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Abstract

Classical motion estimation algorithms are based on un-
ambiguous features with no aperture problem, and thus can
not handle textureless examples and may be confused by T-
junctions. We propose a boundary-based approach to esti-
mate motion, relying on the energy of a multi-hypothesized
graph instead of trusting T-junctions or corners. The hy-
pothesis comes from possible connections between two ends
of the graph as illusory boundaries. By minimizing the en-
ergy on the graph we obtain reliable estimation for texture-
less examples even with concolorous occlusions.

1. Introduction
Understanding and analyzing motion from video se-

quence is one of the key problems in computer vision. The
typical algorithms go from low level optical flow, such as
Lucas-Kanade [5] and Horn-Schunck [3], to motion seg-
mentation, such as POEM [13]. Although many improve-
ments have been made to these methods, such as combin-
ing global and local constraints [1], incorporating sophisti-
cated prior of optical flow field [11], and corner-based layer
segmentation [4], the foundation of the current motion esti-
mation algorithms are based on unambiguous features with
no aperture problem [12]. There is no ambiguity for the
matching of these features, and the matching is propagated
to obtain the complete flow field.

These algorithms perform well for images full of tex-
turedness or corners, but poorly for textureless images. A
simple example is illustrated in Figure 1 (a), where the gray
bar moves to the right and the black to the left. There are
in total 12 unambiguous feature points, of which four are T-
junctions and eight are corners. The matchings of the eight
corners are correct, whereas the matchings of the four T-
junctions are spurious. If we trust the matching of the four
T-junctions, we shall inevitably introduce error in motion
estimation.

This example becomes more tricky as the gray bar be-
comes black, too, as shown in Figure 1 (b). Even layer-
based motion estimation algorithm may “see” this sequence

(a)

(b)

Figure 1. Classical motion estimation methods can hardly solve
very simple examples. (a) is an examples from Weiss and Adelson
[13]. The results in [13] are poor on the boundary. When the
color of the frontal bar becomes the same as the back one, most
motion analysis algorithms will fail to analyze that there are two
bars moving separately as human perception does [9]

.

as a stretching polygon with four antennas, but human per-
ception would still see two bars moving separately [9].
This example is not fabricated at all. The occlusion of the
dancer’s legs in Figure 2 shows the real challenge. This
contrast between machine and human perceptions enforces
us to reflect on the foundation of the vision algorithms.

A natural way to overcome this problem is to eliminate
T-junctions in motion estimation. However, T-junction de-
tection is a difficult task even for human, and sometimes a
region as large as 50 pixels in diameter is needed to recog-
nize T-junctions [7]. It is also discovered in [8] that “lo-
cal junction structure, per se, has relative little explanatory
power” in understanding motion.

The recent work in human perception [9] illustrated that
in motion estimation “what matters is ... whether illu-
sory contours are introduced when the junction category is
changed.” This motivates us to modify the foundation of
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Figure 2. The toy example in Figure 1 (b) is not fabricated. The
intersection of the legs of the dancer is a real challenge for motion
analysis.

motion estimation with illusory contours. There are many
possible ways to generate hypothesis of illusory contours
from a single image, but there is only one, if not more, that
can explain two frames perfectly.

There are many problems to solve under this contour-
based framework. Though a lot work has been done on
boundary tracking and detection from a single image, e.g.
[2, 10, 6], it is still a challenging problem to obtain a com-
plete and accurate representation for image boundary. Since
boundary detection is outside the interest of this paper, we
focus on high-contrast boundaries and propose an algorithm
to efficiently locate boundary particles to form a graph...
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meets horn/schunck: Combining local and global op-
tic flow methods. International Journal on Computer
Vision, 61(3):211–231, 2005. 1

[2] J. Canny. A computational approach to edge detec-
tion. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 8(6):679–698, 1986. 2

[3] B. Horn and B. Schunk. Determing optical flow. Jour-
nal of Artificial Intelligence, 17:185–204, 1981. 1

[4] C. Liu, A. Torralba, W. T. Freeman, F. Durand, and
E. H. Adelson. Motion magnification. In Computer
Graphics, Proc. SIGGRAPH, pages 519–526, 2005. 1

[5] B. Lucas and T. Kanade. An iterative image regis-
tration technique with an application to stereo vision.
In Image Understanding Workshop, pages 121–130,
1981. 1

[6] D. R. Martin, C. C. Fowlkes, and J. Malik. Learning
to detect natural image boundaries using local bright-
ness, color, and texture cues. IEEE Trans. on Pat-
tern Analysis and Machine Intelligence, 26(5):530–
549, 2004. 2

[7] J. McDermott. Psychophyiscs with junctions in real
images. Perception, 33:1101–1127, 2005. 1

[8] J. McDermott and E. Adelson. The geometry of the
occluding contour and its effect on motion interpreta-
tion. Journal of Vision, 4(10):944–954, 2004. 1

[9] J. McDermott and E. Adelson. Junctions and cost
functions in motion interpretation. Journal of Vision,
4(7):552–563, 2004. 1
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