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Abstract

Image denoising algorithms often assume an additive white Gaussian noise (AWGN) process

that is independent of the actual RGB values. Such approaches are not fully automatic and

cannot effectively remove color noise produced by today’s CCD digital camera. In this paper,

we propose a unified framework for two tasks: automatic estimation and removal of color

noise from a single image using piecewise smooth image models. We introduce the noise

level function (NLF), which is a continuous function describing the noise level as a function of

image brightness. We then estimate an upper bound of the real noise level function by fitting

a lower envelope to the standard deviations of per-segment image variances. For denoising,

the chrominance of color noise is significantly removed by projecting pixel values onto a line

fit to the RGB values in each segment. Then, a Gaussian conditional random field (GCRF) is

constructed to obtain the underlying clean image from the noisy input. Extensive experiments

are conducted to test the proposed algorithm, which is shown to outperform state-of-the-art

denoising algorithms.

Keywords: image denoising, piecewise smooth image model, segmentation-based computer

vision algorithms, noise estimation, Gaussian conditional random field, automatic vision sys-
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1 Introduction

Image denoising has been studied for decades in computer vision, image processing and

statistical signal processing. This problem not only provides a good platform to examine natural

image models and signal separation algorithms, but also becomes an important part to digital

image acquiring systems to enhance image qualities. These two directions are both important

and will be explored in this paper.

Most of the existing image denoising work assumes additive white Gaussian noise (AWGN)

and removes the noise independent of RGB channels. However, the type and level of the noise

generated by digital cameras are unknown if the series and brand of the camera, as well as the

camera settings (ISO, shutter speed, aperture, and flash on/off), are unknown. For instance,

the exchangeable image file format (EXIF) metadata attached with each picture can be lost

in image format conversion and image file transferring. Meanwhile, the statistics of the color

noise is not independent of the RGB channels because of the demosaic process embedded

in cameras. Therefore, the current denoising approaches are not truly automatic and cannot

effectively remove color noise. This fact prevents the noise removal techniques from being

practically applied to digital image denoising and enhancing applications.

In some image denoising software, the user is required to specify a number of smooth image

regions to estimate the noise level. This motivated us to adopt a segmentation-based approach to

automatically estimate the noise level from a single image. Since the noise level is dependent on

the image brightness, we propose to estimate an upper bound of the noise level function (NLF)

from the image. The image is partitioned into piecewise smooth regions in which the mean

is the estimate of brightness and the standard deviation is an overestimate of noise level. The

prior of the noise level functions are learnt by simulating the digital camera imaging process

and are used to help estimate the curve correctly where there is missing data.

Since separating signal and noise from a single input is under-constrained, it is in theory

impossible to completely recover the original image from the noise contaminated observation.

The goal of image denoising is to preserve image features as much as possible while eliminat-

ing noise. There are a number of principles we want to match in designing image denoising

algorithms.

(a) The perceptually flat regions should be as smooth as possible. Noise should be com-

pletely removed from these regions.

(b) Image boundaries should be well preserved. This means that the boundary should not be
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blurred or sharpened.

(c) Texture detail should not be lost. This is one of the hardest criteria to match. Since image

denoising algorithms tend to smooth the image, it is easy to lose texture detail during

smoothing.

(d) The global contrast should be preserved (i.e. the low-frequencies of the denoised and

input images should be identical).

(e) No artifacts should appear in the denoised image.

The global contrast is probably the easiest to match, whereas some of the rest principles are

almost incompatible. For instance, (a) and (c) are difficult to adjust together since most denois-

ing algorithms cannot distinguish flat and textured regions from a single input image. Also,

satisfying (e) is important. For example, wavelet-based denoising algorithms tend to generate

ringing artifacts.

Ideally, the same image model should be used for both noise estimation and denoising. We

found that a segmentation-based approach is equally suited to both tasks. After a natural image

is over-segmented into piecewise smooth regions, the pixel values within each segment approx-

imately lie on a 1D line in RGB space due to the physical law of image formation [25, 23, 19].

This important fact helps to significantly reduce color noise. We improve the results by con-

structing a Gaussian conditional random field (GCRF) to estimate the clean image (signal) from

the noisy image.

Experiments are conducted, with both quantitatively convincing and visually pleasing re-

sults to demonstrate that our segmentation-based denoising algorithm outperforms the state of

the art. Our approach is distinctively automatic since the noise level is automatically estimated.

Automatically estimating the noise level can benefit other computer vision algorithms as well.

For example, the parameters of stereo, motion estimation, edge detection and super resolu-

tion algorithms can be set as a function of the noise level so that we can avoid tweaking the

parameters for different noise levels.

The paper is organized as follows. After reviewing relevant work in Section 2, we introduce

our piecewise smooth image model in Section 3. In Section 4, we propose the method for

noise estimation from a single image. Our segmentation-based image denoising algorithm is

presented in detail in Section 5, with results shown in Section 6. We discuss issues of color

noise, modeling, and automation in Section 7, and provide concluding remarks in Section 8.
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2 Related Work

In this section, we briefly review previous work on image denoising and noise estimation.

Image denoising techniques differ in the choice of image prior models while existing noise

estimation techniques assume additive white Gaussian noise (AWGN).

2.1 Image Denoising

In the past three decades, a variety of denoising methods have been developed in the im-

age processing and computer vision communities. Although seemingly very different, they all

share the same property: to keep the meaningful edges and remove less meaningful ones. We

categorize the existing image denoising work by different natural image prior models and the

corresponding representation of natural image statistics.

Wavelets. When a natural image is decomposed into multiscale oriented subbands [30], we

observe highly kurtotic marginal distributions [15]. To enforce the marginal distribution to have

high kurtosis, we can simply suppress low-amplitude values while retaining high-amplitude

values, a technique known as coring [39, 43].

In [42], the joint distribution of wavelets were found to be dependent. A joint coring tech-

nique is developed to infer the wavelet coefficients in a small neighborhood across different

orientation and scale subbands simultaneously. The typical joint distribution for denoising is

a Gaussian scale mixture (GSM) model [37]. In addition, wavelet-domain hidden Markov

models have been applied to image denoising with promising results [8, 13].

Although the wavelet-based method is popular and dominant in denoising, it is hard to re-

move the ringing artifacts of wavelet reconstruction. In other words, wavelet-based methods

tend to introduce additional edges or structures in the denoised image.

Anisotropic Diffusion. The simplest method for noise removal is Gaussian filtering, which is

equivalent to solving an isotropic heat diffusion equation [46], a second order linear PDE. To

keep sharp edges, anisotropic diffusion can be performed using It = div(c(x, y, t)∇I) [34],

where c(x, y, t) = g(‖∇I(x, y, t)‖), and g is a monotonically decreasing function. As a result,

for high gradient pixels, c(x, y, t) is small and therefore gets less diffused. For low gradient

pixels, c(x, y, t) has a higher value and these pixels get blurred with neighboring pixels. A

more sophisticated way of choosing g(·) is discussed in [3]. Compared to simple Gaussian

filtering, anisotropic diffusion smooths out noise while keeping edges. However, it tends to
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over-blur the image and sharpen the boundary with many texture details lost.

More advanced partial differential equations (PDEs) have been developed so that a specific

regularization process is designed for a given (user-defined) underlying local smoothing geom-

etry [52], preserving more texture details than the classical anisotropic diffusion methods.

FRAME & FOE. As an alternative to measuring marginal or joint distributions on wavelet

coefficients, a complete prior model over the whole image can be learnt from marginal distri-

butions [18, 55]. Thus, it is natural to use a Bayesian inference for denoising or restoration

[54, 40], which has the form It =
∑n

i=1 F−1
i ∗λ′

i(Fi ∗ I)+ 1
σ2 (Iobs − I)2, where {Fi} are linear

filters (F−1
i is the filter obtained by mirroring Fi around its center pixel), {λi} are the corre-

sponding Gibbs potential functions, σ2 is the variance of noise, and t is the index of iteration.

Because the derivative λ′
i typically has high values close to zero and low values at high ampli-

tude, the above PDE is very similar to anisotropic diffusion if the Fis are regarded as derivative

filters at different directions [54].

Learning a Gibbs distribution using MCMC can be inefficient. Meanwhile, these methods

have the same drawbacks as anisotropic diffusion: over smoothing and edge sharpening.

Bilateral Filtering. An alternative way of adapting Gaussian filtering to preserve edges is bi-

lateral filtering [51], where both space and range distances are taken into account. The essential

relationship between bilateral filtering and anisotropic diffusion is derived in [2]. Fast bilateral

filtering algorithm is also proposed in [10, 33].

Bilateral filtering has been widely accepted as a simple and effective algorithm for denois-

ing, particularly for color images in recovering HDR images [10]. However, it cannot handle

speckle noise and it also has the tendency of over smoothing and edge sharpening.

Nonlocal Methods. If both the scene and camera are static, we can simply take multiple

pictures and use the mean to remove the noise. This method is impractical for a single image,

but a temporal mean can be computed from a spatial mean–as long as there are enough similar

patterns in the single image. We can find the similar patterns to a query patch and take the mean

or other statistics to estimate the true pixel value, e.g., in [1, 5]. A more rigorous formulation

of this approach is through sparse coding of the noisy input [11].

Nonlocal methods work well for texture-like images containing many repeated patterns.

Compared to other denoising algorithms that have O(n2) complexity where n is the image

width, these algorithms have O(n4) time complexity, which is prohibitive for real-world appli-
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cations.

Conditional Random Fields. Recently, conditional random fields (CRFs) [26] have been a

promising model for statistical inference. Without an explicit prior model on the signal, CRFs

are flexible at modeling short and long range constraints and statistics. Since the noisy input

and the clean image are well aligned at image features, CRFs, in particular Gaussian conditional

random fields (GCRFs) can be well applied to image denoising. Preliminary success has been

shown in the denoising work of [47]. Learning GCRFs is also addressed in [49].

2.2 Noise Estimation

Image-dependent noise can be estimated from multiple or a single image. Estimation from

multiple images is an over-constrained problem, and was addressed in [24]. Estimation from

a single image, however, is an under-constrained problem and further assumptions have to be

made for the noise. In the image denoising literature, noise is often assumed to be additive

white Gaussian noise (AWGN). A widely used estimation method is based on mean absolute

deviation [9]. In [16], the noise level is estimated from the gradient of smooth or small textured

regions, and the signal-dependent noise level is estimated for each intensity interval. In [45],

the authors proposed three methods to estimate noise levels based on training samples and

the statistics (Laplacian) of natural images. In [36], a generalized expectation maximization

algorithm is proposed to estimate the spectral features of a noise source corrupting an observed

image.

Techniques for noise estimation followed by noise reduction have been proposed, but they

tend to be heuristic. For example, in [21], a set of statistics of film grain noise are used to

estimate and remove the noise produced from scanning the photographic element under uniform

exposures. In [44], signal-dependent noise is estimated from the smooth regions of the image

by segmenting the image gradient with an adaptive threshold. The estimated signal-dependent

noise is applied to the whole image for noise reduction. This work was further extended in [20]

by associating a default film-related noise model to the image based on its source identification

tag. The noise model is then adjusted using the image statistics. In certain commercially

available image enhancement software, such as Neat ImageTM1, the noise level can be semi-

automatically estimated by specifying featureless areas to profile noise. Neat ImageTMalso

provides calibration tools to estimate the amount of noise for a specific camera and camera

1http://www.neatimage.com
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setting; pre-calibrated noise profiles for various cameras are also available to directly denoise

images.

By comparison, our technique avoids the tedious noise measurement process for each camera

used. Furthermore, our technique provides a principled way for estimating a continuous noise

level function from a single image under the Bayesian inference framework.

3 Piecewise Smooth Image Model

The piecewise smooth image model was first introduced to computer vision literature by

Terzopoulos [50] to account for the regularization of the reconstructed image. The concept

of piecewise smooth (or continuous) was elaborated by Blake and Zisserman [4]. In this sec-

tion we discuss the reconstruction of piecewise smooth image model from an image and some

important properties of this model.

3.1 Image Segmentation

Image segmentation algorithms are designed based on piecewise smooth image prior to par-

tition pixels into regions with both similar spatial coordinates and RGB pixel values. There

are a variety of segmentation algorithms, such as mean shift [7] and graph-based methods [14].

Since the focus of this paper is not on segmentation, we choose a K-means clustering method

for grouping pixels into regions as described in [56]. Each segment is represented by a mean

color and spatial extent. The spatial extent is computed so that the shape of the segment is

biased towards convex shapes and that all segments have similar size.

3.2 Segment Statistics and Affine Reconstruction

Let the image lattice be L. It is completely partitioned to a number of regions {Ωi} where

L =
⋃

i Ωi and Ωi ∩Ωj = ∅ for i �= j. Let v ∈ R
2 be the coordinate variable, and I(v) ∈ R

3 be

the RGB value of the pixel. Since in this section we focus on the statistics within each segment,

we shall use Ω to represent a segment and v ∈ Ω to index pixels in segment Ω.

We can fit an affine model in segment Ω to minimize the square error

A∗ = arg min
A

∑
v∈Ω

∥∥I(v) − A[vT 1]T
∥∥2

, (1)
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where A ∈ R
3×3 is the affine matrix. We call the reconstruction f(v) = A∗[vT 1]T the affine

reconstruction of segment Ω. The residual is r(v) = I(v) − f(v).

We assume that the residual consists of two parts, subtle texture variation h(v), which is also

part of signal, and noise n(v), i.e., r(v)=h(v) + n(v). In other words, the observed image can

be decomposed into I(v)= f(v) + h(v) + n(v). The underlying clean image or signal is thus

s(v)= f(v) + h(v), which is to be estimated from the noisy input. s(v), h(v), n(v) are all 3D

vectors in RGB space.

Let the covariance matrices of I(v), s(v), h(v) and n(v) be ΣI , Σs, Σh and Σn, respec-

tively. We assume that f(v) is a non-random process and r(v) and n(v) are random variables.

Therefore, Σs =Σh. Suppose signal s(v) and noise n(v) are independent, we have

Σr = Σs + Σn, (2)

which leads to
Σr � Σn. (3)

3.3 Boundary Blur Estimation

If we merely use per-segment affine reconstruction, the reconstructed image has artificial

boundaries, and the original boundaries get sharpened. The amount of blur is thus estimated

from the original image. For each hypothesized blur b from bmin(= 0) to bmax(= 2.5) in steps

of Δb(= 0.25), we compute the blurred image fblur(v; b) = f(v) ∗ G(u; b), where G(u; b) is

a Gaussian kernel with sigma b. We then compute the error image Ierr such that Ierr(v; b) =

‖I(v) − fblur(v; b)‖2. We dilate each boundary curve Cij five times into regions Ωi and Ωj

to obtain a mask Γij . The best blur b∗ij for Cij corresponds to the minimum aggregate error

Ierr(v; b) over Γij , or b∗ij = arg minb

∑
v∈Γij

Ierr(v, b).

To reinstate the blur in the transition region Γij, we simply replace f(v) with fblur(v; b∗i j).

Note that this assumes that the amount of blur in Ωi and Ωj is the same, which is strictly not

true in general. However, we found that this approximation generates good enough results.

After this process is done for every pair of regions we obtain boundary blurred piecewise affine

reconstruction fblur(v).

The piecewise smooth image model is illustrated in Figure 1. The example image (a) taken

from Berkeley image segmentation database [31] is partitioned to piecewise smooth regions (b)

by the segmentation algorithm. The per-segment affine reconstruction is shown in (c) where

we can see artificial boundaries between regions and the true boundaries are sharpened. After
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(a) Original Image (b) Segmentation (c) Per-segment affine reconstruction

(d) Affine reconstruction plus boundary blur (e) The sorted eigenvalues in each segment (f) RGB values projected onto the largest eigenvector

Figure 1. Illustration of piecewise smooth image model
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Figure 2. The log histograms of the horizontal (left) and vertical (right) derivative filter responses
of the reconstruction in Figure 1 (d).

blur estimation and reinstatement, the boundaries become much smoother.

3.4 Important Properties of the Piecewise Smooth Image Model

There are three important properties of our piecewise smooth image model that made us

choose it as the model for both noise estimation and removal. They are:

I. The piecewise smooth image model is consistent with a sparse image prior.

II. The color distribution per each segment can be well approximated by a line segment, due

to the physical law of image formation [25, 23, 19].

III. The standard deviation of residual per each segment is the upper bound of the noise level

in that segment.
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The last property is straightforward from Equation (3). For the first two properties, we again

use the example image in Figure 1 (a) to examine them. For the reconstructed image (d) we

compute the log histograms of the horizontal and vertical derivatives and plotted them in Figure

2. The long tails clearly show that the piecewise smooth reconstruction match the high-kurtosis

statistics of natural images [32]. This image model also shares some similarity with the dead

leaves model [28].

For the second property, we compute the eigenvalues and eigenvectors of the RGB values

{I(v)} in each region. The eigenvalues are sorted decreasingly and displayed in Figure 1 (e).

Obviously, the red channel accounts for the majority of the RGB channels, a fact that proves the

first eigenvalue of each segment is significantly larger than the second eigenvalue. Therefore,

when we project the pixel values onto the first eigenvalue while ignoring the other two, we

get an almost perfect reconstruction in (f). The mean square error (MSE) between the original

image (a) and projected (f) is 5.31×10−18 or a PSNR of 35.12dB. These numbers demonstrate

that the RGB values in each segment lie in a line.

Having demonstrated these properties of our piecewise smooth image model, we are ready

to develop models for both noise estimation and removal.

4 Noise Estimation from a Single Image

Although the standard deviation of each segment of the image is the upper bound of noise

as shown in Equation (3), it is not guaranteed that the means of the segments cover the full

spectrum of image intensity. Besides, the estimate of standard deviation itself is also a random

variable which has variance as well. Therefore, a rigorous statistical framework is needed for

the inference. In this section, we introduce the noise level functions (NLFs) and a simulation

approach to learn the priors. A Bayesian approach is proposed to infer the upper bound of the

noise level function from a single input.

4.1 Learning the Prior of Noise Level Functions

According to the definition, the noise standard deviation as function of brightness, the noise

level function for a particular brand of camera and a fixed parameter setting can be estimated

by fixing the camera on a tripod, taking multiple shots towards a static scene, and then compute

the mean as the estimate of the brightness, and standard deviation as the noise level for each

pixel of every RGB channel. The function of the standard deviation with respect to the mean is
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the desired NLF. The ground truth of NLF can be obtained by this approach and we shall use it

as the reference method to test our algorithm, but it is expensive and time consuming.

As an alternative, we propose a simulation-based approach to obtain NLFs. We build a model

for the noise level functions of CCD cameras. We introduce the terms of our camera noise

model, showing the dependence of the noise level function on the camera response function

(a.k.a. CRF, the image brightness as function of scene irradiance). Given a camera response

function, we can synthesize realistic camera noise. Thus, from a parameterized set of CRFs,

we derive the set of possible noise level functions. This restricted class of NLFs allows us to

accurately estimate the NLF from a single image.

4.1.1 Noise Model of CCD Camera

The CCD digital camera converts the irradiance, the photons coming into the imaging sensor,

to electrons and finally to bits. See Figure 3 for the imaging pipeline of CCD camera. There are

mainly five noise sources as stated in [24], namely fixed pattern noise, dark current noise, shot

noise, amplifier noise and quantization noise. These noise terms are simplified in [53]. Follow-

ing the imaging equation in [53], we propose the following noise model of a CCD camera

I = f(L + ns + nc) + nq, (4)

where I is the observed image brightness, f(·) is camera response function (CRF), ns accounts

for all the noise components that are dependent on irradiance L, nc accounts for the independent

noise before gamma correction, and nq is additional quantization and amplification noise. Since

nq is the minimum noise attached to the camera and most cameras can achieve very low noise,

nq will be ignored in our model. We assume noise statistics E(ns) = 0, Var(ns) = Lσ2
s and

E(nc) = 0, Var(nc) = σ2
c . Note the linear dependence of the variance of ns on the irradiance L

[53].

4.1.2 Camera Response Function (CRF)

The camera response function models the nonlinear processes in a CCD camera that perform

tonescale (gamma) and white balance correction [41]. There are many ways to estimate camera

response functions given a set of images taken under different exposures. To explore the com-

mon properties of many different CRFs, we downloaded 201 real-world response functions

from http://www.cs.columbia.edu/CAVE [22]. Note that we only chose 190 satu-
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rated CRFs since the unsaturated curves are mostly synthetic. Each CRF is a 1024-dimensional

vector that represents the discretized [0, 1]→ [0, 1] function, where both irradiance L and bright-

ness I are normalized to be in the range [0, 1]. We use the notation crf(i) to represent the ith

function in the database.

4.1.3 Synthetic CCD Noise

In principle, we could set up optical experiments to measure precisely for each camera how the

noise level changes with image brightness. However, this would be time consuming and might

still not adequately sample the space of camera response functions. Instead, we use numerical

simulation to estimate the noise function. The basic idea is to transform the image I by the

inverse camera response function f−1 to obtain an irradiance plane L. We then take L through

the processing blocks in Figure 3 to obtain the noisy image IN .

A direct way from Eqn. (4) is to reverse transform I to irradiance L, add noise independently

to each pixel, and transform to brightness to obtain IN . This process is shown in Figure 4 (a).

The synthesized noise image, for the test pattern (c), is shown in Figure (d).

Real CCD noise is not white, however; there are spatial correlations introduced by “demo-

saicing” [38], i.e., the reconstruction of three colors at every pixel from the single-color samples

measured under the color filter array of the CCD. We simulate this effect for a common color

filter pattern (Bayer) and demosaicing algorithm (gradient-based interpolation [27]); we expect

that other filter patterns and demosaicing algorithms will give comparable noise spatial corre-

lations. We synthesized CCD camera noise in accordance with 4 (b) and took the difference

between the demosaiced images with and without noise, adding that to the original image to

synthesize CCD noise. The synthesized noise is shown in Figure 4 (e). The autocorrelation

functions for noise images (d) and (e) are shown in (f) and (g), respectively, showing that the

simulated CCD noise shows spatial correlations after taking into account the effects of demo-

saicing.

4.1.4 The Space of Noise Level Functions

We define the noise level function (NLF) as the variation of the standard deviation of noise with

respect to image intensity. This function can be computed as

τ(I) =
√

E[(IN − I)2], (5)
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where IN is the observation and I = E(IN). Essentially this is a function of how standard

deviation changes with respect to the mean value.

Based on the CCD camera noise model Eqn. (4) and noise synthesis process, IN is a random

variable dependent on the camera response function f and noise parameters σs and σc. Because

L=f−1(I), the noise level function can also be written as

τ(I; f, σs, σc) =
√

E[(IN (f−1(I), f, σs, σc) − I)2], (6)

where IN (·) is the noise synthesis process.

We use numerical simulation to estimate the noise function given f , σs and σc, for each of

red, green and blue channels. This procedure is shown in Figure 5. The smoothly changing

pattern in Figure 4 (c) is used to estimate Eqn. (6). To reduce statistical fluctuations, we use an

image of dimension 1024×1024 and take the mean of 20 samples for each estimate.

To represent the whole space of noise level functions, we draw samples of τ(·; f, σs, σc) from

the space of f , σs and σc. The downloaded 190 CRFs are used to represent the space of f . We

found that σs = 0.16 and σc = 0.06 result in very high noise, so these two values are set as

the maximum of the two parameters. We sample σs from 0.00 to 0.16 with step size 0.02, and

sample σc from 0.01 to 0.06 with step size 0.01. We get a dense set of samples {τi}K
i=1 of

NLFs, where K = 190×9×6 = 10, 260. Using principal component analysis (PCA), we get

mean noise level function τ , eigenvectors {wi}m
i=1 and the corresponding eigenvalues {υi}m

i=1.

Thus, a noise function can be represented as

τ = τ +
m∑

i=1

βiwi, (7)

where coefficient βi is Gaussian distributed βi ∼ N (0, υi), and the function must be positive

everywhere, i.e.,

τ +

m∑
i=1

βiwi � 0, (8)

where τ , wi ∈ R
d and d = 256. This inequality constraint implies that noise functions lie inside

a cone in β space. The mean noise function and eigenvectors are displayed in Figure 6 (a) and

(b), respectively.

Eigenvectors serve as basis functions to impose smoothness to the function. We also impose
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upper and lower bounds on 1st and 2nd order derivatives to further constrain noise functions.

Let T∈R
(d−1)×d and K∈R

(d−2)×d be the matrix of 1st- and 2nd-order derivatives [46]. The

constraints can be represented as

bmin � Tτ � bmax, hmin � Kτ � hmax, (9)

where bmin, bmax ∈ R
d−1, hmin, hmax ∈ R

d−2 are estimated from the training data set {τi}K
i=1.

4.2 Likelihood Model

Since the estimated standard deviation of each segment is an over-estimate of the noise level,

we obtain an upper bound estimate of the noise level function by fitting a lower envelope to

the samples of standard deviation versus mean of each RGB channel. The examples of these

sample points are shown in Figure 8. We could simply fit the noise function in the learnt space

to lie below all the sample points yet close to them. However, because the estimates of variance

in each segment are noisy, extracting these estimates with hard constraints could result in bias

due to a bad outlier. Instead, we follow a probabilistic inference framework to let every data

point contribute to the estimation.

Let the estimated standard deviation of noise from k pixels be σ̂, with σ being the true

standard deviation. When k is large, the square root of chi-square distribution is approximately

N (0, σ2/k) [12]. In addition, we assume a noninformative prior for large k, and obtain the

posterior of the true standard deviation σ given σ̂:

p(σ|σ̂) ∝ 1√
2πσ2/k

exp{−(σ̂ − σ)2

2σ2/k
} ≈ 1√

2πσ̂2/k
exp{−(σ − σ̂)2

2σ̂2/k
}. (10)

Let the cumulative distribution function of a standard normal distribution be Φ(z). Then,

given the estimate (I, σ̂), the probability that the underlying standard deviation σ is larger than

u is

Pr[ σ�u|σ̂]=

∫ ∞

u

p(σ|σ̂)dσ=Φ(

√
k(σ̂−u)

σ̂
). (11)

To fit the noise level function to the lower envelope of the samples, we discretize the range of

brightness [0, 1] into uniform intervals {nh, (n+1)h}
1
h
−1

n=0 . We denote the set Ωn ={(Ii, σ̂i)|nh�
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(a)

(b)

(c) (d)
nh (n+1)h

I

)ˆ,( nnI σ

Figure 7. The likelihood function of Eq. 12. Each single likelihood function (c) is a product of a
Gaussian pdf (a) and Gaussian cdf (b).

Ii � (n + 1)h}, and find the pair (In, σ̂n) with the minimum variance σ̂n = minΩn σ̂i. Lower

envelope means that the fitted function should most probably be lower than all the estimates

while being as close as possible to the samples. Mathematically, the likelihood function is the

probability of seeing the observed image intensity and noise variance measurements given a

particular noise level function. It is formulated as

L(τ(I)) = P ({In, σ̂n}|τ(I))

∝
∏
n

Pr[σn �τ(In)|σ̂n] exp{−(τ(In)−σ̂n)2

2s2
}

=
∏
n

Φ(

√
kn(σ̂n−τ(In))

σ̂n
) exp{−(τ(In)−σ̂n)2

2s2
}, (12)

where s is the parameter to control how close the function should approach the samples. This

likelihood function is illustrated in Figure 7, where each term (c) is a product of a Gaussian

pdf with variance s2 (a) and a Gaussian cdf with variance σ̂2
n (b). The red dots are the samples

of minimum in each interval. Given the function (blue curve), each red dot is probabilistically

beyond but close to the curve with the pdf in (c).

4.3 Bayesian MAP Inference

The parameters we want to infer are actually the coefficients on the eigenvectors xl =

[β1 · · · βm]T ∈ R
m, l = 1, 2, 3 of the noise level function for RGB channels. We denote the

sample set to fit {(Iln, σ̂ln, kln)}. Bayesian inference turns out to be an optimization problem
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{x∗
l } = arg min

{xl}

3∑
l=1

{∑
n

[
−log Φ(

√
kln

σ̂n

(σ̂ln−eT
nxl−τn)) +

(eT
nxl+τn−σ̂ln)2

2s2
] + xT

l Λ
−1xl +

3∑
j=1,j>l

(xl−xj)
TET(γ1T

TT+γ2K
TK)E(xl−xj)

}
(13)

subject to

τ + Exl � 0, (14)

bmin � T(τ + Exl) � bmax, (15)

hmin � K(τ + Exl) �hmax. (16)

In the above formula, the matrix E=[w1 · · · wm] ∈ R
d×m contains the principal components,

en is the nth row of E, and Λ = diag(v1, · · · , vm) is the diagonal eigenvalue matrix. The last

term in the objective function accounts for the similarity of the NLF for RGB channels. Their

similarity is defined as a distance on 1st and 2nd order derivative. Since the dimensionality

of the optimization is low, we use the MATLAB standard nonlinear constrained optimization

function fmincon for optimization. The function was able to find an optimal solution for all

the examples we tested.

4.4 Experimental Results on Noise Estimation

We have conducted experiments on both synthetic and real noisy images to test the proposed

noise estimation algorithm. First, we applied our CCD noise synthesis algorithm in Sect 3.3 to

17 randomly selected pictures from the Berkeley image segmentation database [31] to generate

synthetic test images. To generate the synthetic CCD noise, we specify a CRF and two para-

meters σs and σc. From this information, we also produce the ground truth noise level function

using the training database in Sect 4.1.4. For this experiment, we selected crf(60), σs = 0.10

and σc = 0.04. Then, we applied our method to estimate the NLF from the synthesized noisy

images. Both L2 and L∞ norms are used to measure the distance between the estimated NLF

and the ground truth. The error statistics under the two norms are listed in Table 1, where the

mean and maximum value of the ground truth are 0.0645 and 0.0932, respectively.

Some estimated NLFs are shown in Figure 8. In (a) we observe many texture regions es-

pecially at high intensity values, which implies high signal variance. The estimated curves (in

red, green and blue) do not tightly follow the lower envelope of the samples at high intensi-
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Figure 8. Synthesized noisy images and their corresponding noise level functions (noise standard
deviation as a function of image brightness). The red, green and blue curves are estimated using
the proposed algorithm, whereas the gray curves are the true values for the synthetically generated
noise.
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Figure 9. Comparison of estimated camera noise with experimental measurement. (a) shows one of
the 29 images taken with a CanonTMEOS 10D. An enlarged patch is shown for (b) a single image,
and (c) the mean image. (d) is the estimated NLF from a single image (color), showing good
agreement with the ground truth (gray), measured from the noise variations over all 29 images.
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Norm mean std. deviation
L2 0.0048 0.0033
L∞ 0.0110 0.0120

Table 1. The statistics of the L2 and L∞ norms between the estimated NLF and the ground truth.

ties, although they deviate from the true noise function (in gray) slightly. In (b) the samples

do not span the full intensity range, so our estimate is only reliable where the samples appear.

This shows a limit of the prior model: the samples are assumed to be well-distributed. The

estimation is reliable if the color distribution span the full range of the spectrum and there are

textureless regions, as in (c).

We conducted a further experiment as a sanity check. We took 29 images of a static scene

by CanonTMEOS 10D (ISO 1600, exposure time 1/30 s and aperture f/19) and computed the

mean image. One sample is shown in Figure 9 (a). A close-up view of sample (a) and the

mean image is shown in (b) and (c), respectively. Clearly the noise is significantly reduced

in the mean image. Using the variance over the 29 images as a function of mean intensity, we

calculated the “ground truth” NLF and compared that to the NLF estimated by our method from

only one image. The agreement between the NLFs in each color band is very good, see Figure

9 (d).

We also applied the algorithm to estimating noise level functions from the other images

taken by a CCD camera. We evaluated our results based on repeatability: pictures taken by

the same camera with the same setting on the same date should have the same noise level

function, independent of the image content. We collected two pictures taken by a CanonTM

EOS DIGITAL REBEL and estimated the corresponding noise level functions, as shown in

Figure 10 (a) and (b). Even though image (a) is missing high intensity values, the estimated

NLFs are similar.

5 Segmentation-Based Denoising

Recall from Section 3.2 that the observation I(v) is decomposed to signal s(v) and noise

n(v). Given the characteristics of the noise that have been estimated from the previous section,

we are now ready to separate the signal and noise from the observation.
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Figure 10. The two images are taken by a CanonTMEOS DIGITAL REBEL and the estimated
noise level functions. Very similar noise level functions are derived, even though the two images
have very different tonescales.

5.1 0th-Order Model

Let μ=[μ1 μ2 μ3]
T ∈ R

3 be the mean color for segment Ω after the piecewise smooth image

reconstruction to the input image I . Suppose the noise is independent for RGB channels, and

we obtain the covariance matrix of noise in this segment

Σ̂n = diag
(
τ 2(μ1), τ

2(μ2), τ
2(μ3)

)
. (17)

From the independence assumption of the noise and signal, we obtain (from Equation (2))

Σ̂s = Σr − Σ̂n. (18)

It is possible that the estimated Σ̂s is not positive definite. For this case we simply enforce the

minimum eigenvalue of Σ̂s to be a small value (0.0001).

We simply run Bayesian MAP estimation for each pixel to estimate the noise based on the

obtained 2nd order statistics. Since

p(s(v)|I(v))∝ p(I(v)|s(v))p(s(v))

∝ exp

{
−1

2
[I(v)−s(v)]T Σ̂−1

n [I(v)−s(v)]

}
exp

{
−1

2
[s(v)−f(v)]TΣ̂−1

s [s(v)−f(v)]

}
,(19)

where f(v) is the piecewise smooth reconstruction, the optimal estimation has a simple closed-
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(a) 5% AWGN (b) Denoised by the 0th-order model (PSNR=32.04)

(c) 10% AWGN (d) Denoised by the 0th-order model (PSNR=27.05)

Figure 11. Noise contaminated images and the denoised results by the 0th-order model. A patch at
a fixed position marked by a red rectangle is zoomed-in and inset at the bottom-right of each image.
Clearly, the 0th-order model significantly removes the chrominance component of color noise. For
high noise level, the discontinuities between the neighboring segments are further removed by the
1st-order model (see Figure 13, 14 and Table 2).

form solution

s∗(v) = arg max p(s(v)|I(v)) = (Σ̂−1
n + Σ̂−1

s )−1(Σ̂−1
n I(v) + Σ̂−1

s f(v)), (20)

which simply down-weighs the pixel values from I(v) to f(v) using the covariance matrices as

weights. For a scaled identity Σ̂n, it is easy to show that the attenuation along each principal

direction in the color covariance matrix is λi/(λi + σn), where λi is the variance in the ith

direction. Qualitatively, as this variance tends towards zero (either because the non-dominant

direction has low variance, or the region is untextured), the cleaned up residual is progressively

more attenuated.

Equation (20) is applied to every pixel, where Σ̂n and Σ̂s vary from segment to segment.

Since there is no spatial relationship of pixels in this model, we call it 0th-order model. An

example of denoising using 0th-order model is shown in Figure 11, where the algorithm is

tested by synthetic AWGN with noise levels of 5% and 10%. Clearly the 0th-order model

significantly removes the chrominance component of color noise. The results are acceptable
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for 5% noise level, and we can see discontinuities between the neighboring segments for 10%

noise level because the spatial correlation has been accounted for.

5.2 1st-Order Gaussian Conditional Random Field

The values of the neighboring pixels are correlated in natural images. We chose to regularize

with a conditional random field (CRF) [26, 47] where the spatial correlation is a function of

the local patch of the input image, over the Markov random field (MRF) [18] to avoid having

a complete prior models on images as in [40], Moreover, we model it as a Gaussian CRF since

all the energy functions are quadratic. We call it 1st-order model because the spatial correlation

is captured by the 1st-order derivative filters. Likewise, we can have 2nd-order model or even

higher order. But we found that 1st-order model is sufficient for the denoising task.

Let the estimated covariance matrices of signal and noise be Σ̂s(i) and Σ̂n(i) for segment

Ωi. The CRF is formulated as

p(s|I)=
1

Z
exp

{
−1

2

∑
i

∑
v∈Ωi

[(
s(v) − I(v)

)T

Σ̂−1
n (i)

(
s(v) − I(v)

)
+

(
s(v) − f(v)

)T

Σ̂−1
s (i)

(
s(v) − f(v)

)
+ ξiw(v)

m∑
j=1

F 2
j (v)

]}
. (21)

In the above equation, Fj = φj ∗ s is the filter response of s being convolved with filter φj.

For this 1st-order GCRF, we choose horizontal and vertical filters (i.e., m=2). w(v) and ξi are

both weights to balance the importance of spatial correlation. ξi is the weight for each segment.

We find that ξi can be a linear function of the mean noise level in segment Ωi. w(v) is derived

from the filter responses of the original image. Intuitively, w(v) should be small when there

is clear boundary at v to weaken spatial correlation, and be large when there is no boundary

to strengthen spatial correlation. Boundaries can be detected by Canny edge detection [6], but

we found that the algorithm is more stable when w(v) is set to be a function of local filter

responses. We use orientationally elongated Gabor sine and cosine filters [17] to capture the

boundary energy of the underlying noise-free image. The boundary energy is the sum over all

the orientations and sin/cos phases. We then use a nonlinear function to map the energy to the

local value of the weight matrix, i.e., y = (1 − tanh(t1x))t2 where t1 = 0.6 and t2 = 12 in our

implementation. Solving Equation (21) is equivalent to solving a linear system, which can be

effectively computed by conjugate gradient method that only needs iterations of linear filtering.
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6 Experimental Results on Image Denoising

Our automatic image denoising system consists of two parts, noise estimation and denois-

ing. To have a fair comparison with other denoising algorithms, we first test our denoising

algorithms using synthetic AWGN with constant and known noise level (σ). Then the whole

system is tested with the images contaminated with real CCD camera noise.

6.1 Synthetic AWGN

We selected 17 images covering different types of objects and scenes from the Berkeley

segmentation dataset [31] and added AWGN with 5% and 10% noise level to test our denoising

algorithm. The noise contaminated images with 10% noise level are shown in Figure 12. We

also ran standard bilateral filtering [51] (our implementation), curvature preserving PDE [52]

(publicly available implementation2) and wavelet joint coring, GSM [37] (publicly available

implementation3). Default parameter settings are used for the downloaded code. For curvature

preserving PDE, we tweaked the parameters and found that the best results can be obtained by

setting alpha = 1, iter = 4 for σ = 10% and alpha = 0.5 iter = 7 for σ = 5%. We compare

their results to our own using both visual inspection in Figure 13 and 14, and peak signal to

noise ratio (PSNR) statistics in Table 2.

It is clear that our technique consistently outperforms bilateral filtering, curvature preserving

PDE and wavelet joint coring. In terms of PSNR, our technique outperforms these algorithms

by a significant margin. When σ = 0.05, i.e., the noise level is low, even the 0th-order model

outperforms the state-of-the-art wavelet GSM. When σ = 0.10, i.e., the noise level is high, the

1st-order model outperforms wavelet GSM by 1.3 PSNR on average.

The results are also visually inspected in Figure 13 from (a) to (e), corresponding to image

35008, 23084, 108073, 65010 and 66075 in Figure 12, respectively. Some close-up views of

the denoising results are shown in Figure 14. The curvature preserving PDE method generates

color fringing artifacts around the strong edges. Wavelet coring tends to produce color and

blurring artifacts, especially in (a) and (d). Our algorithm, however, is able to smooth out flat

regions, preserve sharp edges, as well as keep subtle texture details. In Figure 13 and 14 (a),

our algorithm achieved sharper boundaries of the bug and preserved the texture of the flower.

In (b), many curves with a variety of width are well reconstructed, whereas the wavelet coring

2http://www.greyc.ensicaen.fr/∼dtschump/greycstoration/download.html
3http://decsai.ugr.es/∼javier/denoise/
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15004 15088 22013 26031 66075 106025 113009 302003 23084 35008

65010 100075 105053 108073 134052 145053 314016

Figure 12. Seventeen images are selected from Berkeley image segmentation database [31] to
evaluate the proposed algorithm. The file names (numbers) are shown beneath each picture

PSNR σ = 5% σ = 10%
File name bilat PDE wavelet 0th 1st bilat PDE wavelet 0th 1st
100075 29.32 29.76 31.27 31.69 31.68 26.47 27.72 28.31 28.14 28.96
105053 32.33 32.54 34.01 33.77 34.02 30.05 30.56 31.41 30.63 31.95
106025 34.47 34.29 36.13 35.75 36.44 30.94 31.58 32.57 32.03 34.22
108073 29.98 29.84 31.48 31.94 31.98 25.61 26.98 27.94 28.33 29.21
113009 30.73 30.72 32.89 32.31 32.61 27.38 27.80 29.91 28.89 30.19
134052 30.02 30.03 32.09 32.58 32.88 25.71 27.38 28.20 28.61 29.55
145053 29.51 29.12 31.72 31.88 32.26 23.84 25.83 27.23 27.46 28.71
15004 28.61 28.24 30.74 30.98 31.51 23.38 24.77 26.35 25.58 27.50
15088 29.55 29.19 33.36 32.41 32.74 25.02 26.64 28.83 27.71 28.76
22013 29.92 29.50 31.31 32.17 32.33 25.09 26.42 27.12 27.14 28.84
23084 30.31 29.76 32.14 32.04 32.64 24.63 26.34 27.24 27.05 29.23
26031 28.76 27.93 28.87 31.20 31.24 21.58 22.97 23.95 25.55 26.65
302003 31.29 30.93 33.70 32.94 33.96 26.85 27.43 29.47 27.91 30.84
314016 28.43 29.26 31.28 31.57 31.44 25.00 26.93 27.64 26.81 27.83
35008 33.28 33.40 35.74 34.84 35.97 29.25 30.85 31.23 30.24 33.27
65010 29.62 29.46 30.95 31.99 32.18 25.20 26.45 26.73 27.18 28.41
66075 32.57 32.46 33.36 35.02 35.03 28.33 29.78 29.69 29.79 31.80
mean 30.51 30.78 32.41 32.65 32.99 26.14 27.43 28.46 28.18 29.76

Table 2. PSNR for the images in Berkeley image segmentation database. “bilat”, “PDE”,
“wavelet”, “0th” and “1st” stand for bilateral filtering [51], curvature preserving PDE [52], wavelet
(GSM) [37], 0th-order and 1st-order model, respectively. The images with green are cropped,
zoomed-in, and displayed in Figure 13.

introduced color fringing artifacts around boundaries. In (c), the whiskers of the tiger are

sharper and clearer by our algorithm, and so are the stems and leaves of the grasses. In (d),

the texture details of the leaves are preserved, while the clouds are well smoothed. The ostrich

head in (e) is a failure example, where the upper neck part is over-smoothed and some artificial
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(a)

(b)

(c)

(d)

(e)

10% AWGN PDE Wavelet GSM Ours (1st-order model) Original

Figure 13. Close-up view of the denoising results. See text for the explanation.
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(a)

(b)

(c)

(d)

(e)

10% AWGN PDE Wavelet GSM Ours Original

Figure 14. Some close-up views of the denoising results in Figure 13 are shown here. Our al-
gorithm generated crispier images without color fringing artifacts as produced by PDE [52] and
wavelet GSM [37] approaches.

boundaries are generated for the furry edges. Note that our system does not always completely

remove the noise for the texture regions, but it looks visually pleasing since the chrominance

component of the noise is removed. In addition, the remaining noise in the texture regions as

in (d) is not noticeable.

Overall, our algorithm outperforms the state-of-the-art denoising algorithms on the synthetic

noise case. It takes our un-optimized MATLABTMimplementation less than one minute on

average to denoise one picture (with a typical resolution of 481×321) in the Berkeley database.

Our experiments were run on a 2.8 GHz Pentium D PC.
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(a) Noisy input (b) Wavelet GSM σ = 10%

(c) Wavelet GSM σ = 15% (d) Ours

Figure 15. Comparison of denoising algorithms on a real CCD camera noise input.

(a) (b) (c) (d)

(1)

(2)

(3)

Figure 16. Close-up view of the denoising results in Figure 15.
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Figure 17. Estimated noise level functions. (a): NLFs for the noisy sample in Figure 15. (b): NLFs
for the example in Figure 18.

(a) Noisy input (b) Denoised by wavelet GSM [37] (c) Denoised by our algorithm

Figure 18. The denoising results of a very challenging example.

6.2 Real CCD Noise

We further tested our automatic denoising system using the pictures taken by CCD cameras

with remarkable noise [35]. The picture in Figure 15 (a) was taken by CanonTMEOS DIGITAL

REBEL, with intense noise for the dim pixels, but less for the bright ones. The noise level

functions are estimated and displayed in Figure 17, which agree with the observation. To

compare, we also run wavelet coring (GSM), with σ = 10% and σ = 15%, and the results

are shown in Figure 15 (b) and (c), respectively. The denoising result automatically generated

by our system is shown in (d). The close-up inspections of these results are shown in Figure

16. Clearly with the constant noise level assumption, the wavelet coring algorithm cannot

balance the high and low noise areas. When σ = 10% it does a better job for the bright pixels

with sharper edges, and when σ = 15% it does a better job for the dark pixels with smoother

regions. But overall we can still see blocky color artifacts, overly smoothed boundaries and loss

of texture details. The result produced by our system successfully overcomes these problems.

In Figure 16 row (1) our method produces almost flat patch. In row (2) the boundary is much

sharper, whereas in row (3) many subtle texture details are preserved. Overall our algorithm

generates visually more appealing result (we cannot compute PSNR since there is no ground
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truth clean image).

We tested our algorithm on another challenging example shown in Figure 18 (a). As shown

in (b) the wavelet coring cannot effectively remove the color noise because of the spatial corre-

lation of the color noise. Even though the result generated by our automatic denoising system

in (c) overly sharpens the edges to have cartoon style, the noise gets completely removed and

the image looks visually more pleasing.

Since our segmentation algorithm generates bigger segments for flat regions and smaller seg-

ments for texture regions, the parameter setting of segmentation does not significantly influence

the overall performance of the system if it is within a reasonable range. We used the same para-

meter settings for the benchmark test, and found that visually more pleasing results are achieved

for the real CCD noise examples in Figure 18 if bigger segments are allowed (unfortunately we

could not measure the PSNR). Certainly better segmentation will further improve the denoising

system, but our current segmentation algorithm is sufficient.

7 Discussion

Having shown the success of our model using both synthetic and real noise, we want to

provide some insights to the denoising problem and our modeling.

7.1 Color Noise

As shown in Section 3, the color of the pixels in a segment is approximately distributed along

a 1D subspace of the three-dimensional RGB space. This agrees with the fact that the strong

sharp boundaries are mainly produced by the change of materials (or reflectance), whereas the

weak smooth boundaries are mainly produced by the change of lighting [48]. Since the human

vision system is accustomed to these patterns, color noise, which breaks the 1D subspace rule,

appears annoying to our eyes. Our denoising system was designed based on this 1D subspace

rule to effectively remove the chrominance component of color noise. The results of our 0th-

order model in Figure 11 demonstrate that the images look significantly more pleasing when

the chrominance component is removed.

7.2 Conditional Model vs. Generative Model

In our system we do segmentation only once to obtain a piecewise smooth model of the input

image. If we treat the region partitions as a hidden variable that generates the noise image, then
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the conditional model becomes a generative model. Inference in the generative model will

require integration over the region partitions. Intuitively, the segmentation of the noisy input

image could be noisy and unreliable and could result in many possible segmentations.

One way of this full Bayesian approach is to sample partitions from the input image, ob-

tain the denoised image for each segmentation, and compute the mean as the output. This

approach would possibly improve the results by removing some of the boundary artifacts, but

it is intractable in practice because of the huge space of partitions. Another way is to treat the

partition as missing data and use expectation-maximization (EM) algorithm to iterates between

segmenting the image based on the denoised image (E-step), and estimating the denoised im-

age based on the segmentation (M-step). This approach is also intractable in practice because

many iterations are required. Nevertheless, these full Bayesian approaches might be promising

directions for future segmentation-based image processing systems with more powerful com-

putation.

7.3 Automation of Computer Vision System

The performance of a computer vision system is sensitive to peripheral parameters, e.g.,

noise level, blur level, resolution/image quality, lighting and view point. For example, for im-

age denoising the noise level is an important parameter to the system. Poor results may be

produced with a wrong estimate of the noise level. Most existing computer vision algorithms

focus on addressing the problems with known peripheral parameters, but the algorithms have to

be tweaked to fit different imaging conditions. Therefore, it is an important direction to make

computer vision systems account for the important peripheral parameters to be fully automatic.

Our automatic image denoising system is one of the first attempts to make the denoising algo-

rithm robust to noise level.

8 Conclusion

Based on a simple piecewise-smooth image prior, we proposed a segmentation-based ap-

proach to automatically estimate and remove noise from color images. The NLF is obtained by

estimating the lower envelope of the standard deviations of image variance per segment. The

chrominance of the color noise is significantly removed by projecting the RGB pixel values to

a line in color space fitted to each segment. The noise is removed by formulating and solv-

ing a Gaussian conditional random field. Experiments were conducted to test both the noise
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estimation and removal algorithms.

We verified that the estimated noise level is a tight upper bound of the true noise level in

three ways: (1) by showing good agreement with experimentally measured noise from repeated

exposures of the same image, (2) by repeatedly measuring the same NLF with the same camera

for different image content, and (3) by accurately estimating known synthetic noise functions.

Our noise estimation algorithm can be applied to not only denoising algorithms, but other

computer vision applications to make them independent of noise level [29].

Our denoising algorithm outperforms the state-of-the-art wavelet denoising algorithms on

both synthetic and real noise-contaminated images by generating shaper edges, producing

smoother flat regions and preserving subtle texture details. These features match our original

criteria we proposed for a good denoising algorithm.
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