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rithms, which are proven to outperform the state-of-the-art denoising algorithms with

promising and convincing results.
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1 Introduction

Image denoising has been studied for decades in the fields of computer vision, image processing

and statistical signal processing. It not only provides a good platform to examine natural image

models and signal separation algorithms, but also becomes an important part to digital image ac-

quiring systems to enhance image qualities. Both of these two directions are important and will be

explored in this paper.

Most of the existing image denoising work assumes additive white Gaussian noise (a.k.a.

AWGN) and removes the noise independent of RGB channels. However, the type and level of

the noise generated by digital cameras are unknown if the series and brand of the camera as well

as the camera settings (ISO, shutter speed, aperture and flash on/off) are unknown, e.g., digital

pictures with exchangeable image file format (EXIF) metadata lost. Meanwhile, the statistics of

the color noise is not independent of the RGB channels because of the demosaic process embedded

in cameras. Therefore, the current denoising approaches are not truly automatic and cannot effec-

tively remove color noise. This fact prevents the noise removal techniques from being practically

applied to digital image denoising and enhancing applications.

In some image denoising software, the user is required to specify a number of smooth image

regions to estimate the noise level. This motivated us to adopt a segmentation-based approach to

automatically estimate the noise level from a single image. The noise level is dependent on the

image brightness, and we propose to estimate the upper bound of a noise level function (NLF)

from the image. The image is partitioned into piecewise smooth regions in which the mean is the

estimate of brightness and the standard deviation is an overestimate of noise level. The prior of the

noise level functions are learnt by simulating the digital camera imaging process, and are used to

help estimating the curve correctly at the missing data.

Since separating signal and noise from a single input is totally under-constrained, it is in theory

impossible to completely recover the original image from the noise contaminated observation.

The basic criterion in image denoising is thus to preserve image features as much as possible while

eliminating noise. There are a number of principles we want to match in designing image denoising

algorithms.

(a) The perceptually flat regions should be as smooth as possible. Noise should be completely

removed from these regions.

(b) Image boundaries should be well preserved. This means the boundary should not be either

blurred or sharpened.



(c) Texture details should not be lost. This is one of the hardest criteria to match. Since image

denoise algorithm always tends to smooth the image, it is very easy to loose texture details

in denoising.

(d) The global contrast should be preserved, or the low-frequencies of the denoised and input

images should be identical.

(e) No artifacts should be produced in the denoised image.

The global contrast is probably the easiest to match, whereas some of the rest principles are almost

incompatible. For instance, (a) and (c) are very difficult to be tuned together since most denoise

algorithms could not distinguish flat and texture regions from a single input image. Principle (e)

is also very important. For example, wavelet-based denoising algorithms tend to generate ringing

artifacts.

Ideally, the same image model should be used for both noise estimation and denoising. We

found that a segmentation-based approach is equally suited for both tasks. After a natural image

is over-segmented into piecewise smooth regions, the pixel values within each segment approxi-

mately lie on a 1D line in RGB space due to the physical law of image formation [22, 20, 18]. This

important fact helps reduce color noise to a remarkable extent. A Gaussian conditional random

field (GCRF) is further constructed to estimate the clean image (signal) from the noisy image. The

parameters of the GCRF are learnt from a set of training samples using MSE.

Extensive experiments are conducted, with both quantitatively convincing and visually pleas-

ing results that demonstrate our segmentation-based denoising approach outperforms the-state-of-

the-art algorithms. Our approach is distinctive at being fully automatic since the noise level is

automatically estimated. Automatically estimating noise level can benefit other computer vision

algorithms as well. The parameters of vision algorithms, e.g., stereo, motion estimation, edge de-

tection and super resolution, can be set as functions of noise level so that we do not need to tweak

the parameters for different noise levels.

The paper is organized as follows. After reviewing relevant work in Section 2, we introduce

our piecewise smooth image model in Section 3. In Section 4, we propose the method for noise

estimation from a single image. Our segmentation-based image denoising algorithm is presented

in depth in Section 5, with results shown in Section 6. We discuss issues of color noise, modeling,

and automation in Section 7, and provide concluding remarks in Section 8.
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2 Related Work

In this section, we briefly review past work on image denoising and noise estimation. Image

denoising techniques differ in the choice of image prior models while existing noise estimation

techniques assume additive white Gaussian noise (AWGN).

2.1 Image Denoising

In the past three decades, a variety of denoising methods have been developed in the image pro-

cessing and computer vision communities. Although seemingly very different, they all share the

same property: to keep the meaningful edges and remove less meaningful ones. We categorize

the existing image denoising work by different natural image prior models and the corresponding

representation of natural image statistics.

Wavelets. When a natural image is decomposed into multiscale oriented subbands [27], we ob-

serve highly kurtotic marginal distributions [14]. To enforce the marginal distribution to have high

kurtosis, we can simply suppress low-amplitude values while retaining high-amplitude values, a

technique known as coring [37, 41].

In [40], the joint distribution of wavelets were found to be dependent. A joint coring technique

is developed to infer the wavelet coefficients in a small neighborhood across different orientation

and scale subbands simultaneously. The typical joint distribution for denoising is a Gaussian scale

model (GSM) [35]. The joint distribution of wavelets has also been found to be successful in

texture modeling and synthesis [34].

Although the wavelet-based method is popular and dominant in denoising, it is hard to get rid

of the ringing artifacts of wavelet reconstruction. In other words, wavelet-based methods tend to

introduce additional edges or structures in the denoised image.

Anisotropic Diffusion. The easiest way to remove noise is to do Gaussian filtering, which is

equivalent to solving an isotropic heat diffusion equation [43], a second order linear PDE. To keep

sharp edges, a smarter way is to diffuse anisotropically using It = div(c(x, y, t)∇I) [31], where

c(x, y, t) = g(‖∇I(x, y, t)‖), and g is a monotonically decreasing function. In this way, for high

gradient pixels, c(x, y, t) is always small and therefore they get less diffused. For low gradient

pixels, c(x, y, t) has a higher value and these pixels get blurred with neighboring pixels. A more

sophisticated way of choosing g(·) is discussed in [3]. Compared to simple Gaussian filtering,

anisotropic diffusion smooths out noise while keeping edges. However, it tends to over-blur the

image and sharpen the boundary with many texture details lost.
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More advanced partial differential equations (PDEs) have been developed so that the a specific

regularization process is designed for a given (user-defined) underlying local smoothing geometry

[50, 49], preserving more texture details than the classical anisotropic diffusion methods.

FRAME & FOE. As an alternative to measuring marginal or joint distribution on wavelets coef-

ficients, a complete prior model over the whole image can be learnt from marginal distributions

[17, 54]. It is thus natural to use a Bayesian inference for denoising or restoration [53, 38], which

has the form It =
∑n

i=1 F−1
i ∗ λ′

i(Fi ∗ I) + 1
σ2 (I

obs − I)2, where Fis are linear filters, λis are the

corresponding Gibbs potential functions, and σ2 is the variance of noise. t is the index of iteration.

Because the derivative λ′
i typically has high values close to zero and low values at high amplitude,

the above PDE is very similar to anisotropic diffusion if Fis are regarded as derivative filters at

different directions [53].

Learning a Gibbs distribution using MCMC is notorious for its inefficiency. These methods

have the same the drawbacks as anisotropic diffusion: over smoothing and edge sharpening.

Bilateral Filtering. An alternative way of adapting Gaussian filtering to preserve edges is bilateral

filtering [48], where both space and range distances are taken into account. The essential relation-

ship between bilateral filtering and anisotropic diffusion is derived in [2]. Fast bilateral filtering

algorithm is also proposed in [10, 30].

Bilateral filtering has been widely accepted as a simple but effective algorithm for denoising,

particularly for color images in recovering HDR image [10]. However, it cannot handle speckle

noise, and it also has the tendency of over smoothing and edge sharpening.

Nonlocal Methods. If both the scene and camera are static, we can just take multiple pictures and

take the mean to remove the noise. This method is unpractical for a single image, but a temporal

mean can be computed from a spatial mean–as long as there are enough similar patterns in the

single image. We can find the similar patterns to a query patch and take the mean or other statistics

to estimate the true pixel value, e.g., in [1, 5]. A more rigorous formulation of this approach is

through sparse coding of the noisy input [11].

Nonlocal methods work well for texture-like images containing many repeated patterns. Com-

pared to other denoising algorithms which have o(n2) complexity where n is the image width,

these algorithms have o(n4) time complexity, which prevents it from real applications.

Conditional Random Fields. Recently, conditional random fields (CRFs) [23] have been a promis-

ing model for statistical inference. Without an explicit prior model on the signal, CRFs are flexible

at modeling short and long range constraints and statistics. Since the noisy input and the clean im-
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age are well aligned at image features, CRFs can be well applied to image denoising. Preliminary

success has been shown in the denoising part of [45].

2.2 Noise Estimation

Compared to the in-depth and wide literature on image denoising, the literature on noise estimation

is very limited. Noise can be estimated from multiple images or a single image. Estimation from

multiple image is an over-constrained problem, and was addressed in [21]. Estimation from a sin-

gle image, however, is an under-constrained problem and further assumptions have to be made for

the noise. In the image denoising literature, noise is often assumed to be additive white Gaussian

noise (AWGN). A widely used estimation method is based on mean absolute deviation (MAD) [9].

In [15], the noise level is estimated from the gradient of smooth or little texture regions, and the

signal-dependent noise level is estimated for each intensity interval. In [42], the authors proposed

three methods to estimate noise levels based on training samples and the statistics (Laplacian) of

natural images. In [33], a generalized expectation maximization algorithm is proposed to estimate

the spectral features of a noise source corrupting an observed image. There still lacks a principled

way of estimating a continuous noise level function from a single image.

In some practical image denoising software, e.g., Neat ImageTM1, the noise level can be semi-

automatically estimated by specifying featureless areas to profile noise. Calibration tools are also

provided to estimate noise level for a particular camera and camera settings. On the webpage of

Neat ImageTM the profiles of a variety of brands of digital cameras are downloadable.

A noise image classifier is studied in Appendix A. The recognition results clearly show that it

is possible to classify and therefore estimate noise from local image features. The classifier can

also be used at the front line of an automatic denoising system to skip clean images for denoising.

3 Piecewise Smooth Image Model

The piecewise smooth image model was first introduced to computer vision literature by Terzopou-

los [47] to account for the regularization of the reconstructed image. The concept of piecewise

smooth (or continuous) was elaborated by Blake and Zisserman [4]. In this section we discuss the

reconstruction of piecewise smooth image model from an image and some important properties of

this model.
1http://www.neatimage.com
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3.1 Image Segmentation

Image segmentation algorithms are designed based on piecewise smooth image prior to partition

pixels into regions with both similar spatial coordinates and RGB pixel values. There are a variety

of segmentation algorithms, such as mean shift [7] and graph-based methods [13]. Since the focus

of this paper is not on segmentation, we choose a K-means clustering method for grouping pixels

into regions as described in [55]. Each segment is represented by a mean color and spatial extent.

The spatial extent is computed so that the shape of the segment is biased towards convex shapes

and that all segments have similar size.

3.2 Segment Statistics and Affine Reconstruction

Let the image lattice be L. It is completely partitioned to a number of regions {Ωi} where L =⋃
i Ωi and Ωi ∩ Ωj = ∅ for i �= j. Let v ∈ R

2 be the coordinate variable, and I(v) ∈ R
3 be the

RGB value of the pixel. Since in this section we focus on the statistics within each segment, we

shall use Ω to represent a segment and v ∈ Ω to index pixels in segment Ω.

We can fit an affine model in segment Ω to minimize the square error

A∗ = arg min
A

∑
v∈Ω

∥∥I(v) − A[vT 1]T
∥∥2

, (1)

where A ∈ R
3×3 is the affine matrix. We call the reconstruction f(v) = A∗[vT 1]T the affine

reconstruction of segment Ω. The residual is r(v) = I(v) − f(v).

We assume that the residual consists of two parts, subtle texture variation h(v), which is also

part of signal, and noise n(v), i.e., r(v) = h(v) + n(v). In other words, the observed image can

be decomposed into I(v) = f(v) + h(v) + n(v). The underlying clean image or signal is thus

s(v) = f(v) + h(v), which is to be estimated from the noisy input. s(v), h(v), n(v) are all 3D

vectors in RGB space.

Let the covariance matrices of I(v), s(v), h(v) and n(v) be ΣI , Σs, Σh and Σn, respectively.

We assume that f(v) is the non-random process and r(v) and n(v) are random variables. Therefore,

Σs =Σh. Suppose signal s(v) and noise n(v) are independent, we have

Σr = Σs + Σn, (2)

which leads to
Σr � Σn. (3)
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(a) Original Image (b) Segmentation (c) Per-segment affine reconstruction

(d) Affine reconstruction plus boundary blur (e) The sorted eigenvalues in each segment (f) RGB values projected onto the largest eigenvector

Figure 1: Illustration of piecewise smooth image model
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Figure 2: The log histograms of the horizontal (left) and vertical (right) derivative filter responses of the
reconstruction in Figure 1 (d).

3.3 Boundary Blur Estimation

If we merely use per-segment affine reconstruction, the reconstructed image has artificial bound-

aries, and the original boundaries get sharpened. The amount of blur is thus estimated from

the original image. For each hypothesized blur b from bmin(= 0) to bmax(= 2.5) in steps of

Δb(= 0.25), we compute the blurred image fblur(v; b) = f(v) ∗ G(u; b), where G(u; b) is a

Gaussian kernel with sigma b. We then compute the error image Ierr such that Ierr(v; b) =

‖I(v) − fblur(v; b)‖2. We dilate each boundary curve Cij five times into regions Ωi and Ωj to

obtain a mask Γij. The best blur b∗ij for Cij corresponds to the minimum aggregate error Ierr(v; b)

over Γij, or b∗ij = arg minb

∑
v∈Γij

Ierr(v, b).

To reinstate the blur in the transition region Γij , we simply replace f(v) with fblur(v; b∗i j).
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Note that this assumes that the amount of blur in Ωi and Ωj is the same, which is strictly not true in

general. However, we found that this approximation generates good enough results. After this pro-

cess is done for every pair of regions we obtain boundary blurred piecewise affine reconstruction

fblur(v).

The piecewise smooth image model is illustrated in Figure 1. The example image (a) taken

from Berkeley image segmentation database [28] is partitioned to piecewise smooth regions (b) by

the segmentation algorithm. The per-segment affine reconstruction is shown (c) where we can see

artificial boundaries between regions and the true boundaries are sharpened. After blur estimation

and reinstatement, the boundaries become much smoother.

3.4 Important Properties of the Piecewise Smooth Image Model

There are three important properties of our piecewise smooth image model that made us choose it

as the model for both noise estimation and removal. They are:

I. The piecewise smooth image model is consistent with a sparse image prior.

II. The color distribution per each segment can be well approximated by a line segment, due to

the physical law of image formation [22, 20, 18].

III. The standard deviation of residual per each segment is the upper bound of the noise level in

that segment.

The last property is straightforward from Equation (3). For the first two properties, we again use

the example image in Figure 1 (a) to examine them. For the reconstructed image (d) we compute

the log histograms of the horizontal and vertical derivatives and plotted them in Figure 2. The

long tails clearly show that the piecewise smooth reconstruction match the high-kurtosis statistics

of natural images [29]. This image model also shares some similarity with the dead leaves model

[25].

For the second property, we compute the eigenvalues and eigenvectors of the RGB values

{I(v)} in each region. The eigenvalues are sorted decreasingly and displayed in Figure 1 (e).

Obviously, the red channel accounts for the majority of the RGB channels, a fact that proves the

first eigenvalue of each segment is significantly larger than the second eigenvalue. Therefore, when

we project the pixel values onto the first eigenvalue while ignoring the other two, we get an almost

perfect reconstruction in (f). The mean square error (MSE) between the original image (a) and

projected (f) is 5.31×10−18 or a PSNR of 35.12dB. These numbers demonstrate that the RGB

values in each segment lie in a line.
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Having demonstrated these properties of our piecewise smooth image model, we are ready to

develop models for both noise estimation and removal.

4 Noise Estimation from a Single Image

Although the standard deviation of each segment of the image is the upper bound of noise as

shown in Equation (3), it is not guaranteed that the means of the segments cover the full spectrum

of image intensity. Besides, the estimate of standard deviation itself is also a random variable

which has variance as well. Therefore, a rigorous statistical framework is needed for the inference.

In this section, we introduce the noise level functions (NLFs) and a simulation approach to learn

the priors. A Bayesian approach is proposed to infer the upper bound of the noise level function

from a single input.

4.1 Learning the Prior of Noise Level Functions

According to the definition, the noise standard deviation as function of brightness, the noise level

function for a particular brand of camera and a fixed parameter setting can be estimated by fixing

the camera on a tripod, taking multiple shots towards a static scene, and then compute the mean

as the estimate of the brightness, and standard deviation as the noise level for each pixel of every

RGB channel. The function of the standard deviation with respect to the mean is the desired NLF.

The ground truth of NLF can be obtained by this approach and we shall use it as the reference

method to test our algorithm, but it is expensive and time consuming.

As an alternative, we propose a simulation-based approach to obtain NLFs. We build a model

for the noise level functions of CCD cameras. We introduce the terms of our camera noise model,

showing the dependence of the noise level function on the camera response function (a.k.a. CRF,

the image brightness as function of scene irradiance). Given a camera response function, we can

synthesize realistic camera noise. Thus, from a parameterized set of CRFs, we derive the set of

possible noise level functions. This restricted class of NLFs allows us to accurately estimate the

NLF from a single image.

4.1.1 Noise Model of CCD Camera

The CCD digital camera converts the irradiance, the photons coming into the imaging sensor, to

electrons and finally to bits. See Figure 3 for the imaging pipeline of CCD camera. There are

mainly five noise sources as stated in [21], namely fixed pattern noise, dark current noise, shot
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Figure 3: CCD camera imaging pipeline, redrawn from [51].

I IN

ncns

crf
0 0.5 1

0

0.2

0.4

0.6

0.8

1

Irradiance
Br

ig
h

tn
es

s

crf
0 0.5 1

0

0.2

0.4

0.6

0.8

1

Irradiance

Br
ig

h
tn

es
s

crf
0 0.5 1

0

0.2

0.4

0.6

0.8

1

Irradiance

Br
ig

h
tn

es
s

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Ir
ra

d
ia

n
ce

Brightness

icrf

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Ir
ra

d
ia

n
ce

Brightness

icrf
I IN

ncns

Bayer Pattern 
& Demosaic

Bayer Pattern 
& Demosaic

(a) White (independent) CCD noise synthesis 

(b) Correlated CCD noise synthesis by going through Bayer pattern

L

L

(c) (d) (e) (f) (g)

Figure 4: Block diagrams showing noise simulations for color camera images. (a) shows independent white
noise synthesis; (b) adds CCD color filter pattern sensing and demosaicing to model spatial correlations in
the camera noise [24]. (c): test pattern. (d) and (e): the synthesized images of (a) and (b). (f) and (g): the
corresponding autocorrelation.

10



noise, amplifier noise and quantization noise. These noise terms are simplified in [51]. Following

the imaging equation in [51], we propose the following noise model of a CCD camera

I = f(L + ns + nc) + nq, (4)

where I is the observed image brightness, f(·) is camera response function (CRF), ns accounts

for all the noise components that are dependent on irradiance L, nc accounts for the independent

noise before gamma correction, and nq is additional quantization and amplification noise. Since

nq is the minimum noise attached to the camera and most cameras can achieve very low noise,

nq will be ignored in our model. We assume noise statistics E(ns) = 0, Var(ns) = Lσ2
s and

E(nc) = 0, Var(nc) = σ2
c . Note the linear dependence of the variance of ns on the irradiance L

[51]. The details of CCD camera noise model can be found in Appendix B.

4.1.2 Camera Response Function (CRF)

The camera response function models the nonlinear processes in a CCD camera that perform

tonescale (gamma) and white balance correction [39]. There are many ways to estimate camera

response functions given a set of images taken under different exposures. To explore the com-

mon properties of many different CRFs, we downloaded 201 real-world response functions from

http://www.cs.columbia.edu/CAVE [19]. Note that we only chose 190 saturated CRFs

since the unsaturated curves are mostly synthetic. Each CRF is a 1024-dimensional vector that

represents the discretized [0, 1] → [0, 1] function, where both irradiance L and brightness I are

normalized to be in the range [0, 1]. We use the notation crf(i) to represent the ith function in the

database.

4.1.3 Synthetic CCD Noise

In principle, we could set up optical experiments to measure precisely for each camera how the

noise level changes with image brightness. However, this would be time consuming and might

still not adequately sample the space of camera response functions. Instead, we use numerical

simulation to estimate the noise function. The basic idea is to transform the image I by the in-

verse camera response function f−1 to obtain an irradiance plane L. We then take L through the

processing blocks in Figure 3 to obtain the noisy image IN .

A direct way from Eqn. (30) is to reverse transform I to irradiance L, add noise independently

to each pixel, and transform to brightness to obtain IN . This process is shown in Figure 4 (a). The

synthesized noise image, for the test pattern (c), is shown in Figure (d).
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Real CCD noise is not white, however; there are spatial correlations introduced by “demo-

saicing” [36], i.e., the reconstruction of three colors at every pixel from the single-color samples

measured under the color filter array of the CCD. We simulate this effect for a common color fil-

ter pattern (Bayer) and demosaicing algorithm (gradient-based interpolation [24]); we expect that

other filter patterns and demosaicing algorithms will give comparable noise spatial correlations.

We synthesized CCD camera noise in accordance with 4 (b) and took the difference between the

demosaiced images with and without noise, adding that to the original image to synthesize CCD

noise. The synthesized noise is shown in Figure 4 (e). The autocorrelation functions for noise

images (d) and (e) are shown in (f) and (g), respectively, showing that the simulated CCD noise

shows spatial correlations after taking into account the effects of demosaicing.

4.1.4 The Space of Noise Level Functions

We define the noise level function (NLF) as the variation of the standard deviation of noise with

respect to image intensity. This function can be computed as

τ(I) =
√

E[(IN − I)2], (5)

where IN is the observation and I = E(IN). Essentially this is a function of how standard deviation

changes with respect to the mean value.

Based on the CCD camera noise model Eqn. (30) and noise synthesis process, IN is a random

variable dependent on the camera response function f and noise parameters σs and σc. Because

L=f−1(I), the noise level function can also be written as

τ(I; f, σs, σc) =
√

E[(IN(f−1(I), f, σs, σc) − I)2], (6)

where IN (·) is the noise synthesis process.

We use numerical simulation to estimate the noise function given f , σs and σc, for each of red,

green and blue channels. This procedure is shown in Figure 5. The smoothly changing pattern in

Figure 4 (c) is used to estimate Eqn. (6). To reduce statistical fluctuations, we use an image of

dimension 1024×1024 and take the mean of 20 samples for each estimate.

To represent the whole space of noise level functions, we draw samples of τ(·; f, σs, σc) from

the space of f , σs and σc. The downloaded 190 CRFs are used to represent the space of f . We

found that σs = 0.16 and σc = 0.06 result in very high noise, so these two values are set as the

maximum of the two parameters. We sample σs from 0.00 to 0.16 with step size 0.02, and sample
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Figure 6: The prior of noise level functions.
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σc from 0.01 to 0.06 with step size 0.01. We get a dense set of samples {τi}K
i=1 of NLFs, where

K = 190×9×6 = 10, 260. Using principal component analysis (PCA), we get mean noise level

function τ , eigenvectors {wi}m
i=1 and the corresponding eigenvalues {υi}m

i=1. Thus, a noise function

can be represented as
τ = τ +

m∑
i=1

βiwi, (7)

where coefficient βi is Gaussian distributed βi ∼ N (0, υi), and the function must be positive

everywhere, i.e.,
τ +

m∑
i=1

βiwi � 0, (8)

where τ , wi ∈ R
d and d = 256. This inequality constraint implies that noise functions lie inside a

cone in β space. The mean noise function and eigenvectors are displayed in Figure 6 (a) and (b),

respectively.

Eigenvectors serve as basis functions to impose smoothness to the function. We also impose

upper and lower bounds on 1st and 2nd order derivatives to further constrain noise functions. Let

T∈R
(d−1)×d and K∈R

(d−2)×d be the matrix of 1st- and 2nd-order derivatives [43]. The constraints

can be represented as

bmin � Tτ � bmax, hmin � Kτ � hmax, (9)

where bmin, bmax ∈ R
d−1, hmin, hmax ∈ R

d−2 are estimated from the training data set {τi}K
i=1.

4.2 Likelihood Model

Since the estimated standard deviation of each segment is an over-estimate of the noise level, we

obtain an upper bound estimate of the noise level function by fitting a lower envelope to the samples

of standard deviation versus mean of each RGB channel. The examples of these sample points are

shown in Figure 8. We could simply fit the noise function in the learnt space to lie below all the

sample points yet close to them. However, because the estimates of variance in each segment are

noisy, extracting these estimates with hard constraints could result in bias due to a bad outlier.

Instead, we follow a probabilistic inference framework to let every data point contribute to the

estimation.

Let the estimated standard deviation of noise from k pixels be σ̂, with σ being the true standard

deviation. When k is large, the square root of chi-square distribution is approximately N (0, σ 2/k)

[12]. In addition, we assume a noninformative prior for large k, and obtain the posterior of the true

standard deviation σ given σ̂:

14



p(σ|σ̂) ∝ 1√
2πσ2/k

exp{−(σ̂ − σ)2

2σ2/k
} ≈ 1√

2πσ̂2/k
exp{−(σ − σ̂)2

2σ̂2/k
}. (10)

Let the cumulative distribution function of a standard normal distribution be Φ(z). Then, given

the estimate (I, σ̂), the probability that the underlying standard deviation σ is larger than u is

Pr[ σ�u|σ̂]=

∫ ∞

u

p(σ|σ̂)dσ=Φ(

√
k(σ̂−u)

σ̂
). (11)

To fit the noise level function to the lower envelope of the samples, we discretize the range of

brightness [0, 1] into uniform intervals {nh, (n + 1)h}
1
h
−1

n=0 . We denote the set Ωn ={(Ii, σ̂i)|nh�
Ii � (n + 1)h}, and find the pair (In, σ̂n) with the minimum variance σ̂n = minΩn σ̂i. Lower

envelope means that the fitted function should most probably be lower than all the estimates while

being as close as possible to the samples. Mathematically, the likelihood function is the probability

of seeing the observed image intensity and noise variance measurements given a particular noise

level function. It is formulated as

L(τ(I)) = P ({In, σ̂n}|τ(I))

∝
∏
n

Pr[σn �τ(In)|σ̂n] exp{−(τ(In)−σ̂n)2

2s2
}

=
∏
n

Φ(

√
kn(σ̂n−τ(In))

σ̂n

) exp{−(τ(In)−σ̂n)2

2s2
}, (12)

where s is the parameter to control how close the function should approach the samples. This

likelihood function is illustrated in Figure 7, where each term (c) is a product of a Gaussian pdf

with variance s2 (a) and a Gaussian cdf with variance σ̂2
n (b). The red dots are the samples of

minimum in each interval. Given the function (blue curve), each red dot is probabilistically beyond

but close to the curve with the pdf in (c).

4.3 Bayesian MAP Inference

The parameters we want to infer are actually the coefficients on the eigenvectors xl =[β1 · · · βm]T ∈
R

m, l = 1, 2, 3 of the noise level function for RGB channels. We denote the sample set to fit

{(Iln, σ̂ln, kln)}. Bayesian inference turns out to be an optimization problem
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(a)

(b)

(c) (d)
nh (n+1)h

I

)ˆ,( nnI σ

Figure 7: The likelihood function of Eq. 12. Each single likelihood function (c) is a product of a Gaussian
pdf (a) and Gaussian cdf (b).

{x∗
l } = arg min

{xl}

3∑
l=1

{∑
n

[
−log Φ(

√
kln

σ̂n
(σ̂ln−eT

nxl−τn)) +
(eT

nxl+τn−σ̂ln)2

2s2
] + xT

l Λ
−1xl +

3∑
j=1,j>l

(xl−xj)
TET(γ1T

TT+γ2K
TK)E(xl−xj)

}
(13)

subject to

τ + Exl � 0, (14)

bmin � T(τ + Exl)� bmax, (15)

hmin � K(τ + Exl)�hmax. (16)

In the above formula, the matrix E= [w1 · · · wm] ∈ R
d×m contains the principal components, en

is the nth row of E, and Λ = diag(v1, · · · , vm) is the diagonal eigenvalue matrix. The last term in

the objective function accounts for the similarity of the NLF for RGB channels. Their similarity is

defined as a distance on 1st and 2nd order derivative. Since the dimensionality of the optimization

is low, we use the MATLAB standard nonlinear constrained optimization function fmincon for

optimization. The function was able to find an optimal solution for all the examples we tested.

4.4 Experimental Results on Noise Estimation

We have conducted experiments on both synthetic and real noisy images to test the proposed noise

estimation algorithm. First, we applied our CCD noise synthesis algorithm in Sect 3.3 to 17 ran-

domly selected pictures from the Berkeley image segmentation database [28] to generate synthetic

test images. To generate the synthetic CCD noise, we specify a CRF and two parameters σs and
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σc. From this information, we also produce the ground truth noise level function using the training

database in Sect 4.1.4. For this experiment, we selected crf(60), σs = 0.10 and σc = 0.04. Then,

we applied our method to estimate the NLF from the synthesized noisy images. Both L2 and L∞

norms are used to measure the distance between the estimated NLF and the ground truth. The

error statistics under the two norms are listed in Table 1, where the mean and maximum value of

the ground truth are 0.0645 and 0.0932, respectively.

Norm mean std. deviation
L2 0.0048 0.0033
L∞ 0.0110 0.0120

Table 1: The statistics of the L2 and L∞ norms between the estimated NLF and the ground truth.

Some estimated NLFs are shown in Figure 8. In (a) we observe many texture regions especially

at high intensity values, which implies high signal variance. The estimated curves (in red, green

and blue) do not tightly follow the lower envelope of the samples at high intensities, although they

deviate from the true noise function (in gray) slightly. In (b) the samples do not span the full

intensity range, so our estimate is only reliable where the samples appear. This shows a limit of

the prior model: the samples are assumed to be well-distributed. The estimation is reliable if the

color distribution span the full range of the spectrum and there are textureless regions, as in (c).

We conducted a further experiment as a sanity check. We took 29 images of a static scene by

CanonTMEOS 10D (ISO 1600, exposure time 1/30 s and aperture f/19) and computed the mean

image. One sample is shown in Figure 9 (a). A close-up view of sample (a) and the mean image

is shown in (b) and (c), respectively. Clearly the noise is significantly reduced in the mean image.

Using the variance over the 29 images as a function of mean intensity, we calculated the “ground

truth” NLF and compared that to the NLF estimated by our method from only one image. The

agreement between the NLFs in each color band is very good, see Figure 9 (d).

We also applied the algorithm to estimating noise level functions from the other images taken

by a CCD camera. We evaluated our results based on repeatability: pictures taken by the same

camera with the same setting on the same date should have the same noise level function, indepen-

dent of the image content. We collected two pictures taken by a CanonTM EOS DIGITAL REBEL

and estimated the corresponding noise level functions, as shown in Figure 10 (a) and (b). Even

though image (a) is missing high intensity values, the estimated NLFs are similar.
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Figure 8: Synthesized noisy images and their corresponding noise level functions (noise standard devia-
tion as a function of image brightness). The red, green and blue curves are estimated using the proposed
algorithm, whereas the gray curves are the true values for the synthetically generated noise.
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Figure 9: Comparison of estimated camera noise with experimental measurement. (a) shows one of the 29
images taken with a CanonTMEOS 10D. An enlarged patch is shown for (b) a single image, and (c) the mean
image. (d) is the estimated NLF from a single image (color), showing good agreement with the ground truth
(gray), measured from the noise variations over all 29 images.
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Figure 10: The two images are taken by a CanonTMEOS DIGITAL REBEL and the estimated noise level
functions. Very similar noise level functions are derived, even though the two images have very different
tonescales.

5 Segmentation-Based Denoising

Recall from Section 3.2 that the observation I(v) is decomposed to signal s(v) and noise n(v).

Given the characteristics of the noise that have been estimated from the previous section, we are

now ready to separate the signal and noise from the observation.

5.1 0th-Order Model

Let μ = [μ1 μ2 μ3]
T ∈ R

3 be the mean color for segment Ω after the piecewise smooth image

reconstruction to the input image I . Suppose the noise is independent for RGB channels, and we

obtain the covariance matrix of noise in this segment

Σ̂n = diag
(
τ 2(μ1), τ

2(μ2), τ
2(μ3)

)
. (17)

From the independence assumption of the noise and signal, we obtain (from Equation (2))

Σ̂s = Σr − Σ̂n. (18)

It is possible that the estimated Σ̂s is not positive definite. For this case we simply enforce the

minimum eigenvalue of Σ̂s to be a small value (0.0001).

We simply run Bayesian MAP estimation for each pixel to estimate the noise based on the
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obtained 2nd order statistics. Since

p(s(v)|I(v))∝ p(I(v)|s(v))p(s(v))

∝ exp

{
−1

2
[I(v)−s(v)]T Σ̂−1

n [I(v)−s(v)]

}
exp

{
−1

2
[s(v)−f(v)]T Σ̂−1

s [s(v)−f(v)]

}
, (19)

where f(v) is the piecewise smooth reconstruction, the optimal estimation has a simple closed-

form solution

s∗(v) = arg max p(s(v)|I(v)) = (Σ̂−1
n + Σ̂−1

s )−1(Σ̂−1
n I(v) + Σ̂−1

s f(v)), (20)

which simply down-weighs the pixel values from I(v) to f(v) using the covariance matrices as

weights. For a scaled identity Σ̂n, it is easy to show that the attenuation along each principal

direction in the color covariance matrix is λi/(λi+σn), where λi is the variance in the ith direction.

Qualitatively, as this variance tends towards zero (either because the non-dominant direction has

low variance, or the region is untextured), the cleaned up residual is progressively more attenuated.

Equation (20) is applied to every pixel, where Σ̂n and Σ̂s vary from segment to segment. Since

there is no spatial relationship of pixels in this model, we call it 0th-order model. An example of

denoising using 0th-order model is shown in Figure 11, where the algorithm is tested by synthetic

AWGN with noise levels of 5% and 10%. Clearly the 0th-order model significantly removes the

chrominance component of color noise. The results are acceptable for 5% noise level, and we

can see discontinuities between the neighboring segments for 10% noise level because the spatial

correlation has been accounted for.

5.2 1st-Order Gaussian Conditional Random Field

The values of the neighboring pixels are correlated in natural images. We chose to regularize with

a conditional random field (CRF) [23, 45] where the spatial correlation is a function of the local

patch of the input image, over the Markov random field (MRF) [17] to avoid having a complete

prior models on images as in [38], Moreover, we model it as a Gaussian CRF since all the energy

functions are quadratic. We call it 1st-order model because the spatial correlation is captured by

the 1st-order derivative filters. Likewise, we can have 2nd-order model or even higher order. But

we found that 1st-order model is sufficient for the denoising task.

Let the estimated covariance matrices of signal and noise be Σ̂s(i) and Σ̂n(i) for segment Ωi.

The CRF is formulated as
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(a) 5% AWGN (b) Denoised by the 0th-order model (PSNR=32.04)

(c) 10% AWGN (d) Denoised by the 0th-order model (PSNR=27.05)

Figure 11: Noise contaminated images and the denoised results by the 0th-order model. A patch at a fixed
position marked by a red rectangle is zoomed-in and inset at the bottom-right of each image. Clearly, the
0th-order model significantly removes the chrominance component of color noise. For high noise level, the
discontinuities between the neighboring segments are further removed by the 1st-order model (see Figure
13, 14 and Table 2).

p(s|I)=
1

Z
exp

{
−1

2

∑
i

∑
v∈Ωi

[(
s(v) − I(v)

)T

Σ̂−1
n (i)

(
s(v) − I(v)

)
+

(
s(v) − f(v)

)T

Σ̂−1
s (i)

(
s(v) − f(v)

)
+ ξiw(v)

m∑
j=1

F 2
j (v)

]}
. (21)

In the above equation, Fj = φj ∗ s is the filter response of s being convolved with filter φj. For

this 1st-order GCRF, we choose horizontal and vertical filters (i.e., m=2). w(v) and ξi are both

weights to balance the importance of spatial correlation. ξi is the weight for each segment. We

find that ξi can be a linear function of the mean noise level in segment Ωi. w(v) is derived from

the filter responses of the original image. Intuitively, w(v) should be small when there is clear

boundary at v to weaken spatial correlation, and be large when there is no boundary to strengthen

spatial correlation. Boundaries can be detected by Canny edge detection [6], but we found that

the algorithm is more stable when w(v) is set to be a function of local filter responses. We use
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orientationally elongated Gabor sine and cosine filters [16] to capture the boundary energy of the

underlying noise-free image. The boundary energy is the sum over all the orientations and sin/cos

phases. We then use a nonlinear function to map the energy to the local value of the weight matrix,

i.e., y = (1 − tanh(t1x))t2 where t1 = 0.6 and t2 = 12 in our implementation.

Solving Equation (21) is equivalent to solving a linear system, which can be computed by

Gauss-Seidel iteration [43] and other iterative solvers. We use conjugate gradient method which

can be sped up using multi-grid implementation with effective preconditioning [44].

6 Experimental Results on Image Denoising

Our automatic image denoising system consists of two parts, noise estimation and denoising. To

have a fair comparison with other denoising algorithms, we first test our denoising algorithms

using synthetic AWGN with constant and known noise level (σ). Then the whole system is tested

with the images contaminated with real CCD camera noise.

6.1 Synthetic AWGN

We selected 17 images covering different types of objects and scenes from the Berkeley segmen-

tation dataset [28] and added AWGN with 5% and 10% noise level to test our denoising algorithm.

The noise contaminated images with 10% noise level are shown in Figure 12. We also ran standard

bilateral filtering [48] (our implementation), curvature preserving PDE [49] (publicly available im-

plementation2) and wavelet joint coring, GSM [35] (publicly available implementation3). Default

parameter settings are used for the downloaded code. For curvature preserving PDE, we tweaked

the parameters and found that the best results can be obtained by setting alpha = 1, iter = 4 for

σ = 10% and alpha = 0.5 iter = 7 for σ = 5%. We compare their results to our own using both

visual inspection in Figure 13 and 14, and peak signal to noise ratio (PSNR) statistics in Table 2.

It is clear that our technique consistently outperform bilateral filtering, curvature preserving

PDE and wavelet joint coring. In terms of PSNR, our technique outperforms these algorithms

by a significant margin. When σ = 0.05, i.e., the noise level is low, even the 0th-order model

outperforms the state-of-the-art wavelet GSM. When σ = 0.10, i.e., the noise level is high, the

1st-order model outperforms wavelet GSM by 1.3 PSNR on average.

2http://www.greyc.ensicaen.fr/˜dtschump/greycstoration/download.html
3http://decsai.ugr.es/˜javier/denoise/
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15004 15088 22013 26031 66075 106025 113009 302003 23084 35008

65010 100075 105053 108073 134052 145053 314016

Figure 12: Seventeen images are selected from Berkeley image segmentation database [28] to evaluate the
proposed algorithm. The file names (numbers) are shown beneath each picture

PSNR σ = 5% σ = 10%
File name bilat PDE wavelet 0th 1st bilat PDE wavelet 0th 1st
100075 29.32 29.76 31.27 31.69 31.68 26.47 27.72 28.31 28.14 28.96
105053 32.33 32.54 34.01 33.77 34.02 30.05 30.56 31.41 30.63 31.95
106025 34.47 34.29 36.13 35.75 36.44 30.94 31.58 32.57 32.03 34.22
108073 29.98 29.84 31.48 31.94 31.98 25.61 26.98 27.94 28.33 29.21
113009 30.73 30.72 32.89 32.31 32.61 27.38 27.80 29.91 28.89 30.19
134052 30.02 30.03 32.09 32.58 32.88 25.71 27.38 28.20 28.61 29.55
145053 29.51 29.12 31.72 31.88 32.26 23.84 25.83 27.23 27.46 28.71
15004 28.61 28.24 30.74 30.98 31.51 23.38 24.77 26.35 25.58 27.50
15088 29.55 29.19 33.36 32.41 32.74 25.02 26.64 28.83 27.71 28.76
22013 29.92 29.50 31.31 32.17 32.33 25.09 26.42 27.12 27.14 28.84
23084 30.31 29.76 32.14 32.04 32.64 24.63 26.34 27.24 27.05 29.23
26031 28.76 27.93 28.87 31.20 31.24 21.58 22.97 23.95 25.55 26.65
302003 31.29 30.93 33.70 32.94 33.96 26.85 27.43 29.47 27.91 30.84
314016 28.43 29.26 31.28 31.57 31.44 25.00 26.93 27.64 26.81 27.83
35008 33.28 33.40 35.74 34.84 35.97 29.25 30.85 31.23 30.24 33.27
65010 29.62 29.46 30.95 31.99 32.18 25.20 26.45 26.73 27.18 28.41
66075 32.57 32.46 33.36 35.02 35.03 28.33 29.78 29.69 29.79 31.80
mean 30.51 30.78 32.41 32.65 32.99 26.14 27.43 28.46 28.18 29.76

Table 2: PSNR for the images in Berkeley image segmentation database. “bilat”, “PDE”, “wavelet”, “0th”
and “1st” stand for bilateral filtering [48], curvature preserving PDE [49], wavelet (GSM) [35], 0th-order
and 1st-order model, respectively. The images with green are cropped, zoomed-in, and displayed in Figure
13.

The results are also visually inspected in Figure 13 from (a) to (e), corresponding to image

35008, 23084, 108073, 65010 and 66075 in Figure 12, respectively. Some close-up views of the

denoising results are shown in Figure 14. The curvature preserving PDE method generates color

fringing artifacts around the strong edges. Wavelet coring tends to produce color and blurring

artifacts, especially in (a) and (d). Our algorithm, however, is able to smooth out flat regions,
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(a)

(b)

(c)

(d)

(e)

10% AWGN PDE Wavelet GSM Ours (1st-order model) Original

Figure 13: Close-up view of the denoising results. See text for the explanation.
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(a)

(b)

(c)

(d)

(e)

10% AWGN PDE Wavelet GSM Ours Original

Figure 14: Some close-up views of the denoising results in Figure 13 are shown here. Our algorithm
generated crispier images without color fringing artifacts as produced by PDE [49] and wavelet GSM [35]
approaches.

preserve sharp edges, as well as keep subtle texture details. In Figure 13 and 14 (a), our algorithm

achieved sharper boundaries of the bug and preserved the texture of the flower. In (b), many

curves with a variety of width are well reconstructed, whereas the wavelet coring introduced color

fringing artifacts around boundaries. In (c), the whiskers of the tiger are sharper and clearer by our

algorithm, and so are the stems and leaves of the grasses. In (d), the texture details of the leaves

are preserved, while the clouds are well smoothed. The ostrich head in (e) is a failure example,

where the upper neck part is over-smoothed and some artificial boundaries are generated for the

furry edges. Note that our system does not always completely remove the noise for the texture

regions, but it looks visually pleasing since the chrominance component of the noise is removed.

In addition, the remaining noise in the texture regions as in (d) is not noticeable.

Overall, our algorithm outperforms the state-of-the-art denoising algorithms on the synthetic
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noise case.

6.2 Real CCD Noise

We further tested our automatic denoising system using the pictures taken by CCD cameras with

remarkable noise [32]. The picture in Figure 15 (a) was taken by CanonTMEOS DIGITAL REBEL,

with intense noise for the dim pixels, but less for the bright ones. The noise level functions are

estimated and displayed in Figure 17, which agree with the observation. To compare, we also

run wavelet coring (GSM), with σ = 10% and σ = 15%, and the results are shown in Figure 15

(b) and (c), respectively. The denoising result automatically generated by our system is shown in

(d). The close-up inspections of these results are shown in Figure 16. Clearly with the constant

noise level assumption, the wavelet coring algorithm cannot balance the high and low noise areas.

When σ = 10% it does a better job for the bright pixels with sharper edges, and when σ = 15%

it does a better job for the dark pixels with smoother regions. But overall we can still see blocky

color artifacts, overly smoothed boundaries and loss of texture details. The result produced by our

system successfully overcomes these problems. In Figure 16 row (1) our method produces almost

flat patch. In row (2) the boundary is much sharper, whereas in row (3) many subtle texture details

are preserved. Overall our algorithm generates visually more appealing result (we cannot compute

PSNR since there is no ground truth clean image).

We tested our algorithm on another challenging example shown in Figure 18 (a). As shown in

(b) the wavelet coring cannot effectively remove the color noise because of the spatial correlation

of the color noise. Even though the result generated by our automatic denoising system in (c)

overly sharpens the edges to have cartoon style, the noise gets completely removed and the image

looks visually more pleasing.

7 Discussion

Having shown the success of our model using both synthetic and real noise, we want to have some

insights of the denoising problem and our modeling.

7.1 Color Noise

As shown in Section 3, the color of the pixels in a segment distributes approximately along a 1D

subspace in the 3D RGB space. This agrees with the fact that the strong sharp boundaries are
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(a) Noisy input (b) Wavelet GSM σ = 10%

(c) Wavelet GSM σ = 15% (d) Ours

Figure 15: Comparison of denoising algorithms on a real CCD camera noise input.

(a) (b) (c) (d)

(1)

(2)

(3)

Figure 16: Close-up view of the denoising results in Figure 15.27
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Figure 17: Estimated noise level functions. (a): NLFs for the noisy sample in Figure 15. (b): NLFs for the
example in Figure 18.

(a) Noisy input (b) Denoised by wavelet GSM [35] (c) Denoised by our algorithm

Figure 18: The denoising results of a very challenging example.

mainly produced by the change of materials (or reflectance), whereas the weak smooth boundaries

are mainly produced by the change of lighting [46]. Since the human vision system has been

used to see these patterns, color noise, which breaks the 1D subspace rule, appears annoying

to our eyes. Our denoising system was designed based on this 1D subspace rule to effectively

remove the chrominance component of color noise. The results of our 0th-order model in Figure

11 demonstrate that the images look significantly more pleasing when the chrominance component

is removed.

7.2 Conditional Model vs. Generative Model

In our system we do segmentation only once to obtain piecewise smooth model of the input image.

But if we treat region partition as a hidden variable which generates the noise image, the conditional

model becomes a generative model which means that we need to integrate out the hidden variable,

region partition. Intuitively, the segmentation of the noisy input could be noisy and unreliable and

there could be many possible segmentations for the input image.

One way of this full Bayesian approach is to sample partitions from the input image, e.g.,

segmentation by DDMCMC [52], obtaining the denoised image for each segmentation, and com-
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puting the mean as the output. This approach would possibly improve the results by removing the

boundary artifacts, but it is intractable in practice because of the huge space of the partition. The

other way is to have a expectation-maximization (EM) algorithm [8], treating the partition as miss-

ing data. This EM algorithm iterates between segmenting the image based on the denoised image

(E-step), and estimating the denoised image based on the segmentation (M-step). This approach is

also intractable in practice because many iterations are required. Nevertheless, these full Bayesian

approaches might be promising directions for future segmentation-based image processing systems

with more powerful computational tools.

7.3 Automation of Computer Vision System

The performance of computer vision system is sensitive to peripheral parameters, e.g., noise level,

blur level, resolution/image quality, lighting, view point, etc. For image denoising problem, for

example, the noise level is obviously an important parameter to the system, and poor results may

be produced with the wrong estimate of noise level. Most existing computer vision algorithms

focus on addressing the problems with known peripheral parameters, which indeed simplify the

problem and make it solvable. But the algorithms have to be tweaked to fit different imaging

conditions. We do feel it is an important direction to make computer vision systems account for

the important peripheral parameters to be fully automatic. Our automatic image denoising system

is one of the first attempts to make the denoising algorithm robust to noise level. Please refer to

Appendix C for more details on applying noise estimation to other computer vision applications.

8 Conclusion

Based on a very simple piecewise smooth image prior, we proposed a segmentation-based approach

to automatically estimate and remove noise from color images. The noise level function (NLF)

is obtained by estimating the lower envelope of the standard deviations of image variance per

segment. The chrominance of the color noise is considerably removed by projecting the RGB

pixel values to a line in color space fitted to each segment. The noise is removed by formulating

and solving a Gaussian conditional random field on the input noise, per-segment projected image,

and signal-dependent spatial correlation. Intensive experiments have been conducted to test both

the noise estimation and removal algorithms.

We verified that the estimated noise level is the tight upper bound of the true noise level in

three ways: (1) by showing good agreement with experimentally measured noise from repeated
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exposures of the same image, (2) by repeatably measuring the same NLFs with the same camera

for different image content, and (3) by accurately estimating known synthetic noise functions. Our

noise estimation algorithm can be applied to not only denoising algorithms, but other computer

vision applications to make them be independent of noise level [26].

Our denoising algorithm outperforms the state-of-the-art wavelet denoising algorithms on both

synthetic and real noise-contaminated images, by generating shaper edges, producing smoother

flat regions and preserving subtle texture details. These features match the criteria we proposed for

a good denoising algorithm.
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Appendix

A A Classifier for Noisy Images

We are interested in the features that may distinguish camera noise and image signal. This moti-

vates us to build a classification system to train a classifier for noisy images. We may learn what

features are important for discriminating noise and signal, and also obtain a reliable classifier for

low light color noise.

As shown in Figure 19, human visual system seems to be able to discriminate noise at a glance

without recognizing the objects. Therefore, we choose local image features for noise classification.

However, from local signal intensity we cannot tell if the observation is noise or signal. It is thus

natural to use gradient information. We compute image gradient, ∇I = [ ∂I
∂x

∂I
∂y

]T for R, G and B

channels. Due to the randomness of color noise, we notice three properties that may distinguish

noise and signal.

(a) Image gradients for R, G and B channels are less correlated in noisy image than clean image.

In other words, the edge in clean images are typically caused by the change in all the three

channels. This is even true for texture regions.
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(a) Clean image (b) Noise contaminated image

Figure 19: Human visual system can probably tell apart noisy image very without recognizing the object.
This implies that color noise can be inferred from local image features. Note that both of the images have
high-frequency image components, but the left contains textures whereas the right contains noise.

(b) Image gradients for neighboring pixels are less correlated in noisy image than clean image.

In natural images edge point is typically not isolated, whereas in noisy images there are

many isolated edge points.

(c) Image gradients across scales are less correlated in noisy image than clean image. This is

complementary to property (b).

We name the above three properties as color correlation, neighbor correlation and scale correla-

tion of image gradients. They are all local measurements.

Since most of the color noise is caused by low light, it is also natural to measure the global

image brightness. Lower brightness indicates higher probability of being noise contaminated. This

property cannot be used in denoising, but we can add it into the feature pool to improve recognition

rate.

A.1 Feature Extraction

In our notation system, ∇I ∈ R
6 denotes the gradients for RGB channels, ∇IR ∈ R

2 denotes

the gradient for R channel, IR
x (u, v) denotes x derivative for R channels at (u, v), and so for y

derivative and other channels.
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Figure 20: Robust function where α = 0.02 and β = 0.04.

A.1.1 Color correlation

The correlation between R and G channels for pixel (u, v) is

CorrRG(u, v) =
|∇IR(u, v)T∇IG(u, v)|
|∇IR(u, v)||∇IG(u, v)| , (22)

CorrRB(u, v) and CorrBG(u, v) are computed similarly.

There are some small fluctuations in the image signal that may produce low correlation. This

is compensated by taking into account gradient energy: when gradient is too small, the correlation

is set to be high. We introduce a robust function, as shown in Figure 20:

fr(x) = min {1, exp(−(x − α)/β)} (23)

and color correlation is adjusted as

CorrRG(u, v) = max

{ |∇IR(u, v)T∇IG(u, v)|
|∇IR(u, v)||∇IG(u, v)| , fr(|∇IR(u, v)|+ |∇IG(u, v)|)

}
(24)

where α = 0.5 and β = 0.04 in our system.

Finally, color correlation is the mean of CorrRG, CorrRB and CorrBG.

A.1.2 Neighbor correlation

Neighbor correlation is the maximum value of correlation in a neighborhood, namely

Corrn(u, v) = max
(x,y)∈N(u,v)

|∇I(u, v)T∇I(x, y)|
|∇I(u, v)||∇I(x, y)|. (25)
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Figure 21: The images of the specified feature and their corresponding histograms. From the first to the
last row corresponds to color correlation, neighbor correlation, scale correlation and brightness, respectively.
(a.1) is the image and (a.2) is the corresponding histogram. The same notation is applied to (b) to (h). Clean
and noisy images have distinctive histograms on the designed features.
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High value of neighbor correlation indicates that similar gradient also appear in the neighborhood

and thus the gradient is not random, whereas low value implies this gradient is distinct in the

neighbor and therefore random. We choose a 7 × 7 neighborhood in our system.

A.1.3 Scale correlation

For the gradients caused by material or lighting change, they have strong scale correlation. But for

gradients caused by micro texture or noise, the scale correlation is much smaller. The frequency

of the noise is higher than that of micro texture. Therefore, scale correlation may tell the intensity

of high-frequency components in the image.

Scale correlation is measured as

Corrs(u, v) = max

{ ∇I(u, v)T∇I ′(u, v)

|∇I(u, v)||∇I ′(u, v)| , fr(|∇I(u, v)|+ |∇I ′(u, v)|)
}

(26)

where I ′ is obtained by downsampling image I by 0.5 and upsampling by 2.

The color, neighbor and scale correlations, as well as brightness of clean and noisy sample

images are displayed in Figure 21. There are 32 bins in histogram. (a.1) is the image and (a.2) is

the corresponding histogram, and so for (b) to (h). In general, clean image has higher correlation

than noise image. We may see from this example that the histograms are able to tell apart noise

and clean images.

A.2 Experiments

A.2.1 Training

In the training step the noisy images are mainly collected from the images for high dynamical

range project and some other daily pictures. The clean images are mainly from texture database and

Berkeley image segmentation database. When the image is big, we divide the image to patches and

treat each patch as a sample. For noisy images, however, some patches are not included because

they are too bright, and few noises can be found in those patches. To handle this, we generate a four

bin histogram h for each patch cropped from brightness image. If h(4) > 0.2 or h(3) > 0.4 then

this patch is rejected in training. In total 731 positive samples (clean) and 1631 negative samples

(noisy) are collected. Four histograms are collected from each sample, and there are 32 bins for

each histogram. Therefore the sample dimension is 128. The mean histograms for positive and

negative samples are displayed in Figure 22.
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Figure 22: The mean histogram of the training samples.

We use support vector machines (SVM) as classifier. The kernel function is second order

polynomial. SVM found 113 support vectors out of 2363 samples and the training error rate is

0%. The rather simple kernel function, smaller portion of support vectors and the zero error rate

indicate that the samples of the two categories are well separated in the feature space.

A.2.2 Test

Another set of clean and noisy images are collected for test. They come from different resources

from the training. In total 77 positive samples and 71 negatives samples are collected.

Since some images are too big to fit into the MATLABTM, we again subdivide the image into

patches and run SVM classifier on each patch. A score y ∈ R is output for each patch. We compute

the following metric

η =
1

N

∑
i

tanh(−yi)δ(yi < 0) (27)

where N is the number of patches. If the image is small enough then the whole image is treated as

one patch. The patch size is fixed as 300 × 300 in the experiment.

We use η ≷ γ to verify if the image is clean or noisy, where γ is a free parameter. We found

when γ = 0.4 the recognition rate is 98.7% for positive samples and 95.8% for negative samples.

The total recognition rate is 97.3%. Changing γ we get ROC curve as shown in Figure 23. The

good performance of the classifier demonstrates that the features we designed are able to capture

the difference between noise and signal.

It is meaningless to simply improve the performance of the classifier. The labeling of noise and
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Figure 23: ROC curve of the classifier on test data

clean images is indeed subjective. The misclassified samples in our experiments are vague to be

identified as noisy or clean since in those images some regions are clean and others are noisy. But

this classifier can be used at the front line of an automatic image denoising system to skip clean

images.

B Deriving the Noise Model of CCD Camera

The mechanism of CCD digital camera is to convert the irradiance or the photons coming into the

imaging sensor to electrons and finally bits. See Figure 3 for the imaging pipeline of CCD camera.

In [21] the imaging process and noise models are characterized as

I = (KL + NDC + NS + NR)A + NQ (28)

where L is the number of electrons proportional to irradiance, and A is the combined gain of output

amplifier and the camera circuitry. The noise terms are

• Fix pattern noise K characterizes spatial nonuniformity in quantum efficiency for collection

site. Typically E(K) = 1 with a spatial variance over the collection site.

• Dark current noise NDC is caused by the thermal energy. It depends on exposure time and

environment temperature.

• Shot noise NS is a result of the quantum nature of light and characterizes the uncertainty in

the number of electrons at a collection site. It has zero mean, and its variance depends on

KI and NDC .

• Amplifier noise NR is produced in the amplifier, independent of the number of electrons. It

dominate shot noise at low signal level.
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• Quantization noise NQ is the noise of rounding error produced at analog-to-digital convertor

(ADC).

There is also blooming effect when a single site is illuminated with sufficient intensity to cause

stored charge to overflow from a potential well and to mix with charge in other potential wells,

which is typically ignored in characterizing noises. The parameters of the noise and the imaging

process can be estimated from controlled photography such as adjusting exposure time, cap on and

off.

The linear noise model in Eqn. (28) cannot account for the gamma curve of CCD cameras,

which often causes the pixel value saturated at high irradiance. Because of this nonlinearity, the

noise level is not linearly increasing with respect to the brightness. In [51] the nonlinear camera

response function (CRF) is taken into account

I = f(aL + NS + NC1 + b) + NC2 (29)

where a is a scaling factor due to white balancing and exposure time, and b is a constant offset.

NS and NC1 are shot noise and thermal (dark current) noise, respectively. NC2 contains additional

noise including amplifier noise and quantization noise. Calibration algorithm is introduced in [51]

to estimate not only noise parameters but also camera response function f .

Since our goal is not to estimate each noise term or camera response function, but rather to

learn how noise level changes with respect to brightness, we use the following noise model to

simplify Eqn. (29)

I = f(L + ns + nc) + nq. (30)

The constant coefficients a and b disappear because aL + b is linear to L and it is fine to treat it as

L in the following analysis. ns accounts for all the noise dependent on L, and nc accounts for the

independent noise before gamma correction. nq is additional quantization and amplification noise.

We can examine the properties of Eqn. (30) analytically. Using Taylor expansion, Eqn. (30)

can be approximated as

I ≈ f(L) + f ′(L)(ns + nc) + nq (31)

We assume the following characteristics for the noise

E(ns) = 0, Var(ns) = Lσ2
s (32)

E(nc) = 0, Var(nc) = σ2
c (33)

E(nq) = 0, Var(nq) = σ2
q (34)
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Note that the variance of ns is linearly dependent on the irradiance. Based on these characteristics

we can derive the mean

E(I) = f(L) + f ′(L)(E(ns) + E(nc)) + E(nq) = f(L) (35)

and the variance

Var(I)=E(I − E(I))2

=E(f ′(L)(ns + nc) + nq)
2

= f ′(L)2(E(n2
s) + E(n2

c)) + E(n2
q)

= f ′(L)2(Lσ2
s + σ2

c ) + σ2
q (36)

When L → 0, Var(I) ≈ f ′(L)2σ2
c + σ2

q , whereas when L → 1, Var(I) ≈ f ′(L)2Lσ2
s + σ2

q . So the

noise level depends on the derivative of camera response function f ′ and the irradiance L.

C Applications of Noise Level Functions in Computer Vision

Many computer vision problems are noise-dependent, and the typical approach assumes the noise

level is known or supplied by the user. Our technique provides a way to automatically infer the

noise level function directly from the image.

C.1 Adaptive Bilateral Filtering

Bilateral filtering [48] is a simple and popular algorithm for feature-preserving image smoothing.

To take advantage of our image noise estimates, we implemented the bilateral filter in two steps.

The first step is per pixel denoising, based on Σn, the diagonal matrix of the noise variance of

each color band, obtained from the NLF. We can estimate the covariance of the signal, Σs from

Σs =Σz−Σn, where Σz is the covariance matrix in each segment. Let z be the observation of the

pixel, and μ the value of piecewise smooth function at the pixel, then by downweighting we can

estimate the signal for that pixel [35]

s = (Σ−1
n + Σ−1

s )−1(Σ−1
n z + Σ−1

s μ) (37)
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The bilateral filter has two parameters, the spatial and range standard deviations, σs and σr. In

the second step we apply a bilateral filter, separately in each color band, to the per-pixel denoised

image. We obtained visually pleasing results using σs =3, and σr =1.95σn, where σn is the noise

level at each pixel in each color band obtained from the NLF.

Four synthetic noisy images were generated by gradually increasing the noise level, as shown

in Fig 24 (a). After estimating the NLFs shown in (b), we obtained the denoised results shown

in (d). For comparison, we show denoising results of classical bilateral filtering with constant

parameter setting σr = 3 and σs = 0.12 in (c). Clearly our adaptive method was able to remove

more noise while maintaining image structure.

C.2 Canny Edge Detection

The basic idea of Canny edge detection [6] is to find an optimal filter so that the most salient

edges can be found despite noise. The optimal filter is theoretically independent of noise, but the

threshold is noise dependent. We designed an adaptive Canny edge detector where the low pass

filter is fixed and the higher threshold is set to be 0.5σ2
n+2σn+0.1, where σn is the average noise

of the input image. The lower threshold is set to be 0.4 of the higher threshold. The results of the

adaptive Canny edge detection are shown in Figure 24 (f). For comparison, the results of classical

Canny edge detection with automatic parameter setting in MATLABTMare shown in (e). Although

the edges are distorted by the noise in (f) as the noise level is increased, the adaptive edge detector

does a better job of detecting true edges while suppressing false ones.
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