0 5

−15

−10

−5

0

(a) u (b) v (c) ux (d) vx

−20 −10 0 10 20

−15

−10

−5

0

−5 0 5

−15

−10

−5

0

−40 −20 0 20 40

−15

−10

−5

0

−15 −10 −5 0 5 10 15

−15

−10

−5

0

(e) uy (f) vy (g) ut (h) vt

−30 −20 −10 0 10 20 30

−15

−10

−5

0

5

10

15

−40 −20 0 20 40

−15

−10

−5

0

5

10

15

−20 −10 0 10 20

−20

−10

0

10

20

−5 0 5

−5

0

5

(i) u : v (j) ut : vt (k) ux : uy (l) vx : vy

−20 −10 0 10 20

−5

0

5

−20 −10 0 10 20

−5

0

5

(m) ux : vx (n) uy : vy

Figure 2.9. The marginal ((a)∼(h)) and joint ((i)∼(n)) statistics of the ground-truth optical flow in our database

(log histogram).

� 2.5 A Human-Annotated Motion Ground-Truth Database

We collected video sequences of both indoor and outdoor scenes using a Canon EOS-1D (low

frame rate, medium resolution) and a Canon SD870 (high frame rate, middle resolution), and

carefully labeled the motion using our annotation tool. Some sequences captured by the Canon

EOS-1D are shown in Figure 2.10 (a) to (d). We observe noisy and blurry backgrounds in (a)

Sec. 2.5. A Human-Annotated Motion Ground-Truth Database 55

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(1) Frame (2) Layer labeling (3) Annotated motion (u) (4) Annotated motion (5) Optical flow estimation

Figure 2.10. Some frames of the ground-truth motion database we created. We obtained ground-truth flow fields

that are consistent with object boundaries, as shown in column (3), the horizontal component of flow, and column

(4), flow colorization using Figure 2.8 (f). In comparison, the output of an optical flow algorithm [22] is shown

in column (5). The error between the ground-truth motion (4) and flow estimation (5) is as follows (AAE, AEP),

(a): 8.996◦ , 0.976; (b): 58.904◦ , 4.181; (c): 2.573◦ , 0.456; (d): 5.313◦ , 0.346; (e) 1.924◦ , 0.085; (f): 5.689◦ ,

0.196; (g): 5.2431◦ , 0.3853; and (h): 13.306◦ , 1.567. Most of the errors are significantly larger than the errors

with the Yosemite sequence (AAE 1.723◦ , AEP0.071) . The parameter of the flow algorithm in column (5) is tuned

to generate the best result for each sequence.

56 CHAPTER 2. HUMAN-ASSISTED MOTION ANNOTATION

and (b) because of the shallow depth of field. Some of the sequences captured by the Canon

SD870 are displayed in Figure 2.10 (e) to (h). A typical frame of the selected sequence is shown

in column (1), the corresponding layer labeling in column (2) and horizontal motion in column

(3). To compare the annotated flow field and the result of a state-of-the-art flow algorithm

[22], we used the colorization scheme in [7] (Figure 2.8(f)) to visualize these two flow fields in

column (4) and (5).

Our human-annotated motion is significantly better than what the flow algorithm could

achieve. Based on the criteria of the visual inspection of motion, the discontinuities of the

annotated flow fields align well with the object boundaries, and the smoothness reflects the

rigidity of the objects. In comparison, the flow fields computed by the flow algorithm often

fail to capture the object boundary and the correct smoothness. The flow computation can have

large errors for blurry and noisy regions, such as sequence (a) and (b) where the background

motion is affected by the foreground in flow computation. In (c), (d), (f), (g) and (h), ambiguous

boundary ownership causes the flow to mis-propagate across occluding boundaries. The mean

AAE and AEP errors of each sequence are listed in the caption of Figure 2.10. Most of these

errors are significantly larger than those for the Yosemite sequence. This suggests that our

motion ground-truth database is more challenging for motion estimation algorithms and can be

useful for developing better algorithms.

Now that we have sufficient realistic, ground-truth motion data, as a side effect, we can learn

the statistics of realistic motion fields. These statistics can lead to more accurate prior of flow

fields and help to improve flow estimation algorithms [87]. We computed the marginal and joint

statistics of the ground-truth flow in our database and displayed the log histograms in Figure

2.9. In (a) and (b), the marginal of u (horizontal flow) is flatter than that of v (vertical flow),

indicating that horizontal motion dominates vertical. As shown in (b) and (i), the marginal of

v is asymmetric, and there are more pixels falling down than going up (due to gravity). The

marginals of the 1st-order derivatives of the flows are sparse, as shown in (c) to (f). Unlike

the marginals of synthetic flow fields [87], our statistics show that the vertical flow is sparser

than the horizontal flow, consistent with the fact that horizontal motion has a larger range. The

temporal derivatives of the flow are not as sparse as the spatial ones, as depicted in (g) and (h).

The joint histogram in (j) suggests that horizontal and vertical motion are likely to increase or

decrease together temporally. The joint histograms in (k) and (l) reveal that the discontinuities

of the flow are isotropic. At motion discontinuities, the change of vertical motion may dominate

the change of horizontal motion, and vice versa, as shown in (m) and (n).

Sec. 2.6. Conclusion 57

� 2.6 Conclusion

Motion analysis algorithms have been in use for decades, but little has been done to obtain the

ground-truth motion for real-world videos. We presented a methodology and system to obtain

ground-truth motion through human annotation. Our system is built upon several state-of-the-

art motion analysis algorithms that allow the annotation of every pixel and every frame. A spe-

cial graphical user interface is designed to allow the user to label layers, inspect motions, select

parameters, and specify sparse correspondences. Our methodology is validated by comparison

with the ground-truth motion obtained through other means and by measuring the consistency

of human annotation. Using our system, we collected a motion ground-truth database consist-

ing of challenging real-world videos for algorithm evaluation and benchmarking. We hope this

database and our annotation code will lead to improved algorithms for optical flow and layered

motion analysis.

58 CHAPTER 2. HUMAN-ASSISTED MOTION ANNOTATION

Chapter 3

Layer and Contour Representations

for Motion Analysis

In Chapter 2 we introduced a human-assisted motion annotation system to obtain layer repre-

sentation for a video sequence. Even though with human labor this system is able to achieve

high-precision layer segmentation and motion measurement, the system is not fully automatic.

We want to explore automatic layer analysis from video sequences. Moreover, layers are not the

only middle-representation for video sequences. In this chapter, we will also discuss alternative

representations such as contours.

Analyzing forms such as layers and contours from video sequences leads to many applica-

tions that cannot be achieved through mere pixel-level analysis. In particular, we are interested

in detecting and magnifying small motions, as well as analyzing motion for textureless objects

under occlusion.

� 3.1 Motion Magnification

Visual motion can occur at different amplitudes, and over different temporal and spatial fre-

quency scales. Small motions are difficult to observe, yet may reveal important information

about the world: small deformations of structures, minute adjustments in an equilibrium pro-

cess, or the small movements of a system in response to some forcing function. We want a

machine which will reveal and clarify those motions, much as a microscope can reveal small

and invisible structures.

We have developed a technique, called Motion Magnification, which acts like a microscope

for motion in video sequences. The algorithm analyzes the motions of an input video sequence,

allowing a user to specify a cluster of pixels to be affected, and how much their motions are

to be magnified. Typically, small motions are amplified and large motions are left unchanged.

59

60 CHAPTER 3. LAYER AND CONTOUR REPRESENTATIONS FOR MOTION ANALYSIS

The final stage of motion magnification is to render the sequence with the desired motions

magnified by the specified amount.

While motion magnification is conceptually simple, performing it without objectionable

artifacts requires considerable attention to detail. We introduce techniques to analyze motion

robustly, verifying estimated motions as well as their regions of support. The selection of

motions to be amplified is made simple and intuitive by an automatic grouping process, where

a prespecified number of pixel clusters are found, based on their similarity in position, intensity,

and motion characteristics. For this, we introduce a measure of affinity that groups points based

on their trajectories over time, not just the similarities of their instantaneous velocities. The

user specifies which cluster’s motions should be amplified and by how much. Holes revealed

by amplified motions are filled using texture synthesis methods.

We demonstrate motion magnification with several proof-of-concept examples, magnifying

small-amplitude motions in videos of structures or people. We envision potential applications

ranging from engineering diagnosis or instruction to comedic amplification of ordinary expres-

sions.

� 3.1.1 Related Work

Motion magnification analyzes and redisplays a motion signal, and thus relates to research on

manipulating and redisplaying motion capture data, such as modifications to create new actions

from others [5, 58, 84, 60], and methods to alter style [17, 42, 119]. Of course, our problem

is in a different domain; we manipulate video data, not marker positions, and thus have a more

difficult analysis task, but also have the richer synthesis possibilities of video.

Several other projects have used video motion analysis in order to synthesize an output.

Brostow and Essa [19] tracked frame-to-frame motion of objects, then integrated the scene’s

appearance as it changed over a synthetic shutter time to simulate motion blur. Video textures

[100] analyzes the overall similarity of all frames to identify candidate temporal jumps in a

modified playback of the video. Several researchers have used a layered motion analysis to

synthesize a modified video [123, 53], where the modification typically involves removing

individual layers. However, many of the techniques used to group pixels of similar motions

into layers would not work for our difficult case of analyzing very small motions. While the

above projects relate at the general level of motion analysis followed by synthesis, we are not

aware of any previous work addressing motion magnification.

Sec. 3.1. Motion Magnification 61

(a) Registered input frame (b) Clustered trajectories of tracked features

(c) Layers of related motion and appearance (d) Motion magnified, showing holes

(e) After texture in-painting to fill holes (f) After user’s modifications to segmentation map in (c)

Figure 3.1. Summary of motion magnification processing steps.

� 3.1.2 Overview

We want to find small motions in a video and magnify them. We model the appearance of the

input video as trajectories (translations) of the pixel intensities observed in a reference frame.

Naı̈vely, this sounds like one simply needs to (a) compute the translation from one pixel to the

62 CHAPTER 3. LAYER AND CONTOUR REPRESENTATIONS FOR MOTION ANALYSIS

next in each frame, and (b) re-render the video with small motions amplified. Unfortunately,

such a naı̈ve approach would lead to artifactual transitions between amplified and unamplified

pixels within a single structure. Most of the steps of motion magnification relate to reliably

estimating motions, and to clustering pixels whose motions should be magnified as a group.

While we ultimately estimate a motion at every pixel, we begin by analyzing and grouping

the motions of feature points, local intensity configurations that are promising candidates for

finding reliable motion trajectories. Below we motivate and summarize each step of the motion

magnification processing. The processing steps are illustrated with the swing set images in

Fig. 3.1.

Register input images

When we magnify small motions, it is essential to begin by registering the frames, to prevent

amplifying the inevitable small motions due to camera shake. For this step, we assume that

the input image sequence depicts a predominantly static scene. We perform an initial tracking

of detected feature points and find the affine warp which best removes the motions of the set

of tracked feature points, ignoring outliers. After intensity normalization for any exposure

variations, the resulting registered images are ready for motion analysis.

Cluster feature point trajectories

In order that the motion magnification not break apart coherent objects, we seek to group objects

that move with correlated (not necessarily identical) motions. To achieve this, we robustly track

feature points throughout the sequence, then cluster their trajectories into K sets of correlated

motions. One special cluster of feature points with no translation over frames is the background

cluster. An important contribution of this work is the computation of trajectory correlation in

a manner invariant to the overall scale of the motions, thereby allowing very small motions to

be grouped with larger motions to which they are correlated. For example, the left extremity of

the beam in Fig. 3.1 has larger motion magnitude than the points attached to the vertical beam,

and some points along the beam move in opposite phase, yet, they should all be assigned to the

same motion layer because they belong to a “common cause”. The motions are all specified as

translations from the feature point position in a reference frame.

Segmentation: layer assignment

From the clustered feature point trajectories, we want to derive motion trajectories for each pixel

of the reference frame. We interpolate a dense motion field for each motion cluster, giving us

Sec. 3.1. Motion Magnification 63

K possible motion vectors at each pixel. We need to assign each pixel of every frame to one of

the clusters or motion layers.

It is possible, in principle, to perform segmentation using motion alone [123, 53], but reli-

able segmentation requires the use of additional features. We use pixel color, position, as well

as motion to estimate the cluster assignment for each pixel, defining a Markov random field

which we solve using graph cuts [16]. To impose temporal consistency, we then assign each

pixel trajectory to its most commonly assigned cluster over all time frames.

This gives us a layered motion representation such as that proposed by Wang and Adelson

[123], but generalizing layer membership to include correlated motions, and not just similar

ones. Our model of the video is a set of temporally constant pixel intensities, clustered into

layers, which translate over the video sequence according to interpolated trajectories that are

unique to each pixel. The layer ordering can be specified by the user, or computed using the

methods of Brostow and Essa [18]. In practice, it is sufficient to randomly assign the ordering

of non-background layers if the magnified layer has minimal occlusions with other layers, as

is often the case. At each stage, pixels which do not fit the model are relegated to a special

“outlier layer”. The other layer that is treated specially is the background layer. Regions of the

background layer which were never seen in the original video sequence may be made visible

by amplified motions of motion layers above the background. We thus fill-in all holes in the

background layer by the texture synthesis method of Efros and Leung [33].

Magnify motions of selected cluster

After the layers are determined, the user specifies a layer for motion magnification. Presently,

the magnification consists of amplifying all translations from the reference position by a con-

stant factor, typically between 4 and 40, but more general motion modification functions are

possible.

Render video

Following motion magnification, we render the modified video sequence. The background

layer is constant for all frames and we render its pixels first. Then the pixels assigned to the

outlier layer are copied as they appeared in the registered input frames. Finally, the pixels of the

remaining layers are written into the output sequence. The intensities are those of the reference

frame; the displacements are those of the measured or magnified motions, as appropriate to the

layer. In the following sections, we describe each processing step of motion magnification in

detail.

64 CHAPTER 3. LAYER AND CONTOUR REPRESENTATIONS FOR MOTION ANALYSIS

� 3.1.3 Robust Video Registration

Since we magnify small motions, we need to be very careful that stationary pixels are not

classified as moving. Because of inevitable small camera motions, even with a tripod, almost

all pixels are moving in the input sequences. To address this problem, we devised a fully

automatic system to align the input images.

The main idea comes from recent work [94]. Instead of registering images frame to frame,

our algorithm finds a reliable set of feature points that are classified as “still”. Then an affine

motion is estimated from the matched feature points. All frames are registered to a reference

frame, typically the first frame in our system.

We detect corners at different scales in the reference frame using a hierarchical version of

Harris corner detector [48], with a modification from page 45 of Nobel’s thesis [80]. Then

we compute a flow vector for each feature point from the reference frame to each of the other

frames based on the minimum sum of squared differences (SSD) over a small patch. The

precision of the flow vector is further refined to sub-pixel level based on a local Lucas-Kanade

algorithm [71, 105].

Before describing the affine motion estimation, we introduce some notation conventions

of the chapter. We measure N feature points over K frames. The nth (n = 1 · · ·N) feature

point in frame k (k = 1 · · ·K) is denoted as (n, k). The coordinate of feature point (n, k) is

(xnk, ynk). Likewise, the flow vector from the reference frame is denoted as (vx
nk, v

y
nk). For

similarity measurements, we consider a window or patch Bnk of size 2w × 2w around each

feature point (n, k). Bnk(p, q) is the pixel at relative coordinates (p, q) from the centroid of

patch Bnk. Note that when we use sub-pixel coordinate (xnk, ynk), we interpolate the patch

using bicubic reconstruction.

A global affine motion Ak ∈ R
2×3 is estimated from the reference frame to frame k with a

weight depending on the quality of the local appearance match. The probability that a feature

point (n, k) participates in this affine motion is estimated as

Prnk = exp{−‖Ak[xnk ynk 1]T − [vx
nk v

y
nk]

T ‖2/(2σ2
k)} (3.1)

where variance σk is estimated as the mean reconstruction error σk = 1
n

∑

n ‖Ak[xnk ynk 1]T−
[vx

nk v
y
nk]

T ‖2. We treat the ego motion of the camera as random noise, and therefore the proba-

bility for feature point n contributing to the global affine motion over all frames is the product

of the probability for each frame: Prn =
∏

k Prnk.

Finally, the stable feature points are selected by their probability relative to that of the most

Sec. 3.1. Motion Magnification 65

probable feature point:

Prn > αK ·max
i

Pri. (3.2)

We find α = 0.3 works well for all the sequences we have tested. By this procedure, unstable

feature points, such as those on occluding boundaries, in disoccluded regions and at rapidly

moving objects, are discarded. Only the feature points that consistently contribute to a global

affine motion across all the frames are selected for registration.

When the stable feature points are selected, we redo the SSD matching and local Lucas-

Kanade refinement from the reference frame to each of the rest of the frames. The rest of the

frames are all registered to the reference frame from a global affine warp Ãk estimated from the

matching upon this stable feature point set. In this step we also perform histogram equalization

for each frame to the reference frame to remove illumination or exposure changes.

� 3.1.4 Robust Computation and Clustering of Feature Point Trajectories

In the previous section, we computed feature trajectories for the static background in order to

stabilize the sequence. We now turn to the computation of trajectories for feature points over

the whole image and to their clustering into motions that are correlated.

Variable region feature point tracking

Once the images have been registered, we find and track feature points for a second time.

The goal of this feature tracking is to find the trajectories of a reliable set of feature points

to represent the motions in the video. As before, the steps consist of feature point detection,

SSD matching and local Lucas-Kanade refinement. For simplicity, we use only those features

detected in the first frame.

To achieve reliable feature point matching near occlusion boundaries, [97] displaced the

rectangular region of support away from the boundary edge. Here we introduce a method to

find regions of support of general shape, tailored to each feature point. We compute a weight or

support map for each feature patch that characterizes how pixels should be weighted in the SSD

similarity measures. For features near occlusion boundaries, this increases reliability by only

comparing pixel intensities with others on the same side of the boundary. This map, shown

in Fig. 3.2, also lets us assess the validity of each feature trajectory, useful in both the SSD

matching and Lucas-Kanade refinement. We call this method variable region feature point

tracking.

We use an Expectation Maximization (EM) algorithm [32] to learn the weight map asso-

66 CHAPTER 3. LAYER AND CONTOUR REPRESENTATIONS FOR MOTION ANALYSIS

(a)

(b)

patch region of

 support
t=1 t=6 t=15

5 10 15 20 25

283

284

285

286

287

288

289

290

291

292

293

294

t: frame index

x
:

co
o

rd
in

at
e

before EM

after EM

5 10 15 20 25

222

224

226

228

230

232

234

236

t: frame index

y
:

co
o

rd
in

at
e

before EM

after EM

Figure 3.2. Learned regions of support allow features (a) and (b) to reliably track the leaf and background, re-

spectively, despite partial occlusions. For feature (b) on the stationary background, the plots show the x (left) and

y (right) coordinates of the track both with (red) and without (blue) a learned region of support for appearance

comparisons. The track using a learned region of support is constant, as desired for feature point on the stationary

background.

ciated with each feature point. The EM algorithm alternates between an “E-step”, when the

weight map (region of support) is estimated for an assumed feature translation, and an “M-

step”, when the feature translation is updated, using the weight map just estimated.

E-step

We first estimate the probability that each feature point trajectory is reliable. We call reliable

trajectories inliers and unreliable ones outliers. Two conditions must be met for the inliers: (1)

the SSD matching error at each position of the feature point (compared with the appearance in

the reference frame) must be small, and (2) there must be nearby feature point positions from

other times along the trajectory. To compute the second term, we evaluate the mean distance to

the N nearest feature points in the same trajectory. The tracking inlier probability of feature n

Sec. 3.1. Motion Magnification 67

at frame k (k > 1) is computed as

Prnk = exp{− SSDnk

2 min
1<i6K

SSDni
− dnk

2 min
16i6K

dni)
}, (3.3)

where SSDnk is the SSD of feature n at frame k, and dnk is the mean distance of feature n at

frame k to the N-nearest feature points in the same trajectory.

The weight map is estimated from the average reconstruction error for the pixel (p, q)

(−w 6 p, q 6 w) relative to the feature point. We use a patch size w = 7 for all the ex-

amples. The weight is therefore computed as

Φn(p, q)=exp{−p
2+q2

2s2
−
∑K

k=2‖Bnk(p, q)−Bn,1(p, q)‖2Prnk

2σ2
n

∑K
k=2 Prnk

} (3.4)

where s = w/2 and σ2
n is the mean variance over frames k’s and positions (p, q). Intuitively,

the neighboring pixels that are close to the feature point and have less variation in matching

should have high weight.

M-step

The M-step is the same as the previous SSD matching and local Lucas-Kanade refinement

except that the weight map Φn is used. The use of this map, indicating the region of support

for each feature, results in more reliable feature point tracking, illustrated in Fig. 3.2.

Experimentally, we found that after 10 iterations of EM most of the feature points converge

to a reliable estimate of the weight map as well as the local flow vector. However, some feature

points do not yield valid trajectories and must be pruned. We use a number of criteria to prune

feature points:

• Minimum matching error Some feature points may appear in the reference frame but

not in others. For such cases, the minimum matching error remains high. We remove

these spurious trajectories by setting an upper bound on the minimum matching error;

this threshold is set so that feature points which appear only in the first frame are re-

moved.

• Inlier probability Some feature points reappear, but seldom, indicating an unreliable

trajectory. We use the average inlier probability 1
K

∑

k Prnk as a metric for trajectory n.

A trajectory is removed if the average inlier probability is below a threshold, set to be

30% of the mean inlier probability for the trajectory.

68 CHAPTER 3. LAYER AND CONTOUR REPRESENTATIONS FOR MOTION ANALYSIS

t=1 t=5 t=6 t=7 t=8

0 5 10 15 20 25
332

334

336

338

340

342

344

t: frame index

x
:

co
o

rd
in

at
e

0 5 10 15 20 25

170

175

180

185

t: frame index

y
:

co
o

rd
in

at
e

before pruning
after pruning
inlier prob

Figure 3.3. Top images show a feature point on the stationary background layer becoming occluded during frames

6 and 7. Below are the x- and y- coordinates of the tracked feature, showing outlier positions. These can be

identified from the inlier probabilities shown as a bar plot (repeated for comparison with each plot) and replaced

with smoothed values.

• Matching outlier detection, removal and filling Finally, we must smooth some of the

remaining inlier feature point trajectories because of occlusions at some frames, which

generates impulsive noise in the trajectory and a corresponding increase in the matching

error, as shown in Fig. 3.3. These events are detected from the inlier probability at each

time frame and removed. We fill in the missing feature point positions by minimizing the

second derivative energy of the trajectory over time, by summing the squared responses

from filtering with [−1 2 − 1]. The resulting least squares problem is solved by a stan-

dard conjugate gradient method, [108].

The first two criteria are used both before and after the EM algorithm, and the third criterion

is applied only after EM. The output of the feature point tracking is a set of feature points, their

regions of support, reliabilities, and trajectories over time. These trajectories are output to the

next module for clustering.

Sec. 3.1. Motion Magnification 69

Clustering by coherent motion

We seek to group related feature point trajectories into clusters, which will form the basis for

our assignment of pixels to motion layers. Using motion, we can group regions of varying

appearance or without spatial continuity (due to occlusions). Our goal in the clustering is that

motions with a common cause be grouped together, even though the motions may be in different

directions.

To do this, we use the entire motion trajectory of each feature point, not just instantaneous

motions. Motions caused by the same physical source tend to covary and have common modes

of resonance [131]. We introduce the use of normalized correlation between the trajectories

as a measure of their similarity. Composing the x and y components of the velocities into

a complex motion vector, the correlation index ρn,m between the trajectories of two feature

points n and m is:

ρn,m =

∣

∣

∣

∣

∣

∣

∑

k

(

vx
nk + jvy

nk

) (

vx
mk + jvy

mk

)

√

(
∑

k(v
x
nk)

2 + (vy
nk)

2
) (
∑

k(v
x
mk)

2 + (vy
mk)2

)

∣

∣

∣

∣

∣

∣

(3.5)

with j =
√
−1.

The normalized correlation between complex velocities is invariant to both the direction

of the motion trajectories, and their magnitudes. In the swingset example, the motions of the

beam and of the chain attached to the beam show a high correlation index even though they have

very different magnitudes and are moving in different directions (because of the normalization

and absolute value operations in Eq. (3.5)). The normalized correlation is close to zero for

feature points that belong to objects with independent motions. For instance, the trajectories

of points belonging to the swing structure and the blowing leaves have very small correlation

when evaluated over 25 frames.

Using the normalized correlation, we construct a similarity matrix between all feature

tracks, then use spectral clustering [104] to group them into K clusters, a number selected

by the user to give physically reasonable groupings. Before clustering, feature points having

fewer than 5 neighbors with ρ > 0.9 are removed and considered as outliers. Fig. 3.1(c) shows

the clustering result for the swing sequence using 6 clusters.

Dense optic flow field interpolation

From each group of feature tracks, we seek to interpolate a dense optic flow field over all pixels;

we will then assign each pixel to one motion group to form a layered motion representation.

70 CHAPTER 3. LAYER AND CONTOUR REPRESENTATIONS FOR MOTION ANALYSIS

Because the tracked objects can be non-rigid, we interpolated using locally weighted linear

regression to estimate an affine motion for the query pixel, following the approach of [94]. To

speed the computation, we apply this interpolation on a sparse lattice of every fourth pixel.

Then a bicubic interpolation is applied to obtain the dense flow field for all pixels. This two-

step approach reduced the complexity by one order of magnitude with little cost in precision.

We denote M
(l)
ik the dense flow field from frame i to frame k for layer l.

� 3.1.5 Segmentation: Assignment of Each Pixel to a Motion Cluster

We seek to assign every pixel to one of the motion clusters (layers). We do so using three cues:

motion likelihood, color likelihood, and spatial connectivity. In the subsections that follow, we

construct grouping probabilities for each cue to form a probability for a given layer assignment

that we optimize by graph cuts. Finally, we impose a temporal coherence constraint to add

poorly fitting pixels to the outlier layer.

Motion likelihood

The likelihood for pixel Ik(x, y) at frame k to be generated by layer l is computed from recon-

struction error

PrM (Ik(x, y)|l) = exp{−
k+u
∑

i=k−u

‖Ik(x, y)− Ii(M (l)
ik (x, y))‖2

2σ2
M

}. (3.6)

Where u is the number of neighboring frames and σ2
M is the variance. Often, motion segmen-

tations are based on two sequential frames, but we find that a large u, such as 10, makes motion

likelihood very reliable. We can compute this since we keep the trajectories of each feature

point. We assign pixels of low likelihood to the outlier layer.

Color likelihood

Color information has been widely used in interactive image editing, such as [88, 92]. We also

use color to help propagate the motion cue to ambiguous (flat) regions. Similar to [88], we use

a Gaussian mixture model to compute the likelihood for each pixel generated by layer l

PrC(Ik(x, y)|l) =

NC
∑

i=1

α
(l)
i G(Ik(x, y);µ

(l)
i , σ

(l)
i) (3.7)

where {α(l)
i , µ

(l)
i , σ

(l)
i } are estimated from a previous layer assignment, and NC is the number

of mixtures (this term is only used after a first iteration of segmentation).

Sec. 3.1. Motion Magnification 71

Spatial connectivity

We use a compatibility function to encourage layer assignment changes at spatial discontinuities

of pixel intensity. We choose the following compatibility function, which is widely used [16,

88, 128]

V (Ik(x, y), Ik(x+ p, y + q), l1, l2) = (p2 + q2)−
1
2 δ[l1 6= l2] ·

exp{−β‖Ik(x, y)− Ik(x+ p, y + q)‖2} (3.8)

where −1 6 p, q 6 1, or Ik(x, y) and Ik(x + p, y + q) are neighboring pixels. l1 and l2 are

the label assignment to the two pixels, respectively. Parameter β is estimated as described in

Rother et al. [88].

Segmentation by energy minimization

Once we have set up and learned the parameters for each of the models, we use graph cuts [16]

to minimize the total energy defined on the label assignment:

L∗ = arg min
L
−
∑

(x,y)

log PrM (Ik(x, y)|L(x, y))

−ξ
∑

(x,y)

log PrC(Ik(x, y)|L(x, y))

+γ
∑

(x,y)

∑

(p,q)∈N(x,y)

V (Ik(x,y),Ik(x+p,y+q),L(x,y),L(x+p,y+q)) (3.9)

We follow Rother et al. [88] to set γ = 50 and ξ = 2, which works well for our test examples.

In each iteration of the graph cut algorithm the color distribution for each layer is re-

estimated. The energy function drops fastest in the first three iterations, so we applied graph

cuts three times to find the layer assignment for each frame.

Final layered representation of the sequence

The energy minimization segmentation is carried out for every frame independently, which

inevitably introduces changes in layer assignment from frame to frame. To build our final rep-

resentation of the sequence, we project each pixel back to a reference frame using the estimated

motions. Each reference frame location which projects to a motion trajectory with 80% consis-

tent layer assignments over all frames is assigned to that layer, Fig. 3.4(a). (Note that reference

frame pixels may be assigned to more than one motion layer). The pixel intensity for a layer

at each position is set to the median of the pixel intensities assigned to that layer along the

72 CHAPTER 3. LAYER AND CONTOUR REPRESENTATIONS FOR MOTION ANALYSIS

(a) Locations assigned to each layer

(b) Pixels occluded (shown in black) during the whole sequence for each layer

(c) Appearance of each layer before texture filling-in

(e) Appearance after user intervention

Background Layer 1 Layer 2

(d) Appearance after texture filling-in

Figure 3.4. Layered representation for the swing sequence. Only the background and two layers (out of six) are

shown.

(a) (b) (c)

Figure 3.5. (a) Outlier locations, not well described by our model. Pixel intensities from these locations are passed

through from the registered video into the rendered model (b) to yield the final composite output sequence, (c). The

user specifies at which depth layer the outliers belong, in this case, above the background and below the other layers.

Sec. 3.1. Motion Magnification 73

trajectory, Fig. 3.4(c). Since motion magnification will reveal occluded regions, we mark with

occlusion masks regions where texture in-painting [33] needs to be applied, Fig. 3.4(d).

Finally, we need to account for the outliers. In some sequences, outliers might correspond

to important elements for which the algorithm failed to build a model. In the case of the swing

sequence, the person on the swing is not tracked, due to the fast motion, and is considered as

an outlier. Fig. 3.5(b) shows one frame of the sequence rendered without including outliers.

Fig. 3.5(c) shows the final result when the registered input pixels from the outlier locations,

Fig. 3.5(a), are composited into the rendered frame (above the background and below the other

layers). The outlier region is the union of the outliers computed for all the frames, as described

in section 3.1.5.

In summary, the final representation of the sequence consists in a set of Nl layers plus one

outlier layer (not always required). Each layer is defined by a segmentation mask (Fig. 3.4(a)),

and its appearance (Fig. 3.4(d)).

User interaction

While the automatic segmentation results are very good, the bottom-up analysis inevitably

makes small errors that can lead to artifacts in the synthesized video. To address this, we allow

the user to modify the layer segmentation on the reference frame, as shown in Fig. 3.4(d). In

this example, user modifications to the segmentation and appearance maps for layer 1 removed

some pixels attached to that layer in the canvas awning, completed holes in the beam, and

marked the swing back leg, Fig. 3.4(e). Only maps in the reference frame need to be edited.

� 3.1.6 Magnification and Rendering

The user selects the motion layer for which the motion is to be magnified, and the displace-

ments of each pixel in the cluster are multiplied by the selected factor. In our experiments the

magnification factor was in the range between 4 and 40.

The depth ordering for each layer and the outliers can be assigned manually, or, for the

non-outliers, computed through occlusion reasoning [18]. We render the pixels of each motion

layer from back to front.

� 3.1.7 Experimental Results

The accompanying video shows motion magnification results for three video sequences, hand-

stand, bookshelf, and swingset. The first two sequences were taken with a JVC digital HD video

camera JY-HD10, which can capture images at 1086×720 resolution, 30 Hz, progressive scan.

74 CHAPTER 3. LAYER AND CONTOUR REPRESENTATIONS FOR MOTION ANALYSIS

The last sequence was acquired at 8 frames per second with a Canon EOS 1D Mark II, which

records images at 3500×2200 resolution. We downsample the input images for processing to

866×574 for the JVC and 1750×1100 for Canon. The precise motion computations and group-

ing operations of the motion magnification algorithm take 10 hours, end-to-end processing, for

the swingset sequence, in a combination of C++ and Matlab code.

Handstand shows a single figure with visually perceptible balancing motions to maintain

vertical posture. The magnified sequence amplifies the left-to-right corrective motion of the

torso. In order to reveal small body motions without too much distortion of the human figure,

we applied a saturating non-linear amplification to the motions of the magnified layer . The

magnification was close to linear for amplified displacements below 40 pixels, with a com-

pressive saturation for amplified displacements above that. Fig. 3.6 shows a frame from the

original and motion magnified sequences. In this sequence we used a model with two layers

and no outlier layer, and made no manual edits.

Bookshelf magnifies the response of a thick plywood bookshelf on aluminium supports to

pressure from a hand. The original response is barely perceptible in the original sequence, and

was motion-amplified 40 times to be clearly visible in the motion magnified sequence. Fig.

3.7 show frames from the original and motion magnified sequences. Notice the droop of the

bookshelf close to the point at which force is applied. In this sequence we used a model with

two layers and no outlier layer, and made user edits as described in the figure caption.

Swingset is the most challenging sequence of the three. In this sequence we used a model

with six layers and one outlier layer. The sequence has periodic motion (the swingset structure),

very fast motion (the person), random motion (the leaves) all within a complicated, textured

scene. The motion magnified video (stills in Fig. 1) reveals the imperceptible deformations of

the swingset supports in response to the person swinging. Note that the beams and swings of

the swingset are grouped into a single motion layer, based on the correlations of their motions,

not based on the uniformity of the motions. This allows pixels with a common motion cause to

be motion magnified together as a group.

Our model of the translations of each pixel over time allows us to perform post-processing

steps unrelated to motion magnification, as well. To compensate for the low frame rate of

the digital still camera images, we used our motion layer model of the sequence to interpolate

missing frames, synthetically achieving a higher frame rate. For pixels of the outlier layer, we

have no motion model, so we sample-and-hold replicated those pixels within the interpolated

frames. This can be seen from single-stepping through the output motion magnified video,

which also shows which pixels were assigned to the outlier layer.

Sec. 3.1. Motion Magnification 75

Figure 3.6. The magnification result (right) for a handstand (left). The motion magnified sequence exaggerates the

small postural corrections needed to maintain balance.

time time

Original Magnified

Figure 3.7. Under hand pressure, the bookshelf (on aluminium supports) undergoes motions that are made visible

when magnified by a factor of 40 using motion magnification. User editing of reference frame masks refined the

upper boundary between the books and the shelf. Also, the background layer required manual texture completion

as little background is visible during the sequence.

76 CHAPTER 3. LAYER AND CONTOUR REPRESENTATIONS FOR MOTION ANALYSIS

time time

x

y

x

y

Figure 3.8. Section of the x, y, t volume from the original sequence (left) and the sequence after motion magnifi-

cation. The detail shows a vertical section of the beam. The volume illustrates the amplification of the oscillation

and also the filling of the texture behind the beam. Notice that after magnification, the motion is almost periodic

despite the noise. So, the real motion of the beam is not just one single harmonic but a mixture. The original motion

is amplified by a factor of 40.

(a)

(b)

(c)

Original Magnified by 40 Magnified by 80

Figure 3.9. Details from frames of original and motion magnified swingset sequence, showing (a) beam curvature,

(b) proper handling of occlusions, and (c) an artifact from imperfect automatic segmentation (before correction by

the user).

Sec. 3.1. Motion Magnification 77

Fig. 3.8 shows an x-y-t slice through part of the video volume of the swingset example,

before and after motion magnification. The amplified beam motions are visible, as well as the

textural filling-in of the background holes behind the displaced beam.

Fig. 3.9 shows details of the original and output swingset sequence, without user interven-

tion, for motion magnifications of 40 and 80 times. Row (a) shows the bending of the support

beam revealed by the magnified motion. Row (b) shows the leaf occlusions handled correctly

in the synthesized output sequence. Row (c) shows a break artifact that occurred (before user

editing) because the dark, occluded far leg of the swingset was not put in the same motion layer

as the rest of the swingset.

� 3.1.8 Applications

Since the publication of our work [67], the motion magnification system has been applied to

several scientific and engineering fields.

In [41]1, the authors used our system to magnify wave motion along the ear’s tectorial

membrane at nanometer-scale displacement to make it more apparent. As shown in Figure 3.10

(a) and (c), the motion of the ear membrane is almost unnoticeable in the original sequence.

Our motion magnification system, however, is able to magnify the small motion and make it

visible, as shown in (b) and (d). Notice that for this sequence we only use one layer to estimate

and magnify the motion.

We also apply our system to magnifying the deformation of underground faults to help lo-

cate oil. One of the six frames of the underground fault at the same location taken in the past

two decades were show in Figure 3.11 (a). We can barely perceive any motion from this se-

quence. In (b), the motion of the faults is magnified to help geologists to find oil underground.

However, because the motion field of the faults is more complicated than the motion in pre-

vious examples, simply magnifying the displacement of each pixel individually may result in

unexpected pixel distortions. We introduce spatial regularity, i.e. a truss model for pixels, to

overcome this problem. In the truss model, the magnified displacement for each pixel is only

a reference; the pixels should also move together with neighboring pixels as much as possible.

The results of using this truss model are displayed in (c) and (d), where the layers of the faults

move more consistently after the magnification.

Lastly, we use motion magnification to magnify the difference between the motions of a

car passing through a speed bump with a normal load and a heavier load, as shown in Figure

3.12 (a) and (b), respectively. The car with heavier load tends to go down more after passing

1See also http://web.mit.edu/newsoffice/2007/hearing-1010.html

http://web.mit.edu/newsoffice/2007/hearing-1010.html

78 CHAPTER 3. LAYER AND CONTOUR REPRESENTATIONS FOR MOTION ANALYSIS

(a) The 18th frame from the original sequence (orange arrow is where the slice in (c) is taken)

(b) The 18th frame from the magnified sequence (red arrow is where the slice in (d) is taken)

(d) The x-t slice of (b)(c) The x-t slice of (a)

x x

tt

Figure 3.10. Motion magnification is applied to revealing the almost unnoticeable motion of ear’s tecto-

rial membrane at nanometer-scale displacement. The 18th frame of the original and magnified sequences

is displayed in (a) and (b), respectively. To visualize the motion magnification effect, we take a slice at

the same location, shown as orange and red line in (a) and (b), and plot how the line evolves with respect

to time in (c) and (d), respectively. The motion becomes much more visible in (d) than in (c).

Sec. 3.1. Motion Magnification 79

(a) (b) (c) (d)

Figure 3.11. Motion magnification is applied to magnify the temporal deformation of faults underground

to help find oils. The original sequence (a) contain six frames taken over the past two decades from Shell

Research. We can magnify the motion of each pixel individually (b), or fit a truss model to the pixels so

that the spatial regularity is respected in the magnification, as shown in (c) and (d).

through the speed bump, but this difference is subtle to human eyes. Because the motion of the

wheel is complicated and different from the body of the car, we use the motion annotation tool

developed in Chapter 2 to label the contour, which is the representation of the motion we will

work on (note that this is different from the pixel-wise motion we have been working on so far).

The two sequences are not temporally aligned as the sequence with heavier load is slower with

more frames. So we first apply a 1D version of the Lucas-Kanade algorithm [71] to aligning

the two sequences according to the y-displacement of one feature point. As shown in Figure

3.13, the two signals are temporally registered after this process.

We magnify the difference between the two trajectories of each feature point and show the

results in Figure 3.12 (c). Because the motion of each feature point is magnified independently,

the contour of the car is deformed and breaks the overall car shape. To overcome this incon-

sistency, we impose shape regularity by projecting the individually magnified feature points to

the rigid car shape, and obtain shape-consistent magnification results in Figure 3.12 (d). Using

our motion magnification tool, we are able to visualize the subtle difference of the car load and

make it more visible to inspectors.

80 CHAPTER 3. LAYER AND CONTOUR REPRESENTATIONS FOR MOTION ANALYSIS

(a) Normal load (b) Heavier load

(c) Magnify the motion of each control point independently (d) Magnify the motion with shape regularization

Figure 3.12. We use the human-assisted motion annotation in Chapter 2 to label the contour of a moving

car running through a speed bump, with a normal load (a) and a heavier load (b), respectively. If we only

magnify the difference between the vertical axis of each point, we can the magnified result as shown in

(c), where the motion is magnified but inconsistent with respect to the shape of the car. After a shape

regularity is imposed, we obtain magnified motion effect and respect the shape of the car in (d).

� 3.1.9 Conclusion

We have presented a new technique, motion magnification, that reveals motions that would oth-

erwise be invisible or very difficult to see. The input is a sequence of images from a stationary

camera. The system automatically segments a reference frame into regions of “common fate”,

grouped by proximity, similar color, and correlated motions. Analogous to focussing a micro-

scope, the user identifies the segment to modify, and specifies the motion magnification factor.

The video sequence is then re-rendered with the motions of the selected layer magnified as de-

sired. The output sequence allows the user to see the form and characteristics of the magnified

Sec. 3.2. Contour Motion Analysis 81

0 20 40 60 80 100 120
190

200

210

220

230

240

250

Time

Y
 d

is
p

la
ce

m
en

t

Normal load

Heavier load

0 20 40 60 80 100 120
190

200

210

220

230

240

250

Time

Y
 d

is
p

la
ce

m
en

t

Normal load

Heavier load

(a) Before temporal alignment (b) After temporal alignment

Figure 3.13. Before running the motion magnification system for the samples in Figure 3.12, we need

to first align the two sequences because the sequences with heavier load is slower and has more frames.

Let us look at the y-displacement of one feature point for the two sequences. Before we do anything, the

two signals are not aligned as shown in (a). After applying a 1D version of the Lucas-Kanade algorithm

[71], the two signals are aligned and ready for magnification.

motions in an intuitive display, as if the physical movements themselves had been magnified,

then recorded.

� 3.2 Contour Motion Analysis

Motion magnification requires reliable motion analysis, especially at occlusion boundaries.

One type of occlusion boundary that we found particularly difficult to analyze is the bound-

aries of featureless objects. In fact, humans can reliably analyze visual motion under a diverse

set of conditions, including textured as well as featureless objects. However, computer vision

algorithms have focussed on conditions of texture, where junction or corner-like image struc-

tures are assumed to be reliable features for tracking [71, 51, 105]. But under other conditions,

these features can generate spurious motions. T-junctions caused by occlusion can move in

an image very differently than either of the objects involved in the occlusion event [78]. To

properly analyze motions of featureless objects requires a different approach.

The spurious matching of T-junctions has been explained in [127] and [76]. We briefly

restate it using the simple two bar stimulus in Figure 3.14 (from [127]). The gray bar is moving

rightward in front of the leftward moving black bar, (a). If we analyze the motion locally, i.e.

match to the next frame in a local circular window, the flow vectors of the corner and line points

82 CHAPTER 3. LAYER AND CONTOUR REPRESENTATIONS FOR MOTION ANALYSIS

are as displayed in Figure 3.14 (b). The T-junctions located at the intersections of the two bars

move downwards, but there is no such a motion by the depicted objects.

One approach to handling the spurious motions of corners or T-junctions has been to detect

such junctions and remove them from the motion analysis [127, 81]. However, T-junctions are

often very difficult to detect in a static image from local, bottom-up information [76]. Motion at

occluding boundaries has been studied, for example in [15]. The boundary motion is typically

analyzed locally, which can again lead to spurious junction trackings. We are not aware of an

existing algorithm that can properly analyze the motions of featureless objects.

In this section, we use a boundary-based approach which does not rely on motion estimates

at corners or junctions. We develop a graphical model which integrates local information and

assigns probabilities to candidate contour groupings in order to favor motion interpretations

corresponding to the motions of the underlying objects. Boundary completion and discounting

the motions of spurious features result from optimizing the graphical model states to explain the

contours and their motions. Our system is able to automatically detect and group the boundary

fragments, analyze the motion correctly, as well as exploit both static and dynamic cues to

synthesize the illusory boundaries (c).

We represent the boundaries at three levels of grouping: edgelets, boundary fragments

and contours, where a fragment is a chain of edgelets and a contour is a chain of fragments.

Each edgelet within a boundary fragment has a position and an orientation and carries local

evidence for motion. The main task of our model is then to group the boundary fragments into

contours so that the local motion uncertainties associated with the edgelets are disambiguated

and occlusion or other spurious feature events are properly explained. The result is a specialized

motion tracking algorithm that properly analyzes the motions of textureless objects.

Our system consists of four conceptual steps, discussed over the next three sections (the

last two steps happen together while finding the optimal states in the graphical model):

(a) Boundary fragment extraction: Boundary fragments are detected in the first frame.

(b) Edgelet tracking with uncertainties: Boundary fragments are broken into edgelets,

and, based on local evidence, the probability distribution is found for the motion of each

edgelet of each boundary fragment.

(c) Grouping boundary fragments into contours: Boundary fragments are grouped, using

both temporal and spatial cues.

(d) Motion estimation: The final fragment groupings disambiguate motion uncertainties

and specify the final inferred motions.

Sec. 3.2. Contour Motion Analysis 83

(a) (b) (c)

Figure 3.14. Illustration of the spurious T-junction motion. (a) The front gray bar is moving to the right

and the black bar behind is moving to the left [127]. (b) Based on a local window matching, the eight

corners of the bars show the correct motion, whereas the T-junctions show spurious downwards motion.

(c) Using the boundary-based representation our system is able to correctly estimate the motion and

generate the illusory boundary as well.

We restrict the problem to two-frame motion analysis though the algorithm can easily be ex-

tended to multiple frames.

� 3.2.1 Boundary Fragment Extraction

Extracting boundaries from images is a nontrivial task by itself. We use a simple algorithm

for boundary extraction, analyzing oriented energy using steerable filters [39] and tracking the

boundary in a manner similar to that of the Canny edge detector [25]. A more sophisticated

boundary detector can be found in [74]; occluding boundaries can also be detected using spe-

cial cameras [85]. However, for our motion algorithm designed to handle the special case of

textureless objects, we find that our simple boundary detection algorithm works well.

Mathematically, given an image I , we seek to obtain a set of fragments B = {bi}, where

each fragment bi is a chain of edgelets bi ={eik}ni

k=1. Each edgelet eik ={pik, θik} is a particle

which embeds both location pik∈R
2 and orientation θik∈ [0, 2π) information.

We use H4 and G4 steerable filters [39] to filter the image and obtain orientation energy

per pixel. These filters are selected because they describe the orientation energies well even

at corners. For each pixel we find the maximum energy orientation and check if it is local

maximum within a slice perpendicular to this orientation. If that is true and the maximum

energy is above a threshold T1 we call this point a primary boundary point. We collect a pool

of primary boundary points after running this test for all the pixels.

We find the primary boundary point with the maximum orientation energy from the pool

and do bidirectional contour tracking, consisting of prediction and projection steps. In the pre-

84 CHAPTER 3. LAYER AND CONTOUR REPRESENTATIONS FOR MOTION ANALYSIS

(a) (b) (c) (d)

Figure 3.15. The local motion vector is estimated for each contour in isolation by selectively compar-

ing orientation energies across frames. (a) A T-junction of the two bar example showing the contour

orientation for this motion analysis. (b) The other frame. (c) The relevant orientation energy along the

boundary fragment, both for the 2nd frame. A Gaussian pdf is fit to estimate flow, weighted by the

oriented energy. (d) Visualization of the Gaussian pdf. The possible contour motions are unaffected by

the occluding contour at a different orientation and no spurious motion is detected at this junction.

diction step, the current edgelet generates a new one by following its orientation with a certain

step size. In the projection step, the orientation is locally maximized both in the orientation

bands and within a small spatial window. The tracking is stopped if the energy is below a

threshold T2 or if the turning angle is above a threshold. The primary boundary points that are

close to the tracked trajectory are removed from the pool. This process is repeated until the pool

is empty. The two thresholds T1 and T2 play the same roles as those in Canny edge detection

[25]. While the boundary tracker should stop at sharp corners, it can turn around and continue

tracking. We run a postprocess to break the boundaries by detecting points of curvature local

maxima which exceed a curvature threshold.

� 3.2.2 Edgelet Tracking with Uncertainties

We next break the boundary contours into very short edgelets and obtain the probabilities, based

on local motion of the boundary fragment, for the motion vector at each edgelet. We cannot

use conventional algorithms, such as Lucas-Kanade [71], for local motion estimation since they

rely on corners. The orientation θik for each edgelet was obtained during boundary fragment

extraction. We obtain the motion vector by finding the spatial offsets of the edgelet which

match the orientation energy along the boundary fragment in this orientation. We fit a Gaussian

distribution N (µik,Σik) of the flow weighted by the orientation energy in the window. The

mean and covariance matrix is added to the edgelet: eik = {pik, θik, µik,Σik}. This procedure

is illustrated in Figure 3.15.

Grouping the boundary fragments allows the motion uncertainties to be resolved. We next

discuss the mathematical model of grouping as well as the computational approach.

Sec. 3.2. Contour Motion Analysis 85

� 3.2.3 Boundary Fragment Grouping and Motion Estimation

Two Equivalent Representations for Fragment Grouping

The essential part of our model is to find the connection between the boundary fragments. There

are two possible representations for grouping. One representation is the connection of each end

of the boundary fragment. We formulate the probability of this connection to model the local

saliency of contours. The other equivalent representation is a chain of fragments that forms a

contour, on which global statistics are formulated, e.g. structural saliency [101]. Similar local

and global modeling of contour saliency was proposed in [86]; in [73], both edge saliency and

curvilinear continuity were used to extract closed contours from static images. In [96], contour

ends are grouped using loopy belief propagation to interpret contours.

The connections between fragment ends are modeled by switch variables. For each bound-

ary fragment bi, we use a binary variable {0, 1} to denote the two ends of the fragment, i.e.

b
(0)
i = ei1 and b

(1)
i = ei,ni

. Let switch variable S(i, ti) = (j, tj) denote the connection from

b
(ti)
i to b

(tj)
j . This connection is exclusive, i.e. each end of the fragment should either connect

to one end of the other fragment, or simply have no connection. An exclusive switch is further

called reversible, i.e.

if S(i, ti) = (j, tj), then S(j, tj) = (i, ti),

or in a more compact form

S(S(i, ti)) = (i, ti). (3.10)

When there is no connection to b
(ti)
i , we simply set S(i, ti)=(i, ti). We use the binary function

δ[S(i, ti)−(j, tj)] to indicate whether there is a connection between b
(ti)
i and b

(tj)
j . The set of

all the switches are denoted as S={S(i, ti)|i=1:N, ti =0, 1}. We say S is reversible if every

switch variable satisfies Eqn. (3.10). The reversibility of switch variables is shown in Figure

3.16 (b) and (c).

From the values of the switch variables we can obtain contours, which are chains of bound-

ary fragments. A fragment chain is defined as a series of the end points c={(b(x1)
i1

, b
(x1)
i1

), · · · ,
(b

(xm)
im

, b
(xm)
im

)}. The chain is specified by fragment label {i1, · · · , im} and end label {x1, · · · , xm}.
It can be either open or closed. The order of the chain is determined by the switch variable.

Each end appears in the chain at most once. The notation of a chain is not unique. Two open

chains are identical if the fragment and end labels are reversed. Two closed chains are identical

if they match each other by rotating one of them. These identities are guaranteed from the

reversibility of the switch variables. A set of chains C= {ci} can be uniquely extracted based

86 CHAPTER 3. LAYER AND CONTOUR REPRESENTATIONS FOR MOTION ANALYSIS

1b 2b

3b

(a) (b) (c) (d) (e)

)0(

1b1b 2b

3b

1b 2b

3b

1b 2b

3b

1b 2b

3b

Figure 3.16. A simple example illustrating switch variables, reversibility and fragment chains. The color

arrows show the switch variables. The empty circle indicates end 0 and the filled indicates end 1. (a)

Shows three boundary fragments. Theoretically b
(0)
1 can connect to any of the other ends including

itself, (b). However, the switch variable is exclusive, i.e. there is only one connection to b
(0)
1 , and

reversible, i.e. if b
(0)
1 connects to b

(0)
3 , then b

(0)
3 should also connect to b

(0)
1 , as shown in (c). Figures

(d) and (e) show two of the legal contour groupings for the boundary fragments: two open contours and

a closed loop contour.

on the values of the reversible switch variables, as illustrated in Figure 3.16 (d) and (e).

The Graphical Model for Boundary Fragment Grouping

Given the observation O, the two images, and the boundary fragments B, we want to estimate

the flow vectors V = {vi} and vi = {vik}, where each vik associates with edgelet eik, and

the grouping variables S (switches) or equivalently C (fragment chains). Since the grouping

variable S plays an essential role in the problem, we shall first infer S and then infer V based

on S.

We use two equivalent representations for boundary grouping, switch variables and chains.

We use δ[S(S(i, ti)) − (i, ti)] for each end to enforce the reversibility. Suppose otherwise

S(i1, ti1) = S(i2, ti2) = (j, tj) for i1 6= i2. Let S(j, tj) = (i1, ti1) without loss of generality,

then δ[S(S(i2, ti2))− (i2, ti2)]=0, which means that the switch variables are not reversible.

We use a function λ(S(i, ti);B, O) to measure the distribution of S(i, ti), i.e. how likely

b
(ti)
i connects to the end of other fragments. Intuitively, two ends should be connected if

⋄ Motion similarity the distributions of the motion of the two end edgelets are similar;

⋄ Curve smoothness the illusory boundary to connect the two ends is smooth;

⋄ Contrast consistency the brightness contrast at the two ends consistent with each other.

We write λ(·) as a product of three terms, one enforcing each criterion. We shall follow the

example in Figure 3.17 to simplify the notation, where the task is to compute λ(S(1, 0) =

Sec. 3.2. Contour Motion Analysis 87

1b

2b

)0(

1b

)0(

2b

1b

2b

),(1111 Σµ

),(2121 Σµ

1b

r

2b

1b

2b

11h

12h

21h

22h

(a) (b) (c) (d)

Figure 3.17. An illustration of local saliency computation. (a) Without loss of generalization we assume

the two ends to be b
(0)
1 and b

(0)
2 . (b) The KL divergence between the distributions of flow vectors are

used to measure the motion similarity. (c) An illusory boundary γ is generated by minimizing the energy

of the curve. The sum of square curvatures are used to measure the curve smoothness. (d) The means of

the local patches located at the two ends are extracted, i.e. h11 and h12 from b
(0)
1 , h21 and h22 from b

(0)
2 ,

to compute contrast consistency.

(2, 0)). The first term is the KL divergence between the two Gaussian distributions of the flow

vectors

exp{−αKLKL(N (µ11,Σ11),N (µ21,Σ21))}, (3.11)

where αKL is a scaling factor. The second term is the local saliency measure on the illusory

boundary γ that connects the two ends. The illusory boundary is simply generated by minimiz-

ing the energy of the curve. The saliency is defined as

exp

{

−αγ

∫

γ

(

dθ

ds

)2

ds

}

, (3.12)

where θ(s) is the slope along the curve, and dθ
ds

is local curvature [101]. αγ is a scaling factor.

The third term is computed by extracting the mean of local patches located at the two ends

exp

{

− dmax

2σ2
max

− dmin

2σ2
min

}

, (3.13)

where d1 = (h11−h21)
2, d2 = (h12−h22)

2, and dmax = max(d1, d2), dmin = min(d1, d2).

σmax > σmin are the scale parameters. h11, h12, h21, h22 are the means of the pixel values

of the four patches located at the two end points. For self connection we simply set a constant

value: λ(S(i, ti)=(i, ti))=τ .

We use a function ψ(ci;B, O) to model the structural saliency of contours. It was discov-

ered in [77] that convex occluding contours are more salient, and additional T-junctions along

the contour may increase or decrease the occlusion perception. Here we simply enforce that

a contour should have no self-intersection. ψ(ci;B, O) = 1 if there is no self intersection and

ψ(ci;B, O)=0 otherwise.

88 CHAPTER 3. LAYER AND CONTOUR REPRESENTATIONS FOR MOTION ANALYSIS

Thus, the (discrete) graphical model favoring the desired fragment grouping is

Pr(S;B,O) =
1

ZS

N
∏

i=1

1
∏

ti=0

λ(S(i, ti);B, O)δ[S(S(i, ti))− (i, ti)] ·
M
∏

j=1

ψ(cj ;B, O), (3.14)

where ZS is a normalization constant. Note that this model measures both the switch variables

S(i, ti) for local saliency and the fragment chains ci to enforce global structural saliency.

Gaussian MRF on Flow Vectors

Given the fragment grouping, we model the flow vectors V as a Gaussian Markov random

field (GMRF). The edgelet displacement within each boundary fragment should be smooth and

match the observation along the fragment. The probability density is formulated as

ϕ(vi;bi) =

ni
∏

k=1

exp{−(vik−µik)
T Σ−1

ik (vik−µik)}
ni−1
∏

k=1

exp{− 1

2σ2
‖vik−vi,k+1‖2}, (3.15)

where µik and Σik are the motion parameters of each edgelet estimated in Sect 3.

We use V(i, ti) to denote the flow vector of end ti of fragment bi. We define V(S(i, ti))=

V(j, tj) if S(i, ti) = (j, tj). Intuitively the flow vectors of the two ends should be similar if

they are connected, or mathematically

φ(V(i, ti),V(S(i, ti))) =

1 ifS(i, ti) = (i, ti),

exp{− 1

2σ2
‖V(i, ti)−V(S(i, ti))‖2} otherwise.

(3.16)

The (continuous) graphical model of the flow vectors is therefore defined as

Pr(V|S;B) =
1

ZV

N
∏

i=1

ϕ(vi;bi)

1
∏

ti=0

φ(V(i, ti),V(S(i, ti))) (3.17)

where ZV is a normalization constant. When S is given it is a GMRF which can be solved by

least squares.

Inference

Having defined the graphical model to favor the desired motion and grouping interpretations,

we need to find the state parameters that best explain the image observations. The natural

decomposition of S and V in our graphical model

Pr(V,S;B, O)=Pr(S;B, O) · Pr(V|S;B, O), (3.18)

Sec. 3.2. Contour Motion Analysis 89

(where Pr(S;B, O) and Pr(V|S;B, O) are defined in Eqn. (3.14) and (3.17) respectively)

lends itself to performing two-step inference. We first infer the boundary grouping B, and

then infer V based on B. The second step is simply to solve least square problem since

Pr(V|S;B, O) is a GMRF. This approach does not globally optimize Eqn. (3.18) but results

in reasonable solution because V strongly depends on S. The density function Pr(S;B, O)

is not a random field, so we use importance sampling [72] to obtain the marginal distribution

Pr(S(i, ti);B, O). The proposal density of each switch variable is set to be

q (S(i, ti)=(j, tj)) ∝
1

Zq
λ (S(i, ti)=(j, tj))λ (S(j, tj)=(i, ti)) (3.19)

where λ(·) has been normalized to sum to 1 for each end. We found that this bidirectional mea-

sure is crucial to take valid samples. To sample the proposal density, we first randomly select

a boundary fragment, and connect to other fragments based on q(S(i, ti)) to form a contour (a

chain of boundary fragments). Each end is sampled only once, to ensure reversibility. This pro-

cedure is repeated until no fragment is left. In the importance step we run the binary function

ψ(ci) to check that each contour has no self-intersection. If ψ(ci) = 0 then this sample is re-

jected. The marginal distributions are estimated from the samples. Lastly the optimal grouping

is obtained by replacing random sampling with selecting the maximum-probability connec-

tion over the estimated marginal distributions. The number of samples needed depends on the

number of the fragments. In practice we find that n2 samples are sufficient for n fragments.

� 3.2.4 Experimental Results

Figure 5.9 shows the boundary extraction, grouping, and motion estimation results of our sys-

tem for both real and synthetic examples2. All the results are generated using the same param-

eter settings. The algorithm is implemented in MATLAB, and the running time varies from ten

seconds to a few minutes, depending on the number of the boundary fragments found in the

image.

The two-bar examples in Figure 1(a) yields fourteen detected boundary fragments in Fig-

ure 5.9(a) and two contours in (b). The estimated motion matches the ground truth at the

T-junctions. The fragments belonging to the same contour are plotted in the same color and the

illusory boundaries are synthesized as shown in (c). The boundaries are warped according to

the estimated flow and displayed in (d). The hallucinated illusory boundaries in frame 1 (c) and

2 (d) are plausible amodal completions.

2The results can be viewed online http://people.csail.mit.edu/celiu/contourmotions/

90 CHAPTER 3. LAYER AND CONTOUR REPRESENTATIONS FOR MOTION ANALYSIS

(a) Dancer frame 1 (b) Dancer frame 2 (c) Chair frame 1 (d) Chair frame 2

Figure 3.18. Input images for the non-synthetic examples of Figure 6. The dancer’s right leg is moving

downwards and the chair is rotating (note the changing space between the chair’s arms).

The second example is the Kanizsa square where the frontal white square moves to the

right bottom. Twelve fragments are detected in (a) and five contours are grouped in (b). The

estimated motion and generated illusory boundary also match the ground truth and human per-

ception. Notice that the arcs tend to connect to other ones if we do not impose the structural

saliency ψ(·).
We apply our system to a video of a dancer (Figure 3.18 (a) and (b)). In this stimulus the

right leg moves downwards, but there is weak occluding boundary at the intersection of the

legs. Eleven boundary fragments are extracted in (a) and five contours are extracted in (b). The

estimated motion (b) matches the ground truth. The hallucinated illusory boundary in (c) and

(d) correctly connect the occluded boundary of the right leg and the invisible boundary of the

left leg.

The final row shows challenging images of a rotating chair (Figure 3.18 (c) and (d)), also

showing proper contour completion and motion analysis. Thirty-seven boundary fragments are

extracted and seven contours are grouped. To complete the occluded contours of this image

would be nearly impossible working only from a static image. Exploiting motion as well as

static information, our system is able to complete the contours properly.

Note that the traditional motion analysis algorithms fail at estimating motion for these ex-

amples (see supplementary videos) and would thus also fail at correctly grouping the objects

based on the motion cues.

� 3.3 Conclusion

We propose a novel boundary-based representation to estimate motion under the challenging

visual conditions of moving textureless objects. Ambiguous local motion measurements are

resolved through a graphical model relating edgelets, boundary fragments, completed contours,

Sec. 3.3. Conclusion 91

(a) Extracted boundaries (b) Estimated flow (c) Frame 1 (d) Frame 2

Figure 3.19. Experimental results for some synthetic and real examples. The same parameter settings

were used for all examples. Column (a): Boundary fragments are extracted using our boundary tracker.

The red dots are the edgelets and the green ones are the boundary fragment ends. Column (b): Boundary

fragments are grouped into contours and the flow vectors are estimated. Each contour is shown in its

own color. Columns (c): the illusory boundaries are generated for the first and second frames. The gap

between the fragments belonging to the same contour are linked exploiting both static and motion cues

in Eq. (3.14).

92 CHAPTER 3. LAYER AND CONTOUR REPRESENTATIONS FOR MOTION ANALYSIS

and their motions. Contours are grouped and their motions analyzed simultaneously, leading

to the correct handling of otherwise spurious occlusion and T-junction features. The motion

cues help the contour completion task, allowing completion of contours that would be difficult

or impossible using only low-level information in a static image. A motion analysis algorithm

such as this one that correctly handles featureless contour motions is an essential element in a

visual system’s toolbox of motion analysis methods.

Chapter 4

SIFT Flow: Dense Correspondence

Across Scenes

So far we have been discussing motion analysis in video sequences. The concept of “motion”

has been limited to temporal consistent frames in videos. However, we can generalize object

motion to very different images. For example, there are two street-scene images that both

contain cars, buildings, roads and pedestrians. Although flipping back and forth these two

images would not make humans perceive any object motion, we can argue that the cars in one

image “move” to the cars in the other image even though these cars can be of different type and

color. From this chapter on, we will interchangeably use motion and correspondence because

the idea of image alignment falls into the traditional image correspondence regime1.

� 4.1 Introduction

Image alignment and registration is a central topic in computer vision. For example, aligning

different views of the same scene has been studied for the purpose of image stitching [113] and

stereo matching [98], e.g., Figure 4.1 (a). The considered transformations are relatively simple

(e.g., parametric motion for image stitching and 1D disparity for stereo), and images to register

are typically assumed to have the same pixel value after applying the geometric transformation.

The image alignment problem becomes more complicated for dynamic scenes in video se-

quences, as is the case of optical flow estimation [51, 71, 22]. The correspondence problem

between two adjacent frames in the video is often formulated as an estimation of a 2D flow

field. The extra degree of freedom (from 1D in stereo to 2D in optical flow) introduces an ad-

1In my opinion, motion has some physical meanings, i.e. an object moves physically from one image to the

other. In contrast, correspondence is about how pixels in one image correspond to the pixels in the other. I prefer to

use correspondence in this chapter because there is no physical object movement in scene alignment.

93

94 CHAPTER 4. SIFT FLOW: DENSE CORRESPONDENCE ACROSS SCENES

ditional level of complexity. Typical assumptions in optical flow algorithms include brightness

constancy and piecewise smoothness of the pixel displacement field [9, 14].

Image alignment becomes even more difficult in the object recognition scenario, where

the goal is to align different instances of the same object category, as illustrated in Figure 4.1

(b). Sophisticated object representations [10, 12, 34, 129] have been developed to cope with

the variations in objects’ shape and appearance. However, the methods still typically require

objects to be salient and large, visually very similar and with limited background clutter.

In this work, we are interested in a seemingly impossible task of aligning images depicting

different instances of the same scene category. Image alignment at scene level is thus called

scene alignment. As illustrated in Figure 4.1 (c), the two images to match may contain object

instances captured from different viewpoints, placed at different spatial locations, or imaged

at different scales. The two images may contain different quantities of the same objects. In

addition, some objects present in one image might be missing in the other. Due to these issues

the scene alignment problem is extremely challenging. Ideally, in scene alignment we want

to build the correspondence at the semantic level, i.e. buildings correspond to buildings, win-

dows to windows, sky to sky, and sailboats to sailboats. But the current object detection and

recognition techniques are not robust enough to detect and recognize all objects in images.

We take a different approach for scene alignment by matching local, salient and transform-

invariant image structures. We hope that semantically meaningful correspondences can be

established through matching these image structures. Moreover, we want to have a simple,

effective, object-free model to align all the pairs in Figure 4.1 (c).

Inspired by optical flow that is able to produce dense, pixel-to-pixel correspondence be-

tween two images, we propose SIFT flow by matching SIFT descriptors rather than raw pixel

values and adopting the computational framework of optical flow. In the SIFT flow, a SIFT

descriptor [70] is extracted at each pixel to characterize local image structures and encode con-

textual information. A discrete, discontinuity preserving, flow estimation algorithm is used to

match the SIFT descriptors between two images. The use of SIFT features allows robust match-

ing across different scene/object appearances and the discontinuity-preserving spatial model

allows matching of objects located at different parts of the scene. A coarse-to-fine matching

scheme is designed to significantly accelerate the flow estimation process.

Optical flow is only applied to two adjacent frames in a video sequence in order to obtain

meaningful correspondences; likewise, we need to define the neighborhood for SIFT flow.

Motivated by the recent progress in large image database methods [49, 91], we define the

neighbors of SIFT flow as the top matches queried from a large database. The chance that some

Sec. 4.1. Introduction 95

(a) Pixel level (stereo) (b) Object level (object recognition)

(c) Scene level (scene alignment)

(i) Difference perspectives and occlusions (ii) Multiple objects, no global transform

(iii) Background clutter (iv) High intra-class variations

Figure 4.1. Image alignment resides at different levels. Researchers used to study image alignment

problem at pixel level (a) where the two images are taken at the same scene with slightly different

time or perspective [98]. Recently, correspondence has been established at object level (b) for object

recognition [12]. We are interested in image alignment at scene level, where two images come from the

same scene category but different instances. As shown in (c), scene alignment is a challenging problem;

the correspondence between scenes is not as obvious to human eyes as the correspondence at pixel and

object levels. SIFT flow is proposed to align the examples in (c) for scene alignment.

of the nearest neighbors share the same scene category with the input image becomes higher

as the database grows larger, and SIFT flow is able to obtain some semantically meaningful

correspondences between a query image and its nearest neighbors.

We apply SIFT flow to two original applications, which both rely on finding and aligning

images of similar scenes in a large collection of images or videos. The first application is motion

prediction from a single static image, where a motion field is hallucinated for an input image

using a large database of videos. The second application is motion transfer, where we animate

a still image using object motions transferred from a similar moving scene. We also apply SIFT

flow back to the regime of traditional image alignment. We study satellite image registration,

96 CHAPTER 4. SIFT FLOW: DENSE CORRESPONDENCE ACROSS SCENES

where two images were taken several years apart with different local appearances. We also use

SIFT flow for face recognition, especially the scenario where there are not sufficient samples

for training. Through these examples we demonstrate the potential of SIFT flow for broad

applications in computer vision and computer graphics.

The rest of the chapter is organized as follows: after reviewing the related work in Sect. 4.2,

we introduce the concept of SIFT flow and the inference algorithm in Sect. 4.3. In Sect. 4.4, we

apply SIFT flow to video retrieval with many examples of correspondences between different

scenes. In Sect. 4.5, we show how to infer the motion field from a single image, and how to

animate a still image, both with the support of a large video database and scene alignment.

We further apply SIFT flow back to image alignment at pixel level through satellite image

registration, and at object level through face recognition in Sect. 4.6. After briefly discussing

how SIFT flow fits in the literature of image alignment in Sect. 4.7, we conclude the chapter in

Sect. 4.8.

� 4.2 Related Work

Image alignment (or image registration, correspondence) is a broad topic in computer vision,

computer graphics and medical imaging, covering stereo, motion analysis, video compression,

shape registration, and object recognition. It is beyond the scope of this chapter to give a thor-

ough review on image alignment. Please refer to [113] for a comprehensive review on image

alignment. In this section we want to review the image alignment literature focusing on what

to align, or the features that are consistent across images, e.g., pixels, edges, descriptors; which

way to align, or the representation of the alignment, e.g., sparse vs. dense, parametric vs.

nonparametric; and how to align, or the computational methods to obtain alignment parame-

ters. Moreover, correspondence can be established between two images, or between an image

and image models such as active appearance models [28] . We will focus on image to image

correspondence.

In image alignment we must first define the features based on which image correspon-

dence is established: the invariant features that do not change from one image to another. In

stereo [47] and optical flow [71, 51], arguably the first areas of image alignment in computer

vision, brightness constancy assumption was often made for building the correspondence be-

tween two images. But soon researchers came to realize that pixel values are not reliable for

image matching due to lighting, perspective and noise [45]. Features such as phase [38], filter

banks [54], mutual information [120] and gradient [20] are used to match images since they

Sec. 4.2. Related Work 97

are more reliable across frames. But these low-level features are not able to cope with dras-

tic changes between two images. Middle-level representations such as scale-invariant feature

transform (SIFT) [70], shape context [11, 12], histogram of oriented gradients (HOG) [31] have

been introduced to account for variations within object categories. Although these middle-level

representations have been widely used for object detection and recognition, little has been in-

vestigated for exploring features to establish correspondence at scene level.

The representation of the correspondence is another important aspect of image alignment.

One can utilize the information of every pixel to obtain a dense correspondence, or merely use

sparse feature points. The form of the correspondence can be pixel-wise displacement such as

a 1-D disparity map (stereo) and a 2-D flow field (optical flow), or parametric models such as

affine and homography. Although a parametric model can be estimated from matching every

pixel [13], and a dense correspondence can be interpolated from sparse matching [126], typi-

cally, pixel-wise displacement is obtained through pixel-wise correspondence, and parametric

motion is estimated from sparse, interest point detection and matching [99]. In between the

sparse and dense representation is correspondence on contours [125, 62], which has been used

in tracking objects and analyzing motion for textureless objects. However, the fact that the

underlying motion between scenes is complicated and unclear, and detecting contours from

scenes is unreliable, leads us to seek for dense, pixel-wise correspondence for scene alignment.

Estimating dense correspondence between two images is a nontrivial problem with spatial

regularity, i.e. the displacements (flow vectors) of neighboring pixels tend to be similar. When

the feature values of the two images are close and temporally smooth, this displacement can

be formulated as a continuous variable and the estimation problem is often reduced to solving

PDE’s using Euler-Lagrange [51, 20]. When the feature values are different, or other informa-

tion such as occlusion needs to be taken into account, one can use belief propagation [40, 110]

and graph cuts [16, 56] to optimize objective functions formulated on Markov random fields.

The recent studies show that optimization tools such as belief propagation, tree-reweighted be-

lief propagation and graph cuts can achieve very good local optimum for these optimization

problems [114]. In [103], a dual-plane formulation is proposed to apply tree-reweighted BP to

estimating optical flow fields. These advances in inference on Markov random fields provide

us with optimization tools for dense scene matching.

Scene retrieval, parsing and recognition has become an important research direction to un-

derstand images at scene level [82, 118]. Scene recognition and retrieval has proposed global

image representations in order to find similar images at a global level. Some of the most popular

representations for scene matching are color histograms [111], texture models [43], segmented

98 CHAPTER 4. SIFT FLOW: DENSE CORRESPONDENCE ACROSS SCENES

regions [26], GIST descriptors [82], bag of words and the spatial pyramid [57], among many

others. Common to all these representation is that there is no attempt in establishing precise

meaningful correspondences across different image regions between the input and retrieved

images. Our approach relates to the task of co-segmentation [89] which tries to segment si-

multaneously the common parts of an image pair and to the problem of shape matching [11]

used in the context of object recognition. Our goal is to find correspondences across different

across all the structures that compose a full scene and not just the elements of an object. Scenes

have less defined regularities across images and therefore, the task of alignment can be more

challenging.

Inspired by the recent advances in image alignment and scene parsing, we propose SIFT

flow to analyze the correspondence between images from the same scene category but different

instances.

� 4.3 The SIFT Flow Algorithm

� 4.3.1 Dense SIFT descriptors and visualization

SIFT is a local descriptor to characterize local gradient information [70]. In [70] SIFT descrip-

tor is a sparse feature representation that consists of both feature extraction and detection. In

this chapter, however, we only use the feature extraction component. For every pixel in an

image, we divide its neighborhood (e.g., 16×16, 32×32) into a 4×4 cell array, quantize the

orientation into 8 bins in each cell, and obtain a 4×4×8=128-dimensional vector as the SIFT

representation for a pixel. We call this per-pixel SIFT descriptor SIFT image.

To visualize SIFT images, we compute the top three principal components of SIFT descrip-

tors from a set of images, and then map these principal components to the principal components

of the RGB space, as shown in Figure 4.2. Through projecting a 128D SIFT descriptor to a 3D

subspace, we are able to compute the SIFT image from an RGB image in Figure 4.3 (a) and

visualize it in (d). In this visualization, the pixels that have similar color may imply that they

also share similar SIFT descriptors, and hence have similar local structures.

Notice that even though this SIFT visualization may look blurry as shown in Figure 4.3 (d),

SIFT image indeed has very high spatial resolution. For two neighboring pixels lying across an

image boundary, for example, their SIFT descriptors can be drastically different as the boundary

information may shift from one set of cells to other cells. The visualization blurriness comes

from the projection where significant amount of information is lost. This projection is only for

visualization; in SIFT flow, the whole 128 dimensions are used for matching.

Sec. 4.3. The SIFT Flow Algorithm 99

20 40 60 80 100 120
0

0.05

0.1

0.15

20 40 60 80 100 120
−0.2

−0.1

0

0.1

0.2

20 40 60 80 100 120

−0.2

−0.1

0

0.1

0.2

0.3

R+G+B

R-G

R/2+G/2-B

Figure 4.2. Mapping from SIFT space to RGB space. To visualize SIFT images, we compute the

top three principal components of SIFT descriptors from a set of images, and then map these principal

components to the principal components of the RGB space.

(a) (b) (c) (d)

Figure 4.3. Visualization of SIFT images. We compute the SIFT descriptors on a regular dense grid. For

each pixel in an image (a), the descriptor is a 128-D vector. The first 16 components are shown in (b) in

a 4× 4 image grid, where each component is the output of a signed oriented filter. The SIFT descriptors

are quantized into visual words in (c). In order to improve the clarity of the visualization, cluster centers

have been sorted according to the first principal component of the SIFT descriptor obtained from a large

sample of our dataset. A visualization of SIFT image using the mapping function in Figure 4.2 is shown

in (d). We will use (d) as our visualization of SIFT descriptors for the rest of the chapter.

100 CHAPTER 4. SIFT FLOW: DENSE CORRESPONDENCE ACROSS SCENES

Figure 4.4. An illustration of coarse-to-fine SIFT flow matching on pyramid. The green square is the

searching window for pk at each pyramid level k. For simplicity only one image is shown here, where

pk is on image s1, and ck and w(pk) are on image s2. See text for details.

Now that we have per-pixel SIFT descriptor for two images, our next task is to build dense

correspondence based on these descriptors.

� 4.3.2 Matching Objective

Similar to the brightness constancy assumption in optical flow, we assume the SIFT descriptor

is constant along the flow vectors. At the same time, the flow field should be piecewise smooth

to agree with object boundaries. The objective function of SIFT flow is formulated as follows.

Let p = (x, y) contain the spatial coordinate of a pixel, and w(p) = (u(p), v(p)) be the flow

vector at p. Denote s1 and s2 as the per-pixel SIFT feature [70] for two images, and ε contains

all the spatial neighborhood (a four-neighbor system is used). The energy function for SIFT

Sec. 4.3. The SIFT Flow Algorithm 101

flow is defined as:

E(w) =
∑

p

min
(

∥

∥s1(p)− s2(p + w(p))
∥

∥

1
, t
)

+

∑

p

η
(

|u(p)| + |v(p)|
)

+

∑

(p,q)∈ε

min
(

α|u(p)− u(q)|, d
)

+

∑

(p,q)∈ε

min
(

α|v(p) − v(q)|, d
)

. (4.1)

In this objective function, truncated L1 norms are used in both the data term and the smoothness

term to account for matching outliers and flow discontinuities, with t and d as the threshold,

respectively. An L1 norm is also imposed on the magnitude of the flow vector as a bias towards

smaller displacement when no other information is available. Notice that in [69] only an L1

norm is used for the data term and the small displacement biased is formulated as an L2 norm.

This energy function can be directly optimized by running sequential Belief Propagation (BP-S)

[114] on a dual plane setup [103].

� 4.3.3 Coarse-to-fine matching scheme

However, directly optimizing Eqn. (4.1) may scale poorly with respect to the image size. In

SIFT flow, a pixel in one image can literally match to any other pixel in another image. Suppose

the image has h2 pixels, then the time and space complexity of the BP algorithm to estimate

the SIFT flow is O(h4). As reported in [69], the computation time for 145×105 images with

an 80×80 searching neighborhood is 50 seconds. The original implementation of SIFT flow

[69] would require more than two hours to process a pair of 256×256 images in our database

with a memory usage of 16GB to store the data term.

To address the performance drawback, we designed a coarse-to-fine SIFT flow matching

scheme that significantly improves the performance. The basic idea is to roughly estimate the

flow at a coarse level of image grid, then gradually propagate and refine the flow from coarse

to fine. The procedure is illustrated in Figure 4.4. For simplicity, we use s to represent both

s1 and s2. A SIFT pyramid {s(k)} is established, where s(1) = s and s(k+1) is smoothed and

downsampled from s(k). At each pyramid level k, let pk be the coordinate of the pixel to match,

ck be the offset or centroid of the searching window, and w(pk) be the best match from BP. At

the top pyramid level s(3), the searching window is centered at p3 (c3 =p3) with size m×m,

where m is the width (height) of s(3). The complexity of BP at this level is O(m4). After BP

102 CHAPTER 4. SIFT FLOW: DENSE CORRESPONDENCE ACROSS SCENES

0 1 2-1-2

5

-2

(a)

(b) (c)

Figure 4.5. We generalized distance transform function for truncated L1 norm [36] to pass message

between neighboring nodes that have different offsets (centroids) of the searching window.

converges, the system propagates the optimized flow vector w(p3) to the next (finer) level to

be c2 where the searching window of p2 is centered. The size of this searching window is fixed

to be n×n with n=11. This procedure iterates from s(3) to s(1) until the flow vector w(p1) is

estimated. The complexity of this coarse-to-fine algorithm is O(h2 log h), a significant speed

up compared to O(h4).

When the matching is propagated from an coarser level to the finer level, the searching

windows for two neighboring pixels may have different offsets (centroids). We modify the the

distance transform function developed for truncated L1 norm [36] to cope with this situation,

with the idea illustrated in Figure 4.5. To compute the message passing from pixel p to its

neighbor q, we first gather all other messages and data term, and apply the routine in [36] to

compute the message from p to q assuming that q and p have the same offset and range. The

function is then extended to be outside the range by increasing α per step, as shown in Figure

4.5 (a). We take the function in the range that q is relative to p as the message. For example, if

the offset of the searching window for p is 0, and the offset for q is 5, then the message from

p to q is plotted in Figure 4.5 (c). If the offset of the searching window for q is −2 otherwise,

the message is shown in Figure 4.5 (b).

Using the proposed coarse-to-fine matching scheme and modified distance transform func-

Sec. 4.3. The SIFT Flow Algorithm 103

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10
x 10

4

Sample index

M
in

 e
n
er

g
y

Ordinary

Coarse−to−fine

Figure 4.6. Coarse-to-fine SIFT flow not only runs significantly faster, but also achieves lower energies

most of the time. In this experiment, we randomly selected 10 samples in the test set and computed the

lowest energy of the best match with the nearest neighbors. We tested both the coarse-to-fine algorithm

proposed in this chapter and the ordinary matching scheme in [69]. Except for sample #8, coarse-to-fine

matching achieves lower energy than the ordinary matching algorithm.

tion, the matching between two 256×256 images takes 31 seconds on a workstation with two

quad-core 2.67 GHz Intel Xeon CPUs and 32 GB memory, in a C++ implementation. Further

speedup (up to 50x) can be achieved through GPU implementation [29] of the BP-S algorithm

since this algorithm can be parallelized. We leave this as future work.

A natural question is whether the coarse-to-fine matching scheme can achieve the same

minimum energy as the ordinary matching scheme (only one level without coarse-to-fine) [69].

We randomly selected 10 pairs of images to estimate SIFT flow, and check the minimum energy

obtained using coarse-to-fine scheme and ordinary scheme (non coarse-to-fine), respectively.

For these 256×256 images, the average running time of coarse-to-fine SIFT flow is 31 seconds,

whereas it takes 127 minutes in average for the ordinary matching. The coarse-to-fine scheme

not only runs significantly faster, but also achieves lower energies most of the time compared

to the ordinary matching algorithm [69] as shown in Figure 4.6. This is consistent with what

has been discovered in the optical flow community: coarse-to-fine search not only speeds up

computation but also leads to lower energy. This can be caused by the inherent self-similarity

nature of SIFT features across scales: the correspondence at a coarser level is a good prediction

for the correspondence at a finer level.

104 CHAPTER 4. SIFT FLOW: DENSE CORRESPONDENCE ACROSS SCENES

� 4.3.4 Neighborhood of SIFT flow

In theory, we can apply optical flow to two arbitrary images to estimate a correspondence, but

we may not get anything meaningful if the two images come from two different videos. In

fact, even when we apply optical flow to two adjacent frames in a video sequence, we assume

dense sampling in time so that there is significant overlap between two neighboring frames.

Similarly, in SIFT flow we define the neighborhood of an image as the nearest neighbors when

we query a large database with the input. Ideally, if the database is large enough to contain

almost every possible image in the world, the nearest neighbors will be visually similar to the

query image. This motivates the following analogy with optical flow, where correspondence is

sought between temporally adjacent (and thus visually similar) video frames:

Dense sampling in time : optical flow ::

Dense sampling in the space of all images : SIFT flow

In other words, as optical flow assumes dense sampling of the time domain to enable tracking,

SIFT flow assumes dense sampling in (some portion of) the space of natural images to enable

scene alignment. In order to make this analogy possible, we collect a large database consisting

of 102,206 frames from 731 videos. Analogous to the time domain, we define the “tempo-

ral frames” to a query image as the N nearest neighbors in this database. The SIFT flow is

then established between the query image and the N nearest neighbors. How to obtain nearest

neighbors will be discussed in the next subsection.

� 4.3.5 Scene matching with histogram intersection

We use a fast indexing technique in order to retrieve nearest neighbors that will be further

aligned using the SIFT flow algorithm to match the query image. As a fast search we use

spatial histogram matching of quantized SIFT [70] features [57]. First, we build a dictionary

of 500 visual words [107] by running K-means on 5000 SIFT descriptors randomly selected

out of all the video frames in our dataset. Then, the visual words are binned using a two level

spatial pyramid [57, 44].

The similarity between two images is measured by the histogram intersection. For each

input image, we select the top 20 nearest neighbors. Matching is performed on all the frames

from all the videos in our dataset. There is at most one best matching frame from each video.

We then apply SIFT flow between the input image and the top 20 candidate neighbors and

re-rank the neighbors based on the alignment score. This approach is well matched to the

Sec. 4.4. Experiments on Video Retrieval 105

(2) 31572.07

(3) 83732.23

(4) 89678.46

(5) 94807.13

(1) 27842.14

(a) (b) (c) (d) (e) (f) (g)

Figure 4.7. SIFT flow for image pairs depicting the same scene/object. (a) shows the query image and

(b) its densely extracted SIFT descriptors. (c) and (d) show the best (lowest energy) match from the

database and its SIFT descriptors, respectively. (e) shows (c) warped onto (a). (f) shows the warped

SIFT image (d). (g) shows the estimated displacement field with the minimum alignment energy shown

to the right.

similarity obtained by SIFT flow as it uses the same basic features (SIFT descriptors) and

spatial information is loosely represented (by means of the spatial histograms).

Other scene metrics such as GIST [82] can also be used for retrieving nearest neighbors

[68]. It has been reported that various nearest matching algorithms do not result in much dif-

ference in obtaining the nearest neighbors for matching [90].

� 4.4 Experiments on Video Retrieval

� 4.4.1 Results of video retrieval

We conducted several experiments to test the SIFT flow algorithm on our video database. One

frame from each of the 731 videos was selected as the query image and histogram intersection

matching was used to find its 20 nearest neighbors, excluding all other frames from the query

video. The SIFT flow algorithm was then used to estimate the dense correspondence (repre-

sented as a pixel displacement field) between the query image and each of its neighbors. The

106 CHAPTER 4. SIFT FLOW: DENSE CORRESPONDENCE ACROSS SCENES

(6) 93727.80

(7) 73456.24

(8) 73584.35

(9) 86740.51

(10) 83662.99

(11) 84760.23

(12) 85783.03

(14) 66047.48

(13) 75512.35

Figure 4.8. SIFT flow computed for image pairs depicting the same scene/object category where the

visual correspondence is obvious.

best matches are the ones with the minimum energy defined by (4.1). Alignment examples

are shown in Figure 4.7–4.9. The original query image and its extracted SIFT descriptors are

shown in columns (a) and (b). The minimum energy match (out of the 20 nearest neighbors)

and its extracted SIFT descriptors are shown in columns (c) and (d). To investigate the quality

of the pixel displacement field, we use the computed displacements to warp the best match onto

the query image. The warped image and warped SIFT descriptor image are shown in columns

(e) and (f). The visual similarity between (a) and (e), and (b) and (f) demonstrates the quality of

the matching. Finally, the displacement field is visualized using color-coding adapted from [7]

Sec. 4.4. Experiments on Video Retrieval 107

(15) 92465.46

(16) 77859.03

(17) 103365.77

(18) 68534.91

(19) 87761.87

(20) 86946.04

(21) 81336.80

(22) 85955.61

Figure 4.9. SIFT flow for challenging examples where the correspondence is not obvious.

(23) 71744.23

(24) 76047.55

(25) 76047.55

Figure 4.10. Some failure examples with semantically incorrect correspondences. Although the min-

imized SIFT flow objectives are low for these samples (compared to those in Figure 4.9), the query

images are rare in the database and the best SIFT flow matches do not belong to the same scene category

as the queries. However, these failures can be overcome through increasing the size of the database.

108 CHAPTER 4. SIFT FLOW: DENSE CORRESPONDENCE ACROSS SCENES

Query image

Ranking from histogram intersection Ranking from the matching score of generalized optical flow

Figure 4.11. Alignment typically improves ranking of the nearest neighbors. Images enclosed by the red

rectangle are the top 10 nearest neighbors found by histogram intersection, displayed in a scan-line order

(left to right, top to bottom). Images enclosed by the green rectangle are the top 10 nearest neighbors

ranked by the minimum energy obtained by the alignment algorithm. The warped nearest neighbor

image is displayed to the right of the original image. Note how the returned images are re-ranked

according to the size of the depicted vehicle by matching the size of the bus in the query.

in column (g) with the minimum alignment energy shown to the right.

Figure 4.7 shows examples of matches between frames coming from exactly the same

scene, but different video sequence. The almost perfect matching in (1) and (2) demonstrates

that SIFT flow reduces to classical optical flow when the two images are temporally adjacent

frames in a video sequence. In (3)–(5), the query and the best match are more distant within

the video sequence, but the alignment algorithm can still match them reasonably well.

Figure 4.8 shows more challenging examples, where the two frames come from different

videos while containing the same type of objects. The alignment algorithm attempts to match

the query image by transforming the candidate image. Note the significant changes in viewpoint

between the query and the match in examples (8), (9), (11), (13), (14) and (16). Note also that

some discontinuities in the flow field are caused by errors in SIFT matching. The square shaped

discontinuities are a consequence of the decoupled regularizer on the horizontal and vertical

components of the pixel displacement vector.

Sec. 4.5. Applications 109

Figure 4.9 shows alignment results for examples with no obvious visual correspondence.

Despite the lack of direct visual correspondence, the scene alignment algorithm attempts to

rebuild the house (17), change the shape of the door into a circle (18) or reshuffle boats (20).

Some failure cases are shown in Figure 4.10. Typically, these are caused by the lack of

visually similar images in the video database. Note that, typically, alignment improves ranking

of the K-nearest neighbors. This is illustrated in Figure 4.11.

� 4.4.2 Evaluation of the dense scene alignment

After showing some examples of scene alignment, we want to evaluate how well SIFT flow

performs in matching structures across different images and how it compares with human se-

lected matches. Traditional optical flow is a well-defined problem and it is straightforward for

humans to annotate motion for evaluation [63]. In the case of SIFT flow, however, there may

not be obvious or unique best pixel-to-pixel matching as the two images may contain different

objects, or the same object categories with very different instances.

To evaluate the matching obtained by SIFT flow, we performed a user study where we

showed 11 users image pairs with preselected sparse points in the first image and asked the

users to select the corresponding points in the second image. This process is explained in

Figure 4.12. As shown on the right of Fig. 4.13 , user annotation can be ambiguous. Therefore,

we use the following metric to evaluate SIFT flow: for a pixel p, we have several human

annotations zi as its flow vector, and w(p) as the estimated SIFT flow vector. We compute

Pr
(

∃zi, ‖zi − w(p)‖ ≤ r|r
)

, namely the probability of one human annotated flow is within

distance r to SIFT flow w(p). This function of r is plotted on the left of Fig. 4.13 (red curve).

For comparison, we plot the same probability function (blue curve) for minimum L1-norm SIFT

matching, i.e. SIFT flow matching without spatial terms. Clearly SIFT flow matches better to

human annotation than minimum L1-norm SIFT matching.

� 4.5 Applications

In this section we demonstrate two applications for the proposed scene matching algorithm: (1)

motion field prediction from a single image using motion priors, and (2) motion synthesis via

transfer of moving objects common in similar scenes.

110 CHAPTER 4. SIFT FLOW: DENSE CORRESPONDENCE ACROSS SCENES

(b) Image to match(a) Original image

(1)

(2)

Figure 4.12. For an image pair such as row (1) or row (2), a user defines several sparse points in (a) as

“+”. The human annotated matchings are marked as dot in (b), from which a Gaussian distribution is

estimated and displayed as an ellipse. The correspondence estimated from SIFT flow is marked as “×”

in (b).

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Radius r (pixels)

P
ro

b
.

o
f

o
n

e
 u

s
e
r

a
n

n
o

ta
ti

o
n

 w
it

h
in

 r
−

ra
d

iu
s

SIFT flow

Minimum L1 norm SIFT matching

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

Stardard deviation of annotation (pixels)

C
o

u
n

ts

Figure 4.13. The evaluation of SIFT flow using human annotation. Left: the probability of one human

annotated flow lies within r distance to the SIFT flow as a function of r (red curve). For comparison,

we plot the same probability for direct minimum L1-norm matching (blue curve). Clearly SIFT flow

matches human perception better. Right: the histogram of the standard deviation of human annotation.

Human perception of scene correspondence varies from subject to subject.

Sec. 4.5. Applications 111

� 4.5.1 Predicting motion fields from a single image

The goal is, given a single static image, to predict what motions are plausible in the image. This

is similar to the recognition problem, but instead of assigning labels to each pixel, we want to

assign possible motions.

We built a scene retrieval infrastructure to query still images over a database of videos

containing common moving objects. The database consists of sequences depicting common

events, such as cars driving through a street and kids playing in a park. Each individual frame

was stored as a vector of word-quantized SIFT features, as described in Sect. 4.3.5. In addition,

we store the temporal motion field estimated using [22] between every two consecutive frames

of each video.

We compare two approaches for predicting the motion field for the query still image. The

first approach consists of directly transferring the motion of the closest video frame matched

in the database. Using the SIFT-based histogram matching in Sect. 4.3.5, we can retrieve

very similar video frames that are roughly spatially aligned. For common events such as cars

moving forward on a street, the motion prediction can be quite accurate given enough samples

in the database. The second approach refines the coarse motion prediction described above

using the dense correspondences obtained by the alignment algorithm Sect. 4.3.3). In par-

ticular, we compute the SIFT flow from the retrieved video frame to the query image and use

the computed correspondence to warp the temporally estimated motion of the retrieved video

frame. Figure 4.17 shows examples of predicted motion fields directly transferred from the top

5 database matches and the warped motion fields. Note that in simple cases the direct transfer

is already quite accurate and the warping results only in minor refinements.

While there are many improbable flow fields (e.g., a car moving upwards), each image can

have multiple plausible motions : a car or a boat can move forward, in reverse, turn, or remain

static. In any scene the camera motion can generate motion field over the entire frame and

objects can be moving at different velocities. Figure 4.14 shows an example of 5 motion fields

predicted using our video database. Note that all the motions fields are different, but plausible.

� 4.5.2 Quantitative evaluation

Due to the inherent ambiguity of multiple plausible motions for each still image, we design

the following procedure for quantitative evaluation. For each test video, we randomly select a

test frame and obtain a result set of top n inferred motion fields using our motion prediction

method. Separately, we collect an evaluation set containing the temporally estimated motion

112 CHAPTER 4. SIFT FLOW: DENSE CORRESPONDENCE ACROSS SCENES

Figure 4.14. Multiple motion field candidates. A still query image with its temporally estimated

motion field (in the green frame) and multiple motion fields predicted by motion transfer from a large

video database.

(from video) for the test frame (the closest to a ground truth we have) and 11 random motion

fields taken from other scenes in our database, acting as distracters. We take each of the n

inferred motion fields from the result set and compute their similarity (defined below) to the set

of evaluation fields. The rank of the ground truth motion with respect to the random distracter

motions is an indicator of how close the predicted motion is to the true motion estimated from

the video sequence. Because there are many possible motions that are still realistic, we do

this comparison with each of the top n motion fields within the result set and keep the highest

ranking achieved. Finally, we repeat this evaluation ten times with a different randomly selected

test frame for each test video and report the median of the rank score across the different trials.

For this evaluation, we represent each motion field as a regular two dimensional motion

grid filled with 1s where there is motion and 0 otherwise. The similarity between two motion

fields is defined then as

S(M,N)
def
=

∑

(x,y)∈G

(

M(x, y) = N(x, y)
)

(4.2)

where M and N are two rectangular motion grids of the same size, and (x, y) is a coordinate

pair within the spatial domain G of grids M and N.

Figure 4.15 (a) shows the normalized histogram of these rankings across 720 predicted

Sec. 4.5. Applications 113

Direct Transfer

Warp

Street Videos

1 2 4 73 5 6 8 9 10

top inferences considered

5 10 15

Inference Ranking
%

 i
n

s
ta

n
c
e

s

0

70

60

50

40

30

20

10

0

0.7

0.6

0.5

0.4

0.3

0.2

0.1

p
re

c
is

io
n

1 2 4 7 13 5 6 8 9 0

Inference Ranking

%
 i
n

s
ta

n
c
e

s

0

70

60

50

40

30

20

10

All Videos

(a) (b) (c)

Figure 4.15. Evaluation of motion prediction. (a) and (b) show normalized histograms of prediction

rankings (result set size of 15). (c) shows the ranking precision as a function of the result set size.

 0.945 0.928 0.429 0.255

 0.161 0.068 0.039 0.011

Figure 4.16. Motion instances where the predicted motion was not ranked closest to the ground

truth. A set of random motion fields (blue) together with the predicted motion field (green, ranked

3rd). The number above each image represents the fraction of the pixels that were correctly matched by

comparing the motion against the ground truth. In this case, some random motion fields appear closer to

the ground truth than our prediction (green). However, our prediction also represents a plausible motion

for this scene.

motion fields from our video data set. Figure 4.15 (b) shows the same evaluation on a subset

of the data that includes 400 videos with mostly streets and cars. Notice how, for more than

half of the scenes, the inferred motion field is ranked the first suggesting a close match to

the temporally-estimated ground truth. Most other test examples are ranked within the top 5.

Focusing on roads and cars gives even better results with 66% of test trials ranked 1st and even

114 CHAPTER 4. SIFT FLOW: DENSE CORRESPONDENCE ACROSS SCENES

(a) (b) (c) (d) (e)

Figure 4.17. Motion from a single image. The (a) original image, (b) matched frame from the video

data set, (c) motion of (b), (d) warped and transferred motion field from (b), and (e) ground truth for

(a). Note that the predicted motion in (d) is inferred from a single input still image, i.e. no motion signal

is available to the algorithm. The predicted motion is based on the motion present in other videos with

image content similar to the query image.

more test examples ranked within the top 5. Figure 4.15 (c) shows the precision of the inferred

motion (the percentage of test examples with rank 1) as a function of the size of the result

set, comparing (i) direct motion field transfer (red circles) and (ii) warped motion field transfer

using SIFT flow (blue stars).

While histograms of ranks show that the majority of the inferred motions were ranked 1st,

there are still a significant number of instances with lower rank. Figure 4.16 shows a false

negative example, where the inferred motion field was not ranked top despite the reasonable

output. Notice how the top ranked distracter fields are quite similar to our prediction showing

Sec. 4.5. Applications 115

(a) (b) (c)

(1)

(2)

(3)

Figure 4.18. Motion synthesis via object transfer. Query images (a), the top video match (b), and

representative frames from the synthesized sequence (c) obtained by transferring the moving objects

from the video to the still query image.

that, in some cases, where our prediction is not ranked the first, we still produce realistic motion.

� 4.5.3 Motion synthesis via object transfer

We described above how to predict the direction and velocity of objects in a still image. Having

a prior on what scenes look like over time also allows us to infer what objects (that might not

be part of the still image) can possibly appear. For example, a car moving forward can appear

in a street scene with an empty road; or a fish can start swimming in a fish tank scene.

Based on this idea, we propose a method for synthesizing motion from a still image. The

goal is to transfer moving objects from similar video scenes to a static image. In particular,

given a still image q that is not part of any video in our database D, we identify and transfer

moving objects from videos in D into q as follows:

1. Query D using the SIFT-based scene matching algorithm to retrieve the set of closest

video frame matches F = {fi|fi is the ith frame from a video in D} given the query

image q.

2. For each frame fi ∈ F , we can synthesize a video sequence based on the still image q.

The kth frame of the synthesized video is generated as follows:

116 CHAPTER 4. SIFT FLOW: DENSE CORRESPONDENCE ACROSS SCENES

(a) Densely sample the motion from frame fi+k to fi+k+1

(b) Construct frame qk by transferring non-moving pixels from q and moving pixels

from fi+k.

(c) Apply poisson editing [83] to blend the foreground (pixels from fi+k) into the back-

ground composed of pixels from q.

Figure 4.18 shows examples of still query images, their corresponding retrieved video se-

quences from our database, and representative frames from the synthesized video sequence

created by transferring the moving objects from the video sequence into the still image. No-

tice the variety of region sizes transferred and the seamless integration of objects into the new

scenes.

Some of the biggest challenges in creating realistic composites lie in estimating the cor-

rect size and orientation of the objects to introduce in the scene. Our framework inherently

takes care of these constraints by retrieving sequences that are visually similar to the query im-

age. This enables creating realistic motion sequences from still images using a straightforward

transfer of moving objects.

� 4.6 Experiments on Image Alignment and Face Recognition

We have demonstrated that it is possible to establish semantically meaningful matches between

images across scenes through matching salient local image structure SIFT. In this section, we

apply SIFT flow to traditional image alignment problems, and demonstrate that SIFT flow is

also able to handle challenging image registration and recognition problems in these areas.

� 4.6.1 Image registration of the same scene

Image registration of the same physical scene can be a very challenging problem when there

is little overlap between two images, or local appearances change drastically from one image

to the other due to the change of season, different imaging conditions (angle, lighting, sensor),

geographical deformations, and human activities such as new buildings and destruction by wars.

Sparse feature detection and matching is the standard way for image matching problem in

this category [130], but we want to see how SIFT flow would perform even though it is not

specifically designed for this task.

Let us first look at two satellite images2 of the same location on Mars as shown in Figure

2Image source: http://www.msss.com/mars_images/moc/2006/12/06/gullies/sirenum_crater/index.html

http://www.msss.com/mars_images/moc/2006/12/06/gullies/sirenum_crater/index.html

Sec. 4.6. Experiments on Image Alignment and Face Recognition 117

(a) Image 1 (Aug 26, 2005) (b) Image 2 (Dec 22, 2001) (c) 4390 SIFT features of (a) (d) 6257 SIFT features of (b)

(e) Matching of the sparse features (f) Dense flow from (e) (g) Matching error of (f)

(h) Dense SIFT of image 1 (i) Dense SIFT of image 2 (j) SIFT flow field (k) Matching error of (j)

Figure 4.19. SIFT flow can be applied to aligning satellite images. The two Mars satellite images

(a) and (b) are taken at four years apart with different local appearances. The results of sparse feature

detection and matching are shown in (c) to (g), whereas the results of SIFT flow are displayed in (h) to

(k). The mean absolute error of the sparse feature approach is 0.030, while the mean absolute error of

SIFT flow is 0.021, significantly lower. Visit webpage http://people.csail.mit.edu/celiu/SIFTflow/NGA/

for the animations of the warping.

4.19 (a) and (b). Because they were taken four years apart, the intensities and even features

vary between the two images. We first used sparse SIFT feature detection [70] to detect SIFT

feature points on both images ((c) and (d)), and a sparse correspondence is established through

minimum SSD matching (e). This sparse correspondence is further interpolated to form a dense

118 CHAPTER 4. SIFT FLOW: DENSE CORRESPONDENCE ACROSS SCENES

(a) Image 1 (b) Image 2 (c) SIFT flow field (d) Warped image 2 (e) Checkerboard of (a) and (d)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

Figure 4.20. SIFT flow can be applied to image registration of the same scene but under different

lighting and imaging conditions. Column (a) and (b) are some examples from [130]. Even though

originally designed for scene alignment, SIFT flow is also able to align these challenging pairs. Visit

webpage http://people.csail.mit.edu/celiu/SIFTflow/NGA/ for the animations of the warping.

Sec. 4.6. Experiments on Image Alignment and Face Recognition 119

(a)

(b)

(c)

Figure 4.21. SIFT flow can serve as a tool to account for pose, expression and lighting changes for

face recognition. (a): Ten samples of one subject in ORL database [93]. Notice pose and expression

variations of these samples. (b): We select the first image as the query, apply SIFT flow to aligning the

rest of the images to the query, and display the warped images with respect to the dense correspondence.

The poses and expressions are rectified to that of the query after the warping. (c): The same as (b) except

for choosing the fifth sample as the query.

flow field as shown in (f). To understand how good this interpolated dense correspondence is,

we warp image 2 to image 1 according to the dense flow field and display the difference between

image 1 and warped image 2 in (g). The mean absolute error of this correspondence is 0.030

(the pixel value is between 0 and 1). Clearly, the structural correspondence between the two

Mars images are not captured in (g). We then applied SIFT flow to aligning these two images.

The SIFT flow field is displayed in (j), and the difference between image 1 and warped image

2 according to the SIFT flow field is displayed in (k). The mean absolute error decreases to

0.021 for SIFT flow, and visually we can see that misalignment has been significantly reduced.

To our surprise, there is a fracture in the estimated SIFT flow field in (j). This could be caused

by an underlying geographical deformation over the four years, or simply a stitching artifact of

satellite images.

We further applied SIFT flow to aligning some challenging examples in [130] (the algorithm

proposed in [130] is able to handle these examples well) and the results are displayed in Figure

4.20, where column (1) and (2) are pairs of images to align. The correspondences between

some pairs, e.g., row (1), (3), and (7) are even not obvious to human visual system. The dense

correspondences estimated from SIFT flow are displayed in column (c). For visualization we

again warp image 2 to image 1 according to the flow field and display the warped image 2 in

column (d). To inspect the quality of the flow, we superimpose warped image 2 to image 1 on

120 CHAPTER 4. SIFT FLOW: DENSE CORRESPONDENCE ACROSS SCENES

a checkerboard, as shown in column (e). From these results it is clear that SIFT flow is able

handle these image registration problems despite drastically different local image appearances

and large displacement.

� 4.6.2 Face recognition

Face recognition has been a key application of computer vision and pattern recognition. It has

been integrated in consumer-end applications such as Apple iPhoto and Google Picassa. Face

recognition turns to be a challenging problem when there are large pose and lighting variations

for a large corpus of subjects. We apply SIFT flow for face recognition to see how image

alignment can address classical pattern recognition problems.

We use the ORL database [93], which contains 40 subjects and 10 images for each subject

with some pose and expression variations, as the data for the experiment. In Fig. 4.21, a female

sample is selected as an example to demonstrate how dense registration can deal with pose and

expression variations. We first select the first image as the query, apply SIFT flow to aligning

the rest of the images to the query, and display the warped images with respect to the estimated

dense correspondence. As shown in Fig. 4.21 (b), the poses and expressions are rectified to

that of the query after the warping. Distances established amongst the samples in (b) would

exclude pose and expression variations, which may play an important factors for the distances

computed amongst the samples in (a). We can also choose a different sample as query and align

the rest of the images to this query, as demonstrated in (c).

In order to compare to the state-of-the-art, we conducted experiments for both original size

and downsampled 32 × 32 images. We random split γ (γ ∈ (0, 1)) portion of the samples for

each subject for training, and the rest 1−γ is used for test. For a test image, we first retrieve

the top nearest neighbors (maximum 20) from the training database using GIST matching [82],

and then apply SIFT flow to find the dense correspondence from the test to each of its nearest

neighbors by optimizing the objective function in Eqn. (4.1). We assign the subject identity

associate with the best match, i.e. the match with the minimum matching objective, to the test

image. This is essentially a nearest neighbor approach using SIFT flow score as the distance

metric for face recognition.

The experimental results are shown in Figure 4.22. We use the nearest neighbor classifier

based on the Euclidian distance (Pixels + NN + L2) and nearest neighbor classifier using the

L1-norm distance between GIST features (GIST + NN + L1) as the benchmark. Clearly, GIST

features outperform raw pixel values since GIST feature is invariant to lighting changes. SIFT

flow further improves the performance as SIFT flow is able to align images across different

Sec. 4.6. Experiments on Image Alignment and Face Recognition 121

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Ratio of samples used for training

C
la

s
s
if
ic

a
ti
o
n
 r

a
te

Pixels + NN + L2
GIST + NN + L1
SIFT flow

(a) 32×32

0 0.2 0.4 0.6 0.8 1
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Ratio of samples used for training

C
la

s
s
if
ic

a
ti
o
n
 r

a
te

Pixels + NN + L2
GIST + NN + L1
SIFT flow

(b) 92×112

Figure 4.22. SIFT flow is applied for face recognition. The curves in (a) and (b) are the performance

plots for low-res and high-res images in the ORL face database, respectively. SIFT flow significantly

boosted the recognition rate especially when there are not enough training samples.

poses. We observe that SIFT flow boosts the classification rate significantly especially when

there are not enough samples, e.g., the ratio of training sample is 0.1 or 0.2. We compare the

122 CHAPTER 4. SIFT FLOW: DENSE CORRESPONDENCE ACROSS SCENES

performance of SIFT flow and the state-of-the-art [24] for few training samples in Table 4.1.

Clearly, SIFT flow outperforms the state-of-the-art when there are only one or two samples for

training because SIFT flow is able to handle pose variation through establishing dense corre-

spondence between different poses.

Test errors 1 Train 2 Train 3 Train

S-LDA [24] N/A 17.1± 2.7 8.1± 1.8

SIFT flow 28.4± 3.0 16.6± 2.2 8.9± 2.1

Table 4.1. SIFT flow outperforms the state-of-the-art [24] when there are only few (one or two) training

samples.

� 4.7 Discussions

There have been two schools for image alignment, dense or sparse correspondence. In the

sparse representation, images are summarized as feature points such as Harris corners [48],

SIFT [70], and many others [99]. Correspondence is then established through matching these

feature points. The algorithms based on the sparse representations are normally efficient, and

are able to handle large displacements. In the dense representation, however, correspondence

is established at pixel levels3 in the two images, e.g., optical flow field. Because of the spatial

regularity, it is nontrivial to estimate a flow field from two images. There has been tremendous

work since the early explorations [51, 71]; and there are advances in both continuous [20] and

discrete domains [103]. Yet the advantage of the dense representation is the potential for image

warping and computing image-domain metrics (for recognition).

SIFT flow inherits the characteristics of the dense representation by obtaining pixel-to-pixel

correspondences, and at the same time inherits the scale, lighting, and pose-invariant feature

of SIFT. We have demonstrated that SIFT flow is able to align very different images across

scenes through scene retrieval and satellite image alignment, where the images contain objects

of different appearances. Traditional dense correspondence models such as optical flow often

fail to capture correspondences for this scenario. On the other hand, the dense representation of

3It does not mean the correspondence is bijective (nor injective or surjective). In the flow field representation,

there is a flow vector for every pixel in image A indicating which pixel it corresponds to in image B.

Sec. 4.8. Conclusion 123

SIFT flow is able to warp the information from the target image to the source, e.g., predicting

motion fields from a single image, and this provides a rich set of applications for image parsing

[68]. Moreover, SIFT flow is able to discover a crack in satellite images of Mars by minimizing

the SIFT flow objective function that contains truncated L1 norms for spatial regularity. These

results can be hardly achieved from sparse representations.

An important direction for improving the algorithm is speed. The current system cannot

be used for real-time image or video retrieval and matching. One direction is the GPU imple-

mentation [29] of the BP-S algorithm, which can get up to 50x speedup. However, we feel that

there could be essential speedup from the sparse matching. The bottleneck of SIFT flow is the

large search window size as the locations of objects may change drastically from one image to

the other. The sparse, independent matching provides good, approximate matching for sparse

points, and this correspondence can be propagated by abiding by the spatial regularities.

� 4.8 Conclusion

We introduced the concept of scene alignment: to find the dense correspondence between im-

ages across scenes. We proposed SIFT flow to match salient local image structure SIFT under

the conventional optical flow framework, and demonstrated that SIFT flow is able to establish

semantically meaningful correspondence across complex scenes despite significant differences

in appearance and spatial layout of matched images. Because the search space in SIFT flow

is much larger than the search space in optical flow, we designed a coarse-to-fine matching

scheme for matching large-size images.

We have demonstrated SIFT flow in video retrieval, motion estimation from a single im-

age and video synthesis via transferring moving objects with the support of large databases.

We further applied SIFT flow to traditional image alignment problems such as satellite image

registration and face recognition. The preliminary success on these experiments suggested that

scene alignment techniques such as SIFT flow would be useful tools for various applications in

computer vision and computer graphics.

124 CHAPTER 4. SIFT FLOW: DENSE CORRESPONDENCE ACROSS SCENES

Chapter 5

Nonparametric Scene Parsing via

Dense Scene Alignment

In Chapter 4, we have introduced SIFT flow, a dense scene alignment algorithm to align im-

ages across scenes. We showed many new applications, such as motion estimation from a sin-

gle image and video synthesis via transferring moving objects, both with the support of large

databases. In this chapter, we want to apply dense scene alignment to scene parsing.

� 5.1 Introduction

Scene parsing, or recognizing and segmenting objects in an image, is one of the core prob-

lems of computer vision. Traditional approaches to object recognition begin by specifying an

object model, such as template matching [121, 31], constellations [37, 35], bags of features

[107, 57, 44, 109], or shape models [10, 12, 34], etc. These approaches typically work with a

fixed-number of object categories and require training generative or discriminative models for

each category given training data. In the parsing stage, these systems try to align the learned

models to the input image and associate object category labels with pixels, windows, edges or

other image representations. Recently, context information has also been carefully modeled to

capture the relationship between objects at the semantic level [46, 50]. Encouraging progress

has been made by these models on a variety of object recognition and scene parsing tasks.

However, these learning-based methods do not, in general, scale well with the number of

object categories. For example, to expand an existing system to include more object categories,

we need to train new models for these categories and, typically adjust system parameters. Train-

ing can be a tedious job if we want to include thousands of object categories for a scene parsing

system. In addition, the complexity of contextual relationships amongst objects also increases

rapidly as the quantity of object categories expands.

125

126 CHAPTER 5. NONPARAMETRIC SCENE PARSING VIA DENSE SCENE ALIGNMENT

unlabeled

building

car

pole

road

sky

tree

window

(d)

(a)

(b) (c)

(e)

Figure 5.1. For a query image (a), our system finds the top matches (b) (three are shown here) using a modified,

coarse-to-fine SIFT flow matching algorithm. The annotations of the top matches (c) are transferred and integrated

to parse the input image as shown in (d). For comparison, the ground-truth user annotation of (a) is shown in (e).

Recently, the emergence of large databases of images has opened the door to a new family

of methods in computer vision. Large database-driven approaches have shown the potential

for nonparametric methods in several applications. Instead of training sophisticated parametric

models, these methods try to reduce the inference problem for an unknown image to that of

matching to an existing set of annotated images. In [102], the authors estimate the pose of a

human relying on 0.5 million training examples. In [49], the proposed algorithm can fill holes

on an input image by introducing elements that are likely to be semantically correct through

searching a large image database. In [90], a system is designed to infer the possible object

categories that may appear in an image by retrieving similar images in a large database [91].

Moreover, the authors in [118] showed that with a database of 80 million images, even simple

SSD match can give semantically meaningful parsing for 32× 32 images.

Motivated by the recent advances in large database-driven approaches, we designed a non-

parametric scene parsing system to transfer the labels from existing samples to annotate an

image through dense scene alignment, as illustrated in Figure 5.1. For a query image (a), our

system first retrieves the top matches in the LabelMe database [91] using a combination of

GIST matching [82] and SIFT flow [69]. Since these top matches are labeled, we transfer the

annotation (c) of the top matches to the query image and obtain the scene parsing result in (d).

Sec. 5.2. Scene Parsing through Label Transfer 127

For comparison, the ground-truth user annotation of the query is displayed in (e). Our system

is able to generate promising scene parsing results if images from the same scene category are

retrieved in the annotated database.

However, it is nontrivial to build an efficient and reliable scene parsing system using dense

scene alignment. The SIFT flow algorithm proposed in [69] does not scale well with image

dimensions. Therefore, we propose a flexible, coarse-to-fine matching scheme to find dense

correspondences between two images. To account for the multiple annotation suggestions from

the top matches, a Markov random field model is used to merge multiple cues (e.g., likeli-

hood, prior and spatial smoothness) into reliable annotation. Promising experimental results

are achieved on images from the LabelMe database [91].

Our goal is to explore the performance of scene parsing through the transfer of labels from

existing annotated images, rather than building a comprehensive object recognition system. We

show, however, that the performance of our system outperforms existing approaches [31, 106]

on our dataset.

� 5.2 Scene Parsing through Label Transfer

Now that we have a large database of annotated images and a technique of establishing dense

correspondences across scenes, we can transfer the existing annotations to a query image

through dense scene alignment. For a given query image, we retrieve a set of K-nearest neigh-

bors in our database using GIST matching [82]. We then compute the SIFT flow from the query

to each nearest neighbor, and use the achieved minimum energy (defined in Eqn. 4.1) to re-rank

the K-nearest neighbors. We further select the top M re-ranked retrievals to create our voting

candidate set. This voting set will be used to transfer its contained annotations into the query

image. This procedure is illustrated in Figure 5.2.

Under this setup, scene parsing can be formulated as the following label transfer problem.

For a query image I with its corresponding SIFT image s, we have a set of voting candidates

{si, ci,wi}i=1:M , where si, ci and wi are the SIFT image, annotation, and SIFT flow field

(from s to si) of the ith voting candidate. ci is an integer image where ci(p) ∈ {1, · · · , L} is

the index of object category for pixel p. We want to obtain the annotation c for the query image

by transferring ci to the query image according to the dense correspondence wi.

We build a probabilistic Markov random field model to integrate multiple labels, prior in-

formation of object category, and spatial smoothness of the annotation to parse image I . Similar

128 CHAPTER 5. NONPARAMETRIC SCENE PARSING VIA DENSE SCENE ALIGNMENT

Database
K nearest

neighbors

M voting

candidates
Query image

Figure 5.2. For a query image, we first find a K-nearest neighbor set in the database using GIST matching [82].

The nearest neighbors are re-ranked using SIFT flow matching scores, and form a top M -voting candidate set. The

annotations are transferred from the voting candidates to the query image.

to that of [106], the posterior probability is defined as:

− log P
(

c|I, s, {si, ci,wi}
)

=
∑

p

ψ
(

c(p); s, {s′i}
)

+

α
∑

p

λ
(

c(p)
)

+β
∑

{p,q}∈ε

φ
(

c(p), c(q); I
)

+logZ, (5.1)

where Z is the normalization constant of the probability. This posterior contains three compo-

nents, i.e. likelihood, prior and spatial smoothness.

The likelihood term is defined as

ψ
(

c(p)= l
)

=

min
i∈Ωp,l

‖s(p)−si(p+w(p))‖, Ωp,l 6= ∅

τ, Ωp,l = ∅
(5.2)

where Ωp,l = {i; ci(p + w(p)) = l} is the index set of the voting candidates whose label is

l after being warped to pixel p. τ is set to be the value of the maximum difference of SIFT

feature: τ=maxs1,s2,p ‖s1(p)− s2(p)‖.
The prior term is λ(c(p)= l) indicates the prior probability that object category l appears at

pixel p. This is obtained from counting the occurrence of each object category at each location

in the training set.

λ
(

c(p)= l
)

= − log histl(p) (5.3)

where histl(p) is the spatial histogram of object category l.

The smoothness term is defined to bias the neighboring pixels into having the same label

if no other information is available, and the probability depends on the edge of the image: the

stronger luminance edge, the more likely that the neighboring pixels may have different labels.

φ
(

c(p), c(q)
)

=δ[c(p) 6=c(q)]

(

ǫ+e−γ‖I(p)−I(q)‖2

ǫ+1

)

(5.4)

Sec. 5.3. Experiments 129

where γ=(2 < ‖I(p)− I(q)‖2 >)−1 [106].

Notice that the energy function is controlled by four parameters, K and M that decide the

mode of the model, and α and β that control the influence of spatial prior and smoothness. Once

the parameters are fixed, we again use BP-S algorithm to minimize the energy. The algorithm

converges in two seconds on a workstation with two quad-core 2.67 GHz Intel Xeon CPUs.

A significant difference between our model and that in [106] is that we have fewer param-

eters because of the nonparametric nature of our approach, whereas classifiers where trained in

[106]. In addition, color information is not included in our model at the present as the color

distribution for each object category is diverse in our database.

� 5.3 Experiments

We used a subset of the LabelMe database [91] to test our system. This data set contains 2688

fully annotated images, most of which are outdoor scenes including street, beach, mountains,

fields and buildings. From these images we randomly selected 2488 for training and 200 for

testing. We chose the top 33 object categories with the most labeled pixels. The pixels that are

not labeled, or labeled as other object categories, are treated as the 34th category: “unlabeled”.

The per pixel frequency count of these object categories in the training set is shown at the top

of Figure 5.3. The color of each bar is the average RGB value of the corresponding object

category from the training data with saturation and brightness boosted for visualization. The

top 10 object categories are, in descending order sky, building, mountain, tree, unlabeled, road,

sea, field, grass, and river. The spatial priors of these object categories are displayed at the

bottom of Figure 5.3. White means zero probability and saturated color means the highest

probability. We observe that sky occupies the upper part of image grid and field occupies the

lower part. Notice that there are only limited numbers of samples for the objects such as sun,

cow, bird, and moon.

Our scene parsing system is illustrated in Figure 5.4. The system retrieves a K-nearest

neighbor set for the query image (a), and further selects M voting candidates with the minimum

SIFT matching score. For the purpose of illustration we set M=3 here. The RGB image, SIFT

image, and annotation of the voting candidates are shown in (c) to (e), respectively. The SIFT

flow field is visualized in (f) using the same visualization scheme as in [69]. After we warp the

voting candidates into the query with respect to the flow field, the warped RGB (g) and SIFT

image (h) are very close to the query (a) and (b). Combining the warped annotations in (i), the

system outputs the parsing of the query in (j), which is close to the ground-truth annotation in

130 CHAPTER 5. NONPARAMETRIC SCENE PARSING VIA DENSE SCENE ALIGNMENT

0

0.1

0.2

0.3

s
k
y

b
u

ild
in

g

m
o

u
n

ta
in

tre
e

u
n

la
b

e
le

d

ro
a

d

s
e

a

fie
ld

g
ra

s
s

riv
e

r

p
la

n
t

c
a

r

s
a

n
d

ro
c
k

s
id

e
w

a
lk

w
in

d
o

w

d
e

s
e

rt

d
o

o
r

b
rid

g
e

p
e

rs
o

n

fe
n

c
e

b
a

lc
o

n
y

c
ro

s
s
w

a
lk

a
w

n
in

g

s
ta

irc
a

s
e

s
ig

n

s
tre

e
tlig

h
t

b
o

a
t

p
o

le

b
u

s

s
u

n

c
o

w

b
ird

m
o

o
n

F
re

q
u

e
n

c
y
 o

f
o

c
c
u

rr
e

n
c
e

sky building mountain tree unlabeled road

sea field grass river plant car

sand rock sidewalk window desert door

bridge person fence balcony crosswalk awning

staircase sign streetlight boat pole bus

sun cow bird moon

Figure 5.3. Above: the per-pixel frequency counts of the object categories in our dataset (sorted in descending

order). The color of each bar is the average RGB value of each object category from the training data with saturation

and brightness boosted for visualization. Bottom: the spatial priors of the object categories in the database. White

means zero and the saturated color means high probability.

Sec. 5.3. Experiments 131

(a) (b)

(c) (d) (e) (f) (g) (h) (i)

(j) (k) unlabeled

car

field

road

sky

tree

���������building

car

pole

road

sky

tree

window

(a) (b)

(c) (d) (e) (f) (g) (h) (i)

(j) (k)

Figure 5.4. System overview. Our algorithm computes the SIFT image (b) of an query image (a), and uses GIST

[82] to find its K nearest neighbors in our database. We apply coarse-to-fine SIFT flow to align the query image to

the nearest neighbors, and obtain top M as voting candidates (M = 3 here). (c) to (e): the RGB image, SIFT image

and user annotation of the voting candidates. (f): the inferred SIFT flow. From (g) to (i) are the warped version of

(c) to (e) with respect to the SIFT flow in (f). Notice the similarity between (a) and (g), (b) and (h). Our system

combines the voting from multiple candidates and generates scene parsing in (j) by optimizing the posterior. (k):

the ground-truth annotation of (a).

132 CHAPTER 5. NONPARAMETRIC SCENE PARSING VIA DENSE SCENE ALIGNMENT

0

0. 1

0. 2

0. 3

0. 4

0. 5

0. 6

0. 7

0. 8

0. 9

1

sky

b
u

ild
in

g

m
o

u
n

ta
in

tre
e

ro
a

d

se
a

e

ld

g
ra

ss

riv
e

r

p
la

n
t

ca
r

sa
n

d

ro
ck

sid
e

w
a

lk

w
in

d
o

w

d
e

se
r

t

d
o

o
r

b
rid

g
e

p
e

rso
n

fe
n

ce

b
a

lco
n

y

cro
ssw

a
l

k

a
w

n
in

g

sta
irca

se

sig
n

stre
e

tlig
h

t

b
o

a
t

p
o

le

b
u

s

su
n

(c) Shotton et al., No Markov random field

 51.67%

0

0. 1

0. 2

0. 3

0. 4

0. 5

0. 6

0. 7

0. 8

0. 9

1

sky

b
u

ild
in

g

m
o

u
n

ta
in

tre
e

ro
a

d

se
a

e

ld

g
ra

ss

riv
e

r

p
la

n
t

ca
r

sa
n

d

ro
ck

sid
e

w
a

lk

w
in

d
o

w

d
e

se
r

t

d
o

o
r

b
rid

g
e

p
e

rso
n

fe
n

ce

b
a

lco
n

y

cro
ssw

a
l

k

a
w

n
in

g

sta
irca

se

sig
n

stre
e

tlig
h

t

b
o

a
t

p
o

le

b
u

s

su
n

(b) Our system, no Markov random field

 66.24%

0

0. 1

0. 2

0. 3

0. 4

0. 5

0. 6

0. 7

0. 8

0. 9

1

sky

b
u

ild
in

g

m
o

u
n

ta
in

tre
e

ro
a

d

se
a

e

ld

g
ra

ss

riv
e

r

p
la

n
t

ca
r

sa
n

d

ro
ck

sid
e

w
a

lk

w
in

d
o

w

d
e

se
r

t

d
o

o
r

b
rid

g
e

p
e

rso
n

fe
n

ce

b
a

lco
n

y

cro
ssw

a
l

k

a
w

n
in

g

sta
irca

se

sig
n

stre
e

tlig
h

t

b
o

a
t

p
o

le

b
u

s

su
n

(a) Our system, optimized parameters

 74.75%

P
e

r-
cl

a
ss

 r
e

co
g

n
it

io
n

 r
a

te

P
e

r-
cl

a
ss

 r
e

co
g

n
it

io
n

 r
a

te

P
e

r-
cl

a
ss

 r
e

co
g

n
it

io
n

 r
a

te

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sky

b
u

ild
in

g

m
o

u
n

ta
in

tre
e

ro
a

d

se
a

e

ld

g
ra

ss

riv
e

r

p
la

n
t

ca
r

sa
n

d

ro
ck

sid
e

w
a

lk

w
in

d
o

w

d
e

se
rt

d
o

o
r

b
rid

g
e

p
e

rso
n

fe
n

ce

b
a

lco
n

y

cro
ssw

a
lk

a
w

n
in

g

sta
irca

se

sig
n

stre
e

tlig
h

t

b
o

a
t

p
o

le

b
u

s

su
n

P
e

r-
cl

a
ss

 r
e

co
g

n
it

io
n

 r
a

te

(d) Our system, matching color instead of SIFT

 49.68%

Figure 5.5. The per-class recognition rate of our system and the one in [106]. (a) Our system with the the parameters

optimized for pixel-wise recognition rate. (b) Our system with α = β = 0, namely, with the Markov random field

model turned off. (c) The performance of the system in [106] also with the conditional random field turned off,

trained and tested on the same data sets as (a) and (b). (d) Our system, but matching RGB instead of matching

SIFT. We may observe that the our optimized system (a) is biased towards “stuff”, large-region objects such as sky,

building, mountain, and tree, because of the biased prior distribution of the classes as illustrated in Figure 5.3. When

we sacrifice the overall performance by turning off the Markov random field model in Eqn. 5.1, our system performs

better for small-size objects. To compare, we downloaded the code of a state-of-the-art object recognition system

[106] based on training per-pixel classifiers using texton features, and ran the code on our dataset with the results

shown in (c). Notice that the conditional random field model described in [106] is not available in the publicly

available code. The fair comparison of (b) and (c) (both with spatial regularization turned off) suggests that our

system, which is established upon dense scene alignment, outperforms [106], which relies on training pixel-wise

classifiers. Lastly, we modified our system by matching RGB instead of SIFT without changing anything else, and

showed the results in (d). Clearly, SIFT flow (a) results in better performance than optical flow (d), although optical

flow produces reasonable results compared to [106].

Sec. 5.3. Experiments 133

(k).

Some label transferring results are displayed in Figure 5.9. The input image from the test

set is displayed in column (a). We show the best match, its corresponding annotation, and the

warped best match in (b), (c) and (d), respectively. Even though our system takes the top M

matches as voting candidates, due to lack of space we only show the best match to demonstrate

how the system parses the query. Again, the warped image (d) looks similar to the input,

indicating that SIFT flow successfully matches image structures. The scene parsing results

output from our system are listed in column (e) with parameter setting K = 50, M = 5, α=

0.1, β = 70. The ground-truth user annotation is listed in (f). Notice that the gray pixels in

(f) are “unlabeled”, but our system does not generate “unlabeled” output. For sample 1, 5, 6,

8 and 9, our system generates reasonable predictions for the pixels annotated as “unlabeled”.

The pixel-wise recognition rate of our system is 74.75% by excluding the “unlabeled” class. A

failure example for our system is shown in Figure 5.10 when the system fails to retrieve images

with similar object categories to the query.

For comparison, we downloaded and ran the code from [106] using the same training and

test data with the conditional random field (CRF) turned off (the downloaded code does not

include the CRF part). The overall pixel-wise recognition rate of their system on our data set

is 51.67%, and the per-class rates are displayed in Figure 5.5 (c). For fairness we also turned

off the Markov random field model in our framework by setting α = β = 0, and plotted the

corresponding results in Figure 5.5 (b). Clearly, our system outperforms [106] in terms of both

overall and per-class recognition rate. We also modified our system by matching RGB instead

of SIFT with everything else unchanged, and showed in the results in Figure 5.5 (d). The

comparison of (a) and (d) suggests that SIFT flow results in better performance than optical

flow, although optical flow produces reasonable results compared to [106].

Overall, our system is able to predict the right object categories in the input image with a

segmentation fit to image boundary, even though the best match may look different from the

input, e.g., 2, 11, 12 and 17. If we divide the object categories into stuff (e.g., sky, mountains,

tree, sea and field) and things (e.g., cars, sign, boat and bus) [2, 50], our system generates much

better results for stuff than for things. The recognition rate for the top 7 object categories (all are

“stuff”) is 82.72%. This is because in our current system we only allow one labeling for each

pixel, and smaller objects tend to be overwhelmed by the labeling of larger objects. We plan to

build a recursive system in our future work to further retrieve things based on the inferred stuff.

We investigate the performance of our system by varying the parameters K, M , α and β.

First, we fix α = 0.1, β = 70 and plot the recognition rate as a function of K in Figure 5.6

134 CHAPTER 5. NONPARAMETRIC SCENE PARSING VIA DENSE SCENE ALIGNMENT

1 10 20 30 40 50 60
0.6

0.65

0.7

0.75

Number of nearest neighbors K

M=1

M=3

M=5

M=7

M=9

1 10 20 30 40 50 60
0.6

0.65

0.7

0.75

Number of nearest neighbors K

without prior and spatial terms

with prior and spatial terms

(a) (b)

Figure 5.6. (a): Recognition rate as a function of the number of nearest neighbors K and the number of voting

candidates M . (b): recognition rate as a function of the number of nearest neighbors K. Clearly, prior and spatial

smoothness help improve the recognition rate.

(a) with different M . Overall, the recognition rate increases as more nearest neighbors are

retrieved (K↑) and more voting candidates are used (M↑) since, obviously, multiple candidates

are needed to transfer labels to the query. However, the recognition drops as K and M continue

to increase as more candidates may include noise to label transfer. The maximum performance

is obtained when K = 50 and M = 5. Second, we fix M = 5, and plot the recognition rate as

a function of K by turning on prior and spatial terms (α= 0.1, β = 70) and turning them off

(α = β = 0) in Figure 5.6 (b). Prior and spatial smoothness increase the performance of our

system by about 7 percentage.

Lastly, we compared the performance of our system with a classifier-based system [31]. We

downloaded their code and trained a classifier for each object category using the same training

data. We converted our system into a binary object detector for each class by only using the

per-class likelihood term. The per-class ROC curves of our system (red) and theirs (blue) are

plotted in Figure 5.7. Except for five object categories, grass, plant, boat, person and bus, our

system outperforms or equals theirs.

� 5.4 Conclusion

We presented a novel, nonparametric scene parsing system to transfer the annotations from a

large database to an input image using dense scene alignment. Using the dense scene corre-

Sec. 5.4. Conclusion 135

0 0.5 1
0

0.2

0.4

0.6

0.8

1

sky
(170, 2124)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

building
(90, 1139)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

mountain
(74, 942)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

tree
(106, 1246)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

road
(62, 789)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

sea
(29, 352)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

field
(22, 221)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

grass
(15, 232)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

river
(17, 244)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

plant
(19, 309)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

car
(53, 593)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

sand
(12, 145)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

rock
(17, 253)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

sidewalk
(34, 422)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

window
(27, 333)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

desert
(0, 21)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

door
(18, 231)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

bridge
(8, 84)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

person
(27, 315)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

fence
(16, 136)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

balcony
(2, 45)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

crosswalk
(3, 36)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

awning
(11, 71)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

staircase
(6, 60)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

sign
(18, 201)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

streetlight
(16, 201)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

boat
(8, 79)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

pole
(7, 86)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

bus
(4, 30)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

sun
(2, 54)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

cow
(0, 7)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

bird
(2, 7)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

moon
(0, 3)

Figure 5.7. The ROC curve of each individual pixel-wise binary classifier. Red curve: our system after being

converted to binary classifiers; blue curve: the system in [31]. We used convex hull to make the ROC curves

strictly concave. The number (n, m) underneath the name of each plot is the quantity of the object instances in

the test and training set, respectively. For example, (170, 2124) under “sky” means that there are 170 test images

containing sky, and 2124 training images containing sky. Our system obtains reasonable performance for objects

with sufficient samples in both training and test sets, e.g., sky, building, mountain and tree. We observe truncation

in the ROC curves where there are not enough test samples, e.g., field, sea, river, grass, plant, car and sand. The

performance is poor for objects without enough training samples, e.g., crosswalk, sign, boat, pole, sun and bird. The

ROC does not exist for objects without any test samples, e.g., desert, cow and moon. In comparison, our system

outperforms or equals [31] for all object categories except for grass, plant, boat, person and bus. The performance

of [31] on our database is low because the objects have drastically different poses and appearances.

136 CHAPTER 5. NONPARAMETRIC SCENE PARSING VIA DENSE SCENE ALIGNMENT

��	
��	�boat

building

field

mountain

plant

sand

sea

sky

unlabeled

sea

sky

unlabeled

building

sea

sky

unlabeled

g

mountai

plant

river

sky

tree

unlabeled

mountain

sky

tree

unlabeled

grass

sky

tree

unlabeled

mountain

sky

unlabeled

grass

mountain

ri

sea

sk

tree

unlabeled

mountain

sky

tree

(a) (b) (c) (d) (e) (f)

(1)

(

(3)

(4)

(5)

(6)

(7)

(8)

(9)

Figure 5.8. Some scene parsing results output from our system. (a): query image; (b): the best match from nearest

neighbors; (c): the annotation of the best match; (d): the warped version of (b) according to the SIFT flow field; (e):

the inferred per-pixel parsing after combining multiple voting candidates; (f): the ground truth annotation of (a).

The dark gray pixels in (f) are “unlabeled”. Notice how our system generates a reasonable parsing even for these

“unlabeled” pixels.

Sec. 5.4. Conclusion 137

unlabeled

bu g

fence

field

pole

road

sky

tree

unlabeled

buildin�car

grass

pole

road

sidewalk

sky

streetlight

tree

unlabeled

buildin
�d

grass

r

sea

���� ��
e

window

unlabeled

bridge

building

car

person

road

sidewalk

sky

tree

unlabeled

awning

building

car

person

road

sky

tree

window

unlabeled

building

car

fence

mountain

person

plant

road

sidewalk

sky

unlabeled

awning

building

car

�������
n

��� �����!sidewalk

sky

tree

window

"#$%&'$'(building

)*%(+,-t e

unlabeled

building

grass

sky

tree

(a) (b) (c) (d) (e) (f)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

Figure 5.9. Some scene parsing results output from our system. (a): query image; (b): the best match from nearest

neighbors; (c): the annotation of the best match; (d): the warped version of (b) according to the SIFT flow field; (e):

the inferred per-pixel parsing after combining multiple voting candidates; (f): the ground truth annotation of (a).

The dark gray pixels in (f) are “unlabeled”. Notice how our system generates a reasonable parsing even for these

“unlabeled” pixels.

138 CHAPTER 5. NONPARAMETRIC SCENE PARSING VIA DENSE SCENE ALIGNMENT

unlabeled
building
grass
mountain
river
road
sky
tree

(a) (b) (c) (d) (e) (f)

Figure 5.10. Our system fails when no good matches can be retrieved in the database. Since the best matches do not

contain river, the input image is mistakenly parsed as a scene of grass, tree and mountain in (e). The ground-truth

annotation is in (f).

spondences, we warp the pixel labels of the existing samples to the query. Furthermore, we

integrate multiple cues to segment and recognize the query image into the object categories in

the database. Promising results have been achieved by our scene alignment and parsing sys-

tem on a challenging database. Compared to existing approaches that require training for each

object category, our nonparametric scene parsing system is easy to implement, has only a few

parameters, and embeds contextual information naturally in the retrieval/alignment procedure.

Chapter 6

Conclusion

In the previous chapters we have been through several topics that expand the frontier of motion

analysis beyond the pixel level along three directions, obtaining motion ground truth for real-

world videos, proposing new representations and exploring new applications. Below, we will

summarize the contributions of my thesis.

In Chapter 2, Human-Assisted Motion Annotation, we designed a system to integrate the

state-of-the-art computer vision algorithms and human expertise of motion perception to an-

notate ground-truth motion for real-world video sequences at every pixel and every frame. A

special graphical user interface was designed to allow the user to label layers, inspect mo-

tions, select parameters, and specify sparse correspondences. Our methodology was validated

by comparing with the ground-truth motion obtained through other means and by measuring

the consistency of human annotation. Using our system, we collected a motion ground-truth

database consisting of challenging real-world videos for algorithm evaluation and benchmark-

ing. Our human-in-the-loop system is able to obtain much more accurate motion estimates

than automated methods. We hope that our database and annotation code will improve both

the training and evaluation of algorithms for optical flow and layered motion analysis. The

human-assisted motion annotation system can be useful by itself for advanced video analysis

and editing tasks.

In Motion Magnification (Chapter 3.1), we presented a system to reveal motions that would

otherwise be invisible or be very difficult for humans to see. Our automatic layer analysis sys-

tem is able to robustly extract layer and motion information from a video sequence even when

the magnitude of the motion is very small. We proposed to estimate the motion of a video

sequence through tracking feature points with an adaptive region of support that represents

the local grouping relationship of pixels. Iteratively estimating regions of support and tracking

feature points help the system to overcome occlusions. We also proposed normalized complex

correlation to group the trajectory of feature points according to the same physical cause. Fea-

139

140 CHAPTER 6. CONCLUSION

ture points that exhibit similar frequency characteristics are grouped to form layer primitives.

Dense layer segmentation is obtained through a hypothesis-testing framework combining spa-

tial, temporal and color cues. We demonstrated that our approach is able to reliably estimate

layers in challenging sequences.

In general, motion magnification can be a useful tool for visualizing and measuring small,

subtle deformation of objects of interest. We have applied motion magnification to revealing

almost invisible motion of eardrum membranes, breathing of babies, deformation of faults, and

to exaggerating the motion of cars under different loads.

In Analysis of Contour Motions (Chapter 3.2), we proposed a novel boundary-based rep-

resentation to estimate motion under the challenging visual conditions of moving textureless

objects. We introduced a hierarchical representation of edgelets, boundary fragments, and con-

tours for textureless objects. Ambiguous local motion measurements are resolved through a

graphical model relating these edgelets, boundary fragments, completed contours, and their

motions. Contours are grouped from boundary fragments and their motions analyzed simulta-

neously, leading to the correct handling of otherwise spurious occlusion and T-junction features.

The motion cues help the contour completion task, allowing completion of contours that would

be difficult or impossible using only low-level information in a static image. Our system has

been successfully applied to analyzing motion for challenging motion stimuli, such as Kanizsa

Square and the rotating chair sequence, where conventional optical flow algorithms fail miser-

ably.

In Chapter 4, we proposed SIFT Flow to establish correspondence between images across

scenes. We followed the computational framework of optical flow, but instead of matching pixel

values, we matched the transform-invariant feature SIFT. A coarse-to-fine Belief Propagation

algorithm was designed to reduce the computational complexity from O(n4) to O(n2 log n).

Through many examples, we demonstrate that SIFT flow is able to establish semantically mean-

ingful correspondences across complex scenes despite significant differences in appearance and

spatial layout of the matched images. We also demonstrated SIFT flow in video retrieval, mo-

tion estimation from a single image and video synthesis via transferring moving objects with

the support of large databases. We further applied SIFT flow to traditional image alignment

problems, such as satellite image registration and face recognition. The preliminary success of

these experiments suggests that scene alignment techniques such as SIFT flow can be useful

tools for various applications in computer vision and computer graphics.

In Chapter 5, we further applied SIFT flow to Nonparametric Scene Parsing. Using the

dense scene correspondences, we warped the pixel labels of the existing samples in a large

141

database to an unlabeled query image. Based on the warped annotations, we integrated mul-

tiple cues to segment and recognize the query image in the object categories present in the

database. Promising results have been achieved by our scene alignment and parsing system for

a challenging database. Compared to existing approaches, which require training generative

models or classifiers for each object category, our nonparametric scene parsing system is easy

to implement, has only a few parameters, and embeds contextual information naturally in the

retrieval/alignment procedure. We demonstrated that our system outperforms the state-of-the-

art object recognition systems that rely on classifiers.

For the future work, we plan to explore more, innovative representations for motion analysis

with solid computational models to provide more robust tools for computer vision, such as

video editing, tracking, object recognition, and visual learning.

142 CHAPTER 6. CONCLUSION

Appendix A

Estimating Optical Flow

Optical flow estimation is one of the corner stones of this thesis, especially in human-assisted

motion annotation and motion magnification. In this Appendix, we will show how to derive

optical flow in a different framework than the classical ways in the literature.

� A.1 Two-Frame Optical Flow Computation

Our first task is to build a framework for flow estimation. While the mathematical derivation

appears complicated, using IRLS we can make it easy and straightforward. We shall focus on

two-frame flow estimation in this section, and move to multi-frame in next section.

� A.1.1 Problem formulation

Let the image lattice be p= (x, y, t) and the underlying flow field be w(p)= (u(p), v(p), 1),

where u(p) and v(p) are the horizontal and vertical components of the flow field, respectively.

For simplicity, we shall omit p when it is clear from the context. Under the brightness constancy

assumption [51], the pixel value should be consistent along the flow vector, and the flow field

should be piecewise smooth [14, 20]. This results in an objective function in the continuous

spatial domain

E(u, v) =

∫

ψ(|I(p+w)−I(p)|2)+αφ(|∇u|2+|∇v|2)dp, (A.1)

where ψ(·) and φ(·) are robust functions [14],∇ is the gradient operator |∇u|2 = u2
x+u2

y (ux =
∂
∂x
u, uy = ∂

∂y
u), and α weights the regularization. In this paper we restrict the robust functions

to be the L1 norm, which results in a piecewise smooth flow field, i.e. ψ(x)=
√
x2 + ε2, φ(x)=√

x2 + ε2 (ε=0.001), but it can be any function as shown in Fig. B.1. Notice that this objective

function is highly non-convex, and it has been shown that a coarse to fine refining scheme on

a dense Gaussian pyramid (e.g., with downsampling rate 0.8) with image warping can avoid

143

144 APPENDIX A. ESTIMATING OPTICAL FLOW

getting stuck at bad local minima of the function [20].

Although most of the existing optical flow work was derived based on Eq. (A.1) or some

variations using Euler-Lagrange variational approach, the mathematical derivation is rather

complicated since a function in the continuous spatial domain needs to be optimized. Alterna-

tively, one can derive the optical flow algorithm directly from a discrete version of Eq. (A.1).

Under the incremental flow framework, it is assumed that an estimate of the flow field is known

as w, and one needs to estimate the best increment dw (dw=(du, dv)). The objective function

in Eq. (A.1) is then changed to

E(du, dv)=

∫

ψ(|I(p+w+dw)−I(p)|2)+αφ(|∇(u+du)|2+|∇(v+dv)|2)dp. (A.2)

Let

Iz(p)=I(p+w)−I(p), Ix(p)= ∂
∂x
I(p+w), Iy(p)= ∂

∂y
I(p+w), (A.3)

and I(p+w+dw)−I(p) can be linearized by a first-rder Taylor expansion

I(p+w+dw)−I(p) ≈ Iz(p) + Ix(p)du(p) + Iy(p)dv(p). (A.4)

In the above equation we add p into du and dv to emphasize that du and dv are indexed by

space and time.

Since we focus on two-frame flow in this section, we shall assume that t is fixed and omit t

in p. We vectorize u, v, du, dv into U, V, dU, dV . Let Ix =diag(Ix) and Iy =diag(Iy) be

diagonal matrices where the diagonals are the images Ix and Iy . We use Dx and Dy to denote

the matrix corresponding to x- and y-derivative filters, i.e. DxU=u ∗ [0 − 1 1]. We introduce

column vector δp that has only one nonzero (one) value at location p, e.g., δpIz = Iz(p) and

δpIx =Ix(p). The continuous function in Eq. (A.2) can be discretized as

E(dU, dV)=
∑

p

ψ
(

(

δT
p
(Iz + IxdU + IydV)

)2
)

+

αφ
(

(

δT
p
Dx(U+dU)

)2
+
(

δT
p
Dy(U+dU)

)2
+

(

δT
p
Dx(V +dV)

)2
+
(

δT
p
Dy(V +dV)

)2
)

.

(A.5)

� A.1.2 Iterative Reweighted Least Squares (IRLS)

The main idea of iterative reweighted least squares (IRLS) [79] is to find dU, dV so that the

gradient [∂E
∂dU

; ∂E
∂dV

] = 0. Let

gp =
(

δT
p
Dx(U+dU)

)2
+
(

δT
p
Dy(U+dU)

)2
+
(

δT
p
Dx(V +dV)

)2
+
(

δT
p
Dy(V +dV)

)2
,

fp = (δT
p
(Iz + IxdU + IydV)

)2
. (A.6)

Sec. A.1. Two-Frame Optical Flow Computation 145

We can derive

∂E

∂dU
=

∑

p

ψ′(fp)
∂fp
∂dU

+ αφ′(gp)
∂gp
∂dV

(A.7)

= 2
∑

p

ψ′(fp)
(

Ixδpδ
T
p IxdU+Ixδpδ

T
p (Iz+IydV)

)

+

αφ′(gp)(DT
x δpδ

T
p
Dx+DT

y δpδ
T
p
Dy)(dU+U) (A.8)

= 2
(

(Ψ′I2
x + αL)dU + Ψ′IxIydV + Ψ′IxIz + αLU

)

. (A.9)

From Eq. (A.7) to Eq. (A.8) we used d
dx
xTAx= 2Ax, d

dx
xT b= b, where x and b are vectors

and A is a matrix. From Eq. (A.8) to Eq. (A.9) we used the fact that
∑

p
δpδ

T
p

is the identity

matrix, and Ix, Iy are diagonal matrices. We also defined the vector ψ′ = [ψ′(fp)] and φ′ =

[φ′(gp)], and the diagonal matrix Ψ′ =diag(ψ′), Φ′=diag(φ′). A generalized Laplacian filter

L is defined as

L = DT
x Φ′Dx + DT

y Φ′Dy. (A.10)

Then one can show

∂E

∂dV
= 2
(

Ψ′IxIydU + (Ψ′I2
y + αL)dV + Ψ′IyIz + αLV

)

. (A.11)

Both Eq. (A.9) and (A.11) contain nonlinear function ψ′(fp) and φ′(gp), and solving [∂E
∂dU

; ∂E
∂dV

] =

0 can be performed in the following fixed-point iterations:

(a) Initialize dU = 0, dV = 0.

(b) Compute the “weight” Ψ′ and Φ′ based on the current estimate dU and dV .

(c) Solve the following linear equation

Ψ′I2
x + αL Ψ′IxIy

Ψ′IxIy Ψ′I2
y + αL

dU

dV

 = −

Ψ′IxIz + αLU

Ψ′IyIz + αLV

 (A.12)

(d) If dU and dV converge, stop; otherwise, goto (b).

This algorithm is called iterative reweighted least squares because it iterates between (re)computing

the weight, the nonlinear term Ψ′ and Φ′ in step (b), and solving a least squares problem in

step (c). Notice that the matrix in the linear system Eq. (A.12) is positive definite, and we use

conjugate gradient method to solve this linear system.

146 APPENDIX A. ESTIMATING OPTICAL FLOW

Although this algorithm is shown to be identical to the two fixed-point iterations in [20]

in Appendix A, IRLS has the following two advantages over the traditional Euler-Lagrange

method.

• Dx and Dy are not limited to derivative filters. The filters learnt from ground-truth

flows such as in [87] can be easily incorporated under IRLS framework to capture more

sophisticated characteristics of the flow fields.

• It is easier to handle large-magnitude flows for the temporal constraint. This will be

shown in Sect 3.

We also show that IRLS is equivalent to the variational upper-bound optimization method [55]

in Appendix B. Therefore, IRLS is guaranteed to converge to a local minimum since the varia-

tional method is guaranteed to do so.

� A.1.3 Multi-channel and Lucas-Kanade

We further assume I(x) ∈ R
d to cover multi-channel images (e.g., RGB), or add more fea-

tures to the original image (e.g., gradient image, so that gradient matching in [20] is included).

Meanwhile, a spatial smoothing kernel can be applied to the data term for robustness as a

Lucas-Kanade term [71, 22]. These additions can be easily achieved under IRLS framework by

slightly modifying Eq. (A.12). Notice that in Eq. (A.12) Ψ′IxIy =diag([ψ′
p
Ix(p)Iy(p)]). For

a multi-channel image, Ix(p), Iy(p), and Iz(p) all become vectors. We define

Ψ′
xy = diag(g ∗ [ψ′

p
IT
x (p)Iy(p)]), (A.13)

where g is a small spatial Gaussian kernel (e.g., with standard deviation 1). Similarly we define

Ψ′
xx, Ψ′

yy , Ψ′
xz andΨ′

yz . Eq. (A.12) can be rewritten as

Ψ′
xx+ αL Ψ′

xy

Ψ′
xy Ψ′

yy+ αL

dU

dV

=−

Ψ′
xz+αLU

Ψ′
yz+αLV

 . (A.14)

� A.2 Temporal Constraints: Multiple Frames

It is natural to use multiple frames to improve the flow estimation. In [20, 21] a 3D gradient ∇3

is introduced to impose the temporal constraint. This is, however, inadequate for many video

sequences containing dramatic object movements. We need a more sophisticated temporal

constraint to let the flow estimates agree over multiple frames. IRLS can help simplify the

derivation.

Sec. A.2. Temporal Constraints: Multiple Frames 147

(a) Two-frame flow (b) Constant velocity (c) 2nd-order data term

Figure A.1. The factor graph of optical flow estimation. Notice that the flow fields are coupled in (b) and

(c) in different ways.

� A.2.1 Constant velocity model

We assume that the velocity is constant from frame to frame along with the flow vectors. Recall

that p = (x, y, t) and w(p) = (u(p), v(p), 1). We can write the new flow estimate over the

whole sequence

E
(

{u(p), v(p)}
)

=
∑

t

∫

g ∗ ψ(|I(p)−I(p + w)|2)+

αφ(|∇u(p)|2+|∇v(p)|2)+ βγ(|w(p)−w(p+w)|2)dp, (A.15)

where w(p+w) = (u(p+w), v(p+w), 1) is the warped flow field at time t+1 to time t

according to flow w. γ(·) is the same robust function as ψ(·) and φ(·).
It would be difficult to estimate the flow fields simultaneously. Instead, we assume {Ut, Vt}

has been computed and we need to compute {dUt, dVt}. Except for the first and last frames,

{dUt, dVt} is affected by the temporal term at both t−1 and t. We need to modify step (b) and

(c) accordingly in IRLS. In step (b) we compute an additional weight

γ′t = γ′(|w(p) + dw(p)−w(p + w)|2) (A.16)

Let Γ′
t =diag(γ′t). The iterative reweighted least square problem for solving Eq. (A.15) can be

derived as

Ψ′
xx+αL+βMt Ψ′

xy

Ψ′
xy Ψ′

yy +αL+βMt

dUt

dVt

 =

−

Ψ′
xz+αLUt+β

(

MtUt−Γ′
tHtUt+1−HT

t−1Γ
′
t−1Ut−1

)

Ψ′
yz+αLVt+β

(

MtVt−Γ′
tHtVt+1−HT

t−1Γ
′
t−1Vt−1

)

, (A.17)

where Mt =Γ′
t +HT

t−1Γ
′
t−1Ht−1, and Ht is the bilinear warping matrix corresponding to the

flow field (Ut, Vt). There is no need to generate Ht and compute the transpose HT
t . Instead,

we can stack the interpolation coefficients at each pixel and treat them as a filter when applying

HT
t .

148 APPENDIX A. ESTIMATING OPTICAL FLOW

� A.2.2 Second-order data term

Another possible temporal constraint is a long-range match, e.g., to match frame t to frame

t + 2, t + 3, · · · as well. Even though in theory the frames can be matched at any temporal

distance, we restrict the matching to the second frame by adding the matching between t and

t+ 2. The objective function becomes

E
(

{u(p), v(p)}
)

=
∑

t

∫

g ∗
(

ψ(|I(p)−I(p + w)|2)+

ξλ(|I(p)−I(p+w+w(p+w))|2)
)

+αφ(|∇u(p)|2+|∇v(p)|2) (A.18)

where λ(·) is also a robust function. Similar to Eq. (A.3) we have the following abbreviations

for 2nd-order matching

Ix2 = ∂
∂x
I(p+w+w(p+w)),

Iy2 = ∂
∂y
I(p+w+w(p+w)),

Iz2 = I(p+w+w(p+w))−I(p).

(A.19)

Noting that the 2nd-order matching is essentially the same as the 1st-order matching problem,

we can modify Eq. (A.13) for 2nd-order matching

λ′t =λ
′(|Iz2|2), Λ′

xyt =diag(g ∗ λ′tIT
x2Iy2). (A.20)

Λ′
xxt, Λ′

yyt, Λ′
xzt and Λ′

yzt are defined in a similar way. The IRLS for solving Eq. (A.18) is

then

Ψ′
xx+ξPxxt+αL Ψ′

xy+ξPxyt

Ψ′
xy+ξPxyt Ψ′

yy+ξPyyt+αL

dUt

dVt

=−

Ψ′
xz+ξPxzt+αLUt

Ψ′
yz+ξPyzt+αLVt

 (A.21)

where Pxxt = Λ′
xxt + HT

t−1Λ
′
xx,t−1Ht−1, and similarly for Pxyt and Pyyt. Pxzt = Λ′

xzt +

HT
t−1Λ

′
xz,t−1, and similarly for Pyzt.

We show the factor graphs of the constant velocity model and 2nd-order data term in Figure

A.1. Clearly these two terms both add temporal constraints to the flow fields but in different

ways. It is thus natural to combine them by adding Eq. (A.15) and (A.18) together. The IRLS

solution becomes the linear system combining Eq. (A.17) and (A.21).

Appendix B

The Equivalence between

Variational Optimization and IRLS

In this Appendix, we will show that variational optimization and iterative reweighted least

square (IRLS) are equivalent in optimizing a particular family of object function that appears

frequently in computer vision.

� B.1 Introduction

In computer vision, we often need to minimize the following object function

Q(z) =

n
∑

i=1

φ
(

(aT
i z + bi)

2
)

(B.1)

where z, ai∈R
d, bi∈R, and φ : R→ R. Normally φ(·) is a nonnegative, monotonic function

satisfying

φ(0) = 0, φ′(x2) > 0. (B.2)

If φ(x2) = x2, then the objective function in Eqn. (B.1) is quadratic and the solution is straight-

forward. However, for many applications a robust function is used, for example, Lorentzian

function φ(x2)= log(1 + x2), L1 norm φ(x2)= |x| and truncated quadratic function φ(x2)=

min(x2, c) (this function is not continuously differentiable and therefore difficult to optimize).

The question is how to effectively optimize this objective function with these robust functions.

In this document we focus on continuous differentiable functions.

Notice that we write the robust function in the form φ(x2) instead of φ(x) to enforce the

function to be an evenly symmetric function. Therefore, the notion φ′(x2) is equal to 2φ′|x2x.

149

150 APPENDIX B. THE EQUIVALENCE BETWEEN VARIATIONAL OPTIMIZATION AND IRLS

� B.2 Variational Optimization

For a function φ(x2), we define a quadratic upper bound as a quadratic function in x with

coefficient determined by λ:

h(x, λ) = a(λ)x2 + b(λ)x+ d(λ) (B.3)

The coefficient functions a(λ), b(λ) and d(λ) are chosen by imposing the following constraints

on h(·):
h(λ0, λ0) = φ(λ2

0),

h′(λ0, λ0) = φ′(λ2
0),

h′(0, λ0) = 0.

(B.4)

Solving these equations leads to

a(λ) = φ′(λ2), b(λ) = 0, d(λ) = φ(λ2)− φ′(λ2)λ2. (B.5)

Based on this result we plotted the family of quadratic upper bound for power function φ(x2)=

(x2)α, α∈(0, 1] and Lorentzian function φ(x2)=log(1 + x2) in Figure B.1.

Figure B.1 suggests that function φ(x2) can be rewritten as

φ(x2) = min
λ

(

φ′(λ2)x2 + φ(λ2)− φ′(λ2)λ2
)

, (B.6)

and the minimum is obtained when λ=±x. This can be verified that by solving

∂

∂λ

(

φ′(λ2)x2 + φ(λ2)− φ′(λ2)λ2
)

= 0 (B.7)

λφ′′(λ2)(x2 − λ2) = 0 (B.8)

we obtain three roots, λ=±x and λ=0. The second derivative is only positive when λ=±x.

Based on the quadratic upper bounds, we can rewrite the objective function

min
z

n
∑

i=1

φ
(

(aT
i z + bi)

2
)

(B.9)

= min
z

n
∑

i=1

min
λi

(

φ′(λi)
2(aT

i z + bi)
2 + φ(λ2)− φ′(λ2)λ2

)

. (B.10)

The new form suggests a two-step coordinate descent algorithm for finding the optimal z.

Sec. B.2. Variational Optimization 151

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.5

1

1.5

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.5

1

1.5

2

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

(a) α = 0.1 (b) α = 0.2 (c) α = 0.3

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

1

2

3

4

5

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

1

2

3

4

5

6

7

(d) α = 0.4 (e) α = 0.5 (f) α = 0.6

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

2

4

6

8

10

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

2

4

6

8

10

12

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

(g) α = 0.7 (h) α = 0.8 (i) Lorentzian

Figure B.1. Both power function φ(x2) = (x2)α and Lorentzian function φ(x2) = log(1 + x2) can be upper-

bounded by quadratic functions.

1. Assume that we already have a value of z. We can minimize Eqn. (B.10) in

terms of the variational parameter λi. From Eqn. (B.6), the optimal λi is:

λi = aT
i z + bi, i = 1, · · · , n. (B.11)

2. Threat all the variational parameters λi constant and minimize Eqn. (B.10)

in terms of z (least square):

AWAT z = −AWb (B.12)

where A=[a1, · · · , an], W=diag
(

φ′(λ2
1), · · · , φ′(λn)

)

, b=[b1, · · · , bn]T .

These two steps are iterated until convergence.

152 APPENDIX B. THE EQUIVALENCE BETWEEN VARIATIONAL OPTIMIZATION AND IRLS

� B.3 Iterative Reweighted Least Square (IRLS)

We can also minimize the objective function in Eqn. (B.1) from a different angle. Set the

derivative of the objective function to be zero

∑

i

φ′
(

(aT
i z + bi)

2
) (

aT
i z + bi

)

ai = 0. (B.13)

There is a nonlinear term φ′
(

(aT
i z + bi)

2
)

in the above equation. This suggest a fixed-point

iteration for the optimization. We treat the nonlinear terms as weights of a least square problem–

the problem is a least square problem if the nonlinear term is regarded as constant. The fixed-

point iteration consists of the following two iterations.

1. Compute the weight

wi = φ′
(

(aT
i z + bi)

2
)

, i = 1, · · · , n. (B.14)

2. Perform a weighted least square to solve z:

AWAT z = −AWb (B.15)

where A=[a1, · · · , an], W=diag (w1, · · · , wn), b=[b1, · · · , bn]T .

This fixed-point iteration is called iterative reweighted least square because we try to solve

a least square problem, but with different weight at every iteration. The weight comes from the

solution in the previous step.

� B.4 Variational Inference and IRLS are Identical

Clearly, for the objective function in Eqn. (B.1) variational inference and IRLS generate exact

the same algorithm. The variational parameter in variational optimization and the weight in

IRLS are connected by

wi = φ′(λ2
i). (B.16)

However, the derivation using IRLS is more straightforward and succinct.

Bibliography

[1] E. H. Adelson. Layered representations for image coding. Vision and Modeling Techni-

cal Report 181, MIT Media Laboratory, 1991. 40

[2] E. H. Adelson. On seeing stuff: the perception of materials by humans and machines. In

SPIE, Human Vision and Electronic Imaging VI, pages 1–12, 2001. 133

[3] A. Agarwala, A. Hertzmann, D. H. Salesin, and S. M. Seitz. Keyframe-based tracking

for rotoscoping and animation. ACM SIGGRAPH, 23(3):584–591, 2004. 40

[4] L. Alvarez, R. Deriche, T. Papadopoulo, and J. Sánchez. Symmetrical dense optical

flow estimation with occlusions detection. In European Conference on Computer Vision

(ECCV), pages 721–735, 2002. 39, 48

[5] O. Arikan and D. A. Forsyth. Synthesizing constrained motions from examples. ACM

Transactions on Graphics, 21(3):483–490, July 2002. 60

[6] I. Austvoll. A Study of the Yosemite Sequence Used as a Test Sequence for Estimation

of Optical Flow, pages 659–668. Lecture Notes in Computer Science. Springer Berlin /

Heidelberg, 2005. 37

[7] S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. J. Black, and R. Szeliski. A database

and evaluation methodology for optical flow. In Proc. ICCV, 2007. 13, 15, 30, 34, 37,

40, 52, 53, 56, 106

[8] B. Balas and P. Sinha. Observing object motion induces increased generalization and

sensitivity. Perception, 37:1160–1174, 2008. 29

[9] J. L. Barron, D. J. Fleet, and S. S. Beauchemin. Systems and experiment performance of

optical flow techniques. International Journal of Computer Vision (IJCV), 12(1):43–77,

1994. 94

153

154 BIBLIOGRAPHY

[10] S. Belongie, J. Malik, and J. Puzicha. Shape context: A new descriptor for shape

matching and object recognition. In Advances in Neural Information Processing Sys-

tems (NIPS), 2000. 30, 94, 125

[11] S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recognition using shape

contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),

24(4):509–522, 2002. 97, 98

[12] A. Berg, T. Berg., and J. Malik. Shape matching and object recognition using low distor-

tion correspondence. In IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2005. 19, 30, 94, 95, 97, 125

[13] J. R. Bergen, P. Anandan, K. J Hanna, and R. Hingorani. Hierarchical model-based

motion estimation. In European Conference on Computer Vision (ECCV), pages 237–

252, 1992. 97

[14] M. J. Black and P. Anandan. The robust estimation of multiple motions: parametric and

piecewise-smooth flow fields. Computer Vision and Image Understanding, 63(1):75–

104, January 1996. 39, 41, 94, 143

[15] M. J. Black and D. J. Fleet. Probabilistic detection and tracking of motion boundaries.

International Journal of Computer Vision, 38(3):231–245, 2000. 82

[16] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via

graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),

23(11):1222–1239, 2001. 63, 71, 97

[17] M. Brand and A. Hertzmann. Style machines. In Proceedings of ACM SIGGRAPH 2000,

pages 183–192, July 2000. 60

[18] G. Brostow and I. Essa. Motion-based video decompositing. In IEEE International

Conference on Computer Vision (ICCV ’99), pages 8–13, 1999. 63, 73

[19] G. Brostow and I. Essa. Image-based motion blur for stop motion animation. In Pro-

ceedings of ACM SIGGRAPH 2001, pages 561–566, 2001. 60

[20] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation

based on a theory for warping. In European Conference on Computer Vision (ECCV),

pages 25–36, 2004. 30, 39, 41, 45, 48, 49, 96, 97, 122, 143, 144, 146

BIBLIOGRAPHY 155

[21] A. Bruhn, J. Weickert, T. Kohlberger, and C. Schnörr. A multigrid platform for real-time

motion computation with discontinuity-preserving variational methods. International

Journal of Computer Vision (IJCV), 70(3):257–277, 2006. 146

[22] A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunk: combining

local and global optical flow methods. International Journal of Computer Vision (IJCV),

61(3):211–231, 2005. 13, 14, 15, 31, 38, 39, 41, 48, 55, 56, 93, 111, 146

[23] P. J. Burt and E. H. Adelson. The laplacian pyramid as a compact image code. IEEE

Transactions on Communications, COM-31,4:532–540, 1983. 14, 46

[24] D. Cai, X. He, Y. Hu, J. Han, and T. Huang. Learning a spatially smooth subspace

for face recognition. In IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2007. 27, 122

[25] J. Canny. A computational approach to edge detection. IEEE Transactions on Pattern

Analysis and Machine Intelligence (TPAMI), 8(6):679–698, Nov 1986. 83, 84

[26] C. Carson, S. Belongie, H. Greenspan, and J. Malik. Blobworld: Color- and Texture-

Based Image Segmentation Using EM and Its Application to Image Querying and Clas-

sification. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),

24(8):1026–1038, 2002. 98

[27] Y.-Y. Chuang, A. Agarwala, B. Curless, D. H. Salesin, and R. Szeliski. Video matting of

complex scenes. In ACM SIGGRAPH, 2002. 40

[28] T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active appearance models. In European

Conference on Computer Vision (ECCV), volume 2, pages 484–498, 1998. 96

[29] N. Cornelis and L. V. Gool. Real-time connectivity constrained depth map computation

using programmable graphics hardware. In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 1099–1104, 2005. 103, 123

[30] A. Criminisi, G. Cross, A. Blake, and V. Kolmogorov. Bilayer segmentation of live

video. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2006.

29

[31] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2005. 24, 30, 97, 125,

127, 134, 135

156 BIBLIOGRAPHY

[32] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete

data via the EM algorithm. J. R. Statist. Soc. B, 39:1–38, 1977. 65

[33] A. A. Efros and T. K. Leung. Texture synthesis by non-parametric sampling. In IEEE In-

ternational Conference on Computer Vision, pages 1033–1038, Corfu, Greece, Septem-

ber 1999. 63, 73

[34] P. Felzenszwalb and D. Huttenlocher. Pictorial structures for object recognition. Inter-

national Journal of Computer Vision (IJCV), 61(1), 2005. 30, 94, 125

[35] P. Felzenszwalb, D. McAllester, and D. Ramanan. A discriminatively trained, multi-

scale, deformable part model. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2008. 30, 125

[36] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient belief propagation for early vision.

International Journal of Computer Vision (IJCV), 70(1):41–54, 2006. 19, 102

[37] R. Fergus, P. Perona, and A. Zisserman. Object class recognition by unsupervised scale-

invariant learning. In IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2003. 30, 125

[38] D. J. Fleet, A. D. Jepson, and M. R. M. Jenkin. Phase-based disparity measurement.

Computer Vision, Graphics and Image Processing (CVGIP), 53(2):198–210, 1991. 96

[39] W. T. Freeman and E. H. Adelson. The design and use of steerable filters. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence (TPAMI), 13(9):891–906, Sep 1991.

83

[40] W. T. Freeman, E. C. Pasztor, and O. T. Carmichael. Learning low-level vision. Interna-

tional Journal of Computer Vision (IJCV), 40(1):25–47, 2000. 97

[41] R. Ghaffari, A. J. Aranyosi, and D. M. Freeman. Longitudinally propagating traveling

waves of the mammalian tectorial membrane. Proceedings of the National Academy of

Sciences of the United States of America, 104(42):16510–16515, Oct. 2007. 77

[42] M. Gleicher. Retargetting motion to new characters. In Proceedings of ACM SIGGRAPH

98, pages 33–42, July 1998. 60

BIBLIOGRAPHY 157

[43] M. M. Gorkani and R. W. Picard. Texture orientation for sorting photos at a glance. In

IEEE International Conference on Pattern Recognition (ICPR), volume 1, pages 459–

464, 1994. 97

[44] K. Grauman and T. Darrell. Pyramid match kernels: Discriminative classification with

sets of image features. In IEEE International Conference on Computer Vision (ICCV),

2005. 30, 104, 125

[45] W. E. L. Grimson. Computational experiments with a feature based stereo algorithm.

IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 7(1):17–34,

1985. 96

[46] A. Gupta and L. S. Davis. Beyond nouns: Exploiting prepositions and comparative

adjectives for learning visual classifiers. In European Conference on Computer Vision

(ECCV), 2008. 125

[47] M. J. Hannah. Computer Matching of Areas in Stereo Images. PhD thesis, Stanford

University, 1974. 96

[48] C. Harris and M. Stephens. A combined corner and edge detector. In Proceedings of the

4th Alvey Vision Conference, pages 147–151, 1988. 64, 122

[49] J. Hays and A. A Efros. Scene completion using millions of photographs. ACM SIG-

GRAPH, 26(3), 2007. 94, 126

[50] G. Heitz and D. Koller. Learning spatial context: Using stuff to find things. In European

Conference on Computer Vision (ECCV), 2008. 125, 133

[51] B. K. P. Horn and B. G. Schunck. Determing optical flow. Artificial Intelligence, 17:185–

203, 1981. 29, 37, 39, 45, 81, 93, 96, 97, 122, 143

[52] M. Isard and A. Blake. Condensation – conditional density propagation for visual track-

ing. International Journal of Computer Vision (IJCV), 29(1):5–28, 1998. 41

[53] N. Jojic and B. Frey. Learning flexible sprites in video layers. In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR’01), pages 199–206, Kauai, December

2001. 60, 63

158 BIBLIOGRAPHY

[54] D. G. Jones and J. Malik. A computational framework for determining stereo correspon-

dence from a set of linear spatial filters. In European Conference on Computer Vision

(ECCV), pages 395–410, 1992. 96

[55] M. Jordan. Leanring in Graphical Models. Cambridge MA: MIT Press, 1999. 146

[56] V. Kolmogorov and R. Zabih. Computing visual correspondence with occlusions using

graph cuts. In IEEE International Conference on Computer Vision (ICCV), pages 508–

515, 2001. 97

[57] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid match-

ing for recognizing natural scene categories. In IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), volume II, pages 2169–2178, 2006. 30, 98, 104, 125

[58] J. Lee, J. Chai, P. S. A. Reitsma, J. K. Hodgins, and N. S. Pollard. Interactive control of

avatars animated with human motion data. ACM Transactions on Graphics, 21(3):491–

500, July 2002. 60

[59] Y. Li, J. Sun, and H.-Y. Shum. Video object cut and paste. In ACM SIGGRAPH, 2005.

40

[60] Y. Li, T. Wang, and H.-Y. Shum. Motion texture: A two-level statistical model for

character motion synthesis. ACM Transactions on Graphics, 21(3):465–472, July 2002.

60

[61] C. Liu, W. T. Freeman, and E. H. Adelson. Analysis of contour motions. In Advances in

Neural Information Processing Systems (NIPS), 2006. 13, 33, 35, 37, 40

[62] C. Liu, W. T. Freeman, and E. H. Adelson. Analysis of contour motions. In Advances in

Neural Information Processing Systems (NIPS), 2006. 97

[63] C. Liu, W. T. Freeman, E. H. Adelson, and Y. Weiss. Human-assisted motion annotation.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2008. 33, 109

[64] C. Liu, W. T. Freeman, R. Szeliski, and S. B. Kang. Noise estimation from a single

image. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages

901–908, 2006. 36

[65] C. Liu, H. Y. Shum, and W. T. Freeman. Face hallucination: theory and practice. Inter-

national Journal of Computer Vision (IJCV), 75(1):115–134, 2007. 36

BIBLIOGRAPHY 159

[66] C. Liu, R. Szeliski, S. B. Kang, C. L. Zitnick, and W. T. Freeman. Automatic estimation

and removal of noise from a single image. IEEE Transactions on Pattern Analysis and

Machine Intelligence (TPAMI), 30(2):299–314, 2008. 36

[67] C. Liu, A. Torralba, W. T. Freeman, F. Durand, and E. H. Adelson. Motion magnification.

In ACM SIGGRAPH, pages 519–526, 2005. 13, 32, 34, 40, 77

[68] C. Liu, J. Yuen, and A. Torralba. Nonparametric scene parsing: Label transfer via dense

scene alignment. In IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2009. 36, 105, 123

[69] C. Liu, J. Yuen, A. Torralba, J. Sivic, and W. T. Freeman. SIFT flow: dense correspon-

dence across different scenes. In European Conference on Computer Vision (ECCV),

2008. 19, 101, 103, 126, 127, 129

[70] D. G. Lowe. Object recognition from local scale-invariant features. In IEEE Inter-

national Conference on Computer Vision (ICCV), pages 1150–1157, Kerkyra, Greece,

1999. 36, 94, 97, 98, 100, 104, 117, 122

[71] B. Lucas and T. Kanade. An iterative image registration technique with an application

to stereo vision. In Proceedings of the International Joint Conference on Artificial Intel-

ligence, pages 674–679, 1981. 17, 29, 37, 39, 50, 64, 79, 81, 84, 93, 96, 122, 146

[72] D. Mackay. Information Theory, Inference, and Learning Algorithms. Cambridge Uni-

versity Press, 2003. 89

[73] S. Mahamud, L. Williams, K. Thornber, and K. Xu. Segmentation of multiple salient

closed contours from real images. IEEE Transactions on Pattern Analysis and Machine

Intelligence (TPAMI), 25(4):433–444, 2003. 85

[74] D. Martin, C. Fowlkes, and J. Malik. Learning to detect natural image boundaries using

local brightness, color, and texture cues. IEEE Transactions on Pattern Analysis and

Machine Intelligence (TPAMI), 26(5):530–549, May 2004. 83

[75] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural

images and its application to evaluating segmentation algorithms and measuring eco-

logical statistics. In IEEE International Conference on Computer Vision (ICCV), pages

416–423, 2001. 40

160 BIBLIOGRAPHY

[76] J. McDermott. Psychophysics with junctions in real images. Perception, 33:1101–1127,

2004. 81, 82

[77] J. McDermott and E. H. Adelson. The geometry of the occluding contour and its effect

on motion interpretation. Journal of Vision, 4(10):944–954, 2004. 87

[78] J. McDermott and E. H. Adelson. Junctions and cost functions in motion interpretation.

Journal of Vision, 4(7):552–563, 2004. 81

[79] P. Meer. Robust techniques for computer vision. Emerging Topics in Computer Vision,

pages 107–190, 2004. 144

[80] A. Nobel. Descriptions of Image Surfaces. PhD thesis, Oxford University, Oxford, UK,

1989. 64

[81] S. J. Nowlan and T. J. Sejnowski. A selection model for motion processing in area mt

primates. The Journal of Neuroscience, 15(2):1195–1214, 1995. 82

[82] A. Oliva and A. Torralba. Modeling the shape of the scene: a holistic representation of

the spatial envelope. International Journal of Computer Vision (IJCV), 42(3):145–175,

2001. 22, 23, 97, 98, 105, 120, 126, 127, 128, 131

[83] P. Pérez, M. Gangnet, and A. Blake. Poisson image editing. ACM SIGGRAPH,

22(3):313–318, 2003. 116

[84] K. Pullen and C. Bregler. Motion capture assisted animation: Texture and synthesis.

ACM Transactions on Graphics, 21:501–508, July 2002. 60

[85] R. Raskar, K.-H. Tan, R. Feris, J. Yu, and M. Turk. Non-photorealistic camera: depth

edge detection and stylized rendering using multi-flash imaging. ACM Trans. Graph.

(SIGGRAPH), 23(3):679–688, 2004. 83

[86] X. Ren, C. Fowlkes, and J. Malik. Scale-invariant contour completion using conditional

random fields. In Proceedings of International Conference on Computer Vision, pages

1214–1221, 2005. 85

[87] S. Roth and M. Black. On the spatial statistics of optical flow. International Journal of

Computer Vision (IJCV), 74(1):33–50, 2007. 40, 56, 146

BIBLIOGRAPHY 161

[88] C. Rother, V. Kolmogorov, and A. Blake. Interactive foreground extraction using iterated

graph cuts. In Proceedings of ACM SIGGRAPH 2004, pages 309–314, July 2004. 70,

71

[89] C. Rother, T. Minka, A. Blake, and V. Kolmogorov. Cosegmentation of image pairs by

histogram matching - incorporating a global constraint into mrfs. In IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), volume 1, pages 993–1000, 2006.

98

[90] B. C. Russell, A. Torralba, C. Liu, R. Fergus, and W. T. Freeman. Object recognition by

scene alignment. In Advances in Neural Information Processing Systems (NIPS), 2007.

36, 105, 126

[91] B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman. LabelMe: a database and

web-based tool for image annotation. International Journal of Computer Vision (IJCV),

77(1-3):157–173, 2008. 40, 94, 126, 127, 129

[92] M. Ruzon and C. Tomasi. Alpha estimation in natural images. In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR’00), pages 24–31, 2000. 70

[93] F. Samaria and A. Harter. Parameterization of a stochastic model for human face identi-

fication. In IEEE Workshop on Applications of Computer Vision, 1994. 22, 119, 120

[94] P. Sand and S. Teller. Video matching. In Proceedings of ACM SIGGRAPH 2004, pages

592–599, 2004. 29, 64, 70

[95] P. Sand and S. J. Teller. Particle video: long-range motion estimation using point tra-

jectories. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

volume 2, pages 2195–2202, 2006. 29, 30, 39, 41

[96] E. Saund. Logic and MRF circuitry for labeling occluding and thinline visual contours.

In Advances in Neural Information Processing Systems 18, pages 1153–1160, 2006. 85

[97] H. Sawhney, Y. Guo, K. Hanna, R. Kumar, S. Adkins, and S. Zhou. Hybrid stereo cam-

era: An ibr approach for synthesis of very high resolution stereoscopic image sequences.

In Proceedings of ACM SIGGRAPH 2001, pages 451–460, 2001. 65

[98] D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame stereo

correspondence algorithms. International Journal of Computer Vision (IJCV), 47(1):7–

42, 2002. 19, 93, 95

162 BIBLIOGRAPHY

[99] C. Schmid, R. Mohr, and C. Bauckhage. Evaluation of interest point detectors. Interna-

tional Journal of Computer Vision (IJCV), 37(2):151–172, 2000. 97, 122

[100] A. Schodl, R. Szeliski, D. Salesin, and I. Essa. Video textures. In Proceedings of ACM

SIGGRAPH 2000, pages 489–498, 2000. 60

[101] A. Shahua and S. Ullman. Structural saliency: the detection of globally salient struc-

tures using a locally connected network. In Proceedings of International Conference on

Computer Vision, pages 321–327, 1988. 85, 87

[102] G. Shakhnarovich, P. Viola, and T. Darrell. Fast pose estimation with parameter sensitive

hashing. In IEEE International Conference on Computer Vision (ICCV), 2003. 126

[103] A. Shekhovtsov, I. Kovtun, and V. Hlavac. Efficient MRF deformation model for non-

rigid image matching. In IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2007. 97, 101, 122

[104] J. Shi and J. Malik. Motion segmentation and tracking using normalized cuts. In Pro-

ceedings of International Conference on Computer Vision, pages 1154–1160, 1998. 69

[105] J. Shi and C. Tomasi. Good features to track. In IEEE Conference on Computer Vision

and Pattern Recognition, pages 593–600, 1994. 50, 64, 81

[106] J. Shotton, J. Winn, C. Rother, and A. Criminisi. Textonboost: Joint appearance, shape

and context modeling for multi-class object recognition and segmentation. In European

Conference on Computer Vision (ECCV), 2006. 23, 127, 128, 129, 132, 133

[107] J. Sivic and A. Zisserman. Video Google: a text retrieval approach to object matching in

videos. In IEEE International Conference on Computer Vision (ICCV), 2003. 30, 104,

125

[108] G. Strang. Introduction to Applied Mathematics. Wellesley-Cambridge Press, 1986. 68

[109] E. Sudderth, A. Torralba, W. T. Freeman, and W. Willsky. Describing visual scenes using

transformed dirichlet processes. In Advances in Neural Information Processing Systems

(NIPS), 2005. 30, 125

[110] J. Sun, N. Zheng, , and H. Shum. Stereo matching using belief propagation. IEEE

Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 25(7):787–800,

2003. 97

BIBLIOGRAPHY 163

[111] M. J. Swain and D. H. Ballard. Color indexing. International Journal of Computer

Vision (IJCV), 7(1), 1991. 97

[112] R. Szeliski. Fast surface interpolation using hierarchical basis functions. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence (TPAMI), 12(6):513–528, 1990.

50

[113] R. Szeliski. Image alignment and stiching: A tutorial. Foundations and Trends in Com-

puter Graphics and Computer Vision, 2(1), 2006. 50, 93, 96

[114] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov, A. Agarwala, M. Tap-

pen, and C. Rother. A comparative study of energy minimization methods for markov

random fields with smoothness-based priors. IEEE Transactions on Pattern Analysis and

Machine Intelligence (TPAMI), 30(6):1068–1080, 2008. 97, 101

[115] M. Tappen, C. Liu, W. T. Freeman, and E. H. Adelson. Learning Gaussian conditional

random fields for low-level vision. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 1–8, 2007. 36, 41

[116] C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: A

factorization method. International Journal of Computer Vision (IJCV), 9(2):137–154,

Nov 1992. 29

[117] P. H. S. Torr, R. Szeliski, and P. Anandan. An integrated Bayesian approach to layer

extraction from image sequences. IEEE Transactions on Pattern Analysis and Machine

Intelligence (TPAMI), 23(3):297–304, 2001. 40

[118] A. Torralba and W. T. Freeman R. Fergus. 80 million tiny images: a large dataset for

non-parametric object and scene recognition. IEEE Transactions on Pattern Analysis

and Machine Intelligence (TPAMI), 30(11):1958–1970, 2008. 97, 126

[119] M. Unuma, K. Anjyo, and R. Takeuchi. Fourier principles for emotion-based human

figure animation. In Proceedings of ACM SIGGRAPH 95, pages 91–96, July 1995. 60

[120] P. Viola and W. Wells III. Alignment by maximization of mutual information. In IEEE

International Conference on Computer Vision (ICCV), pages 16–23, 1995. 96

[121] P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2001. 30, 125

164 BIBLIOGRAPHY

[122] J. Wang, P. Bhat, A. Colburn, M. Agrawala, and M. Cohen. Interactive video cutout. In

ACM SIGGRAPH, 2005. 40

[123] J. Y. A. Wang and E. H. Adelson. Representing moving images with layers. IEEE Trans.

Image Processing, 3(5):625–638, 1994. 30, 60, 63

[124] J. Y. A. Wang and E. H. Adelson. Representing moving images with layers. IEEE

Transactions on Image Processing (TIP), 3(5):625–638, 1994. 37, 40

[125] Y. Weiss. Interpreting images by propagating bayesian beliefs. In Advances in Neural

Information Processing Systems (NIPS), pages 908–915, 1997. 97

[126] Y. Weiss. Smoothness in layers: Motion segmentation using nonparametric mixture

estimation. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

pages 520–527, 1997. 97

[127] Y. Weiss and E. H. Adelson. Perceptually organized EM: A framework for motion seg-

mentaiton that combines information about form and motion. Technical Report 315,

M.I.T Media Lab, 1995. 17, 30, 40, 81, 82, 83

[128] J. Wills, S. Agarwal, and S. Belongie. What went where. In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages 37–44, 2003. 40, 71

[129] J. Winn and N. Jojic. Locus: Learning object classes with unsupervised segmentation.

In IEEE International Conference on Computer Vision (ICCV), pages 756–763, 2005.

94

[130] G. Yang, C. V. Stewart, M. Sofka, and C.-L. Tsai. Registration of challenging image

pairs: Initialization, estimation, and decision. IEEE Transactions on Pattern Analysis

and Machine Intelligence (TPAMI), 29(11):1973–1989, 2007. 21, 116, 118, 119

[131] L. Zelnik-Manor and M. Irani. Degeneracies, dependencies and their implications in

multi-body and multi-sequence factorizations. In IEEE Conference on Computer Vision

and Pattern Recognition (CVPR’03), pages 287–293, 2003. 69

	Abstract
	Acknowledgments
	List of Figures
	Introduction
	Thesis Theme
	Thesis Overview
	Other Work not in the Thesis

	Human-Assisted Motion Annotation
	Introduction
	Related Work
	Human-Assisted Motion Annotation System
	Semiautomatic Layer Segmentation with Occlusion Handling
	Objective function
	Linearization and Optimization
	Multi-channel, multi-resolution image representation
	Occlusion handling
	Layer-wise Optical Flow Estimation
	Semiautomatic Motion Labeling
	System Design and Human Judgement

	Methodology Evaluation
	A Human-Annotated Motion Ground-Truth Database
	Conclusion

	Layer and Contour Representations for Motion Analysis
	Motion Magnification
	Related Work
	Overview
	Robust Video Registration
	Robust Computation and Clustering of Feature Point Trajectories
	Segmentation: Assignment of Each Pixel to a Motion Cluster
	Magnification and Rendering
	Experimental Results
	Applications
	Conclusion

	Contour Motion Analysis
	Boundary Fragment Extraction
	Edgelet Tracking with Uncertainties
	Boundary Fragment Grouping and Motion Estimation
	Experimental Results

	Conclusion

	SIFT Flow: Dense Correspondence Across Scenes
	Introduction
	Related Work
	The SIFT Flow Algorithm
	Dense SIFT descriptors and visualization
	Matching Objective
	Coarse-to-fine matching scheme
	Neighborhood of SIFT flow
	Scene matching with histogram intersection

	Experiments on Video Retrieval
	Results of video retrieval
	Evaluation of the dense scene alignment

	Applications
	Predicting motion fields from a single image
	Quantitative evaluation
	Motion synthesis via object transfer

	Experiments on Image Alignment and Face Recognition
	Image registration of the same scene
	Face recognition

	Discussions
	Conclusion

	Nonparametric Scene Parsing via Dense Scene Alignment
	Introduction
	Scene Parsing through Label Transfer
	Experiments
	Conclusion

	Conclusion
	Estimating Optical Flow
	Two-Frame Optical Flow Computation
	Problem formulation
	Iterative Reweighted Least Squares (IRLS)
	Multi-channel and Lucas-Kanade

	Temporal Constraints: Multiple Frames
	Constant velocity model
	Second-order data term

	The Equivalence between Variational Optimization and IRLS
	Introduction
	Variational Optimization
	Iterative Reweighted Least Square (IRLS)
	Variational Inference and IRLS are Identical

	Bibliography

