
Adaptively Learning the Crowd Kernel

Omer Tamuz omertamuz@weizmann.ac.il

Microsoft Research New England and Weizmann Institute of Science

Ce Liu celiu@microsoft.com

Microsoft Research New England

Serge Belongie sjb@cs.ucsd.edu

UC San Diego

Ohad Shamir ohadsh@microsoft.com

Microsoft Research New England

Adam Tauman Kalai adum@microsoft.com

Microsoft Research New England

Abstract

We introduce an algorithm that, given n ob-
jects, learns a similarity matrix over all n2

pairs, from crowdsourced data alone. The al-
gorithm samples responses to adaptively cho-
sen triplet-based relative-similarity queries.
Each query has the form “is object a more
similar to b or to c?” and is chosen to be
maximally informative given the preceding
responses. The output is an embedding of
the objects into Euclidean space (like MDS);
we refer to this as the “crowd kernel.” SVMs
reveal that the crowd kernel captures promi-
nent and subtle features across a number of
domains, such as “is striped” among neckties
and “vowel vs. consonant” among letters.

1. Introduction

Essential to the success of machine learning on a new
domain is determining a good “similarity function” be-
tween objects (or alternatively defining good object
“features”). With such a “kernel,” one can perform
a number of interesting tasks, e.g. binary classifica-
tion using Support Vector Machines, clustering, inter-
active database search, or any of a number of other
off-the-shelf kernelized applications. Since this step of
determining a kernel is most often the step that is still

Appearing in Proceedings of the 28 th International Con-
ference on Machine Learning, Bellevue, WA, USA, 2011.
Copyright 2011 by the author(s)/owner(s).

not routinized, effective systems for achieving this step
are desirable as they hold the potential for completely
removing the machine learning researcher from “the
loop.” Such systems could allow practitioners with no
machine learning expertise to employ learning on their
domain. In many domains, people have a good sense
of what similarity is, and in these cases the similarity
function may be determined based upon crowdsourced
human responses alone.

The problem of capturing and extrapolating a human
notion of perceptual similarity has received increasing
attention in recent years including areas such as vi-
sion (Agarwal et al., 2007), audition (McFee & Lanck-
riet, 2009), information retrieval (Schultz & Joachims,
2003) and a variety of others represented in the UCI
Datasets (Xing et al., 2003; Huang et al., 2010). Con-
cretely, the goal of these approaches is to estimate a
similarity matrix K over all pairs of n objects given a
(potentially exhaustive) subset of human perceptual
measurements on tuples of objects. In some cases
the set of human measurements represents ‘side infor-
mation’ to computed descriptors (MFCC, SIFT, etc.),
while in other cases – the present work included – one
proceeds exclusively with human reported data. When
K is a positive semidefinite matrix induced purely
from distributed human measurements, we refer to it
as the crowd kernel for the set of objects.

Given such a Kernel, one can exploit it for a vari-
ety of purposes including exploratory data analysis or
embedding visualization (as in Multidimensional Scal-
ing) and relevance-feedback based interactive search.

Adaptively Learning the Crowd Kernel

Figure 1. A sample top-level of a similarity search system
that enables a user to search for objects by similarity. In
this case, since the user clicked on the middle-left tile, she
will “zoom-in” and be presented with similar tiles.

As discussed in the above works and (Kendall & Gib-
bons, 1990), using a triplet based representation of rel-
ative similarity, in which a subject is asked “is object
a more similar to b or to c,” has a number of desir-
able properties over the classical approach employed
in Multi-Dimensional Scaling (MDS), i.e., asking for a
numerical estimate of “how similar is object a to b.”
These advantages include reducing fatigue on human
subjects and alleviating the need to reconcile individu-
als’ scales of similarity. The obvious drawback with the
triplet based method, however, is the potential O(n3)
complexity. It is therefore expedient to seek methods
of obtaining high quality approximations of K from
as small a subset of human measurements as possible.
Accordingly, the primary contribution of this paper is
an efficient method for estimating K via an informa-
tion theoretic adaptive sampling approach.

At the heart of our approach is a new scale-invariant
Kernel approximation model. The choice of model is
shown to be crucial in terms of the adaptive triples
that are produced, and the new model produces effec-
tive triples to label. Although this model is noncon-
vex, we prove that it can be optimized under certain
assumptions.

We construct an end-to-end system for interactive vi-
sual search and browsing using our Kernel acquisition
algorithm. The input to this system is a set of im-
ages of objects, such as products available in an online

store. The system automatically crowdsources1 the
kernel acquisition and then uses this kernel to produce
a visual interface for searching or browsing the set of
products. Figure 1 shows this interface for a dataset
of 433 floor tiles available at amazon.com.

1.1. Human kernels versus machine kernels

The bulk of work in Machine Learning focuses on “Ma-
chine Kernels” that are computed by computer from
the raw data (e.g., pixels) themselves. Additional work
employs human experiments to try to learn kernels
based upon machine features, i.e., to approximate the
human similarity assessments based upon features that
can be derived by machine. In contrast, when a ker-
nel is learned from human subjects alone (whether it
be data from an individual or a crowd) one requires
no machine features whatsoever. To the computer,
the objects are recognized by ID’s only – the images
themselves are hidden from our system and are only
presented to humans.

The primary advantage of machine kernels is that they
can generalize immediately to new data, whereas each
additional object needs to be added to our system, for
a cost of approximately $0.15.2 On the other hand,
working with a human kernel has two primary advan-
tages. First, it does not require any domain expertise.
While for any particular domain, such as music or im-
ages of faces, cars, or sofas, decades of research may
have provided high-quality features, one does not have
to find, implement, and tune these sophisticated fea-
ture detectors.

Second, human kernels contain features that are sim-
ply not available with state-of-the-art feature detec-
tors, because of knowledge and experience that hu-
mans possess. For example, from images of celebri-
ties, human similarity may be partly based on whether
the two celebrities are both from the same profession,
such as politicians, actors, and so forth. Until the long-
standing goal of bridging the semantic gap is achieved,
humans will be far better than machines at interpret-
ing certain features, such as “does a couch look com-
fortable,” “can a shoe be worn to an informal occa-
sion,” or “is a joke funny.”

We give a simple demonstration of external knowledge
through experiments on 26 images of the lower-case
Roman alphabet. Here, the learned Kernel is shown
to capture features such as “is a letter a vowel versus

1Crowdsourcing was done on Amazon’s Mechanical
Turk, http://mturk.com.

2This price was empirically observed to yield “good per-
formance” across a number of domains. See the experimen-
tal results section for evaluation criteria.

Adaptively Learning the Crowd Kernel

consonant,” which uses external knowledge beyond the
pixels. Note that this experiment is interesting in itself
because it is not at first clear if people can meaning-
fully answer the question: “is the letter e more similar
to i or p.” Our experiments show statistically sig-
nificant consistency with 58%3(±2%, with 95% confi-
dence) agreement between users on a random triple of
letters. (For random image triples from an online tie
store, 68% agreement is observed, and 65% is observed
for floor tile images).

2. Benefits of adaptation

We first give high-level intuition for why adaptively
choosing triples may yield better kernel approxima-
tions than randomly chosen triples. Consider n objects
organized in a rooted tree with `� n leaves, inspired
by, say, phylogenic trees involving animal species.4 Say
the similarity between objects is decreasing in their
distance in the tree graph and, furthermore, that ob-
jects are drawn uniformly at random from the classes
represented by the leaves of the tree. Ignoring the de-
tails of how one would identify that two objects are in
the same leaf or subtree, it is clear that a nonadaptive
method would have to ask Ω(n`) questions to deter-
mine the leaves to which n objects belong (or at least
to determine which objects are in the same leaves), be-
cause an expected Ω(`) queries are required per object
until just a second object is chosen from the same leaf.
On the other hand, in an ideal setting, an adaptive ap-
proach might determine such matters using O(n log `)
queries in a balanced binary tree, proceeding from the
root down, assuming a constant number of compar-
isons can determine to which subtree of a node an
object belongs, hence an exponential savings.

3. Related work

As discussed above, much of the work in machine
learning on learning kernels employs ‘side informa-
tion’ in the form of features about objects. Schultz
& Joachims (2003) highlight the fact that triple-based
information may also be gathered by web search click
data. Agarwal et al. (2007) is probably the most sim-
ilar work, in which they learn a kernel matrix from
triples of similarity comparisons, as we do. However,

3While this fraction of agreement seems small, it corre-
sponds to about 25% “noise,” e.g., if 75% of people would
say that a is more like b then c, then two random people
would agree with probability 0.752 = 0.56.

4This example is based upon a tree metric rather than
a Euclidean one. However, note that any tree with ` leaves
can be embedded in `-dimensional Euclidean space, where
squared Euclidean distance equals tree distance.

the triples they consider are randomly (nonadaptively)
chosen. Their particular fitting algorithm differs in
that it is based on a max-margin approach, which is
more common in the kernel learning literature.

There is a wealth of work in active learning for classifi-
cation, where a learner selects examples from a pool of
unlabeled examples to label. A number of approaches
have been employed, and our work is in the same
spirit as those that employ probabilistic models and
information-theoretic measures to maximize informa-
tion. Other work often labels examples based on those
that are closest to the margin or closest to 50% prob-
ability of being positive or negative. To see why this
latter approach may be problematic in our setting, one
could imagine a set of triples where we have accurately
learned that the answer is 50/50, e.g., as may be the
case if a, b, and c bear no relation to each other or if
they are identical. One may not want to focus on such
triples.

4. Preliminaries

The set of n objects is denoted by [n] = {1, 2, . . . , n}.
For a, b, c ∈ [n], a comparison or triple is of the form,
“is a more similar to b or to c.” We refer to a as the
head of the triple. We write pabc for the probability
that a random crowd member rates a as more similar
to b, so pabc + pacb = 1. The n objects are assumed
to have d-dimensional Euclidean representation, and
hence the data can be viewed as a matrix M ∈ Rn×d,
where Ma denotes the row corresponding to a, and
the similarity matrix K ∈ Rn×n is defined by Kab =
Ma ·Mb, or equivalently K = MMT . The goal is to
learn M or, equivalently, learn K. (It is easy to go
back and forth between positive semidefinite (PSD)
K and M , though M is only unique up to change of
basis.) Also equivalent is the representation in terms
of distances, d2(a, b) = Kaa − 2Kab +Kbb.

In our setting, an MDS algorithm takes as input m
comparisons (a1b1c1, y1) . . . (ambmcm, ym) on n items,
where yi ∈ {0, 1} indicates whether ai is more like bi
than ci. Unless explicitly stated, we will often omit
yi and assume that the bi and ci have been permuted,
if necessary, so that ai was rated as more similar to
bi than ci. The MDS algorithm outputs an embed-
ding M ∈ Rn×d for some d ≥ 1. A probabilistic
MDS model predicts p̂abc based on Ma, Mb, and Mc.
The empirical log-loss of a model that predicts p̂aibici is
1/m

∑
i log 1/p̂aibici . Our probabilistic MDS model at-

tempts to minimize empirical log loss subject to some
regularization constraint. We choose a probabilistic
model due to its suitability for use in combination
with our information-gain criteria for selecting adap-

Adaptively Learning the Crowd Kernel

tive triples, and also due to the fact that the same
triple may elicit different answers from different peo-
ple (or the same person on different occasions).

An active MDS algorithm chooses each triple,
aibici, adaptively based upon previous labels
(a1b1c1, y1),. . .,(ai−1bi−1ci−1, yi−1). We denote by
MT the transpose of matrix M . For compact convex
set W , let ΠW (K) = arg minT∈W

∑
ij(Kij − Tij)2 be

the closest matrix in W to K. Also define the set of
symmetric unit-length PSD matrices,

B = {K � 0 | K11 = K22 = . . . = Knn = 1}.

Projection to the closest element of B is a quadratic
program which can be solved via a number of exist-
ing techniques (Srebro & Shraibman, 2005; Lee et al.,
2010).

5. Our algorithm

Our algorithm proceeds in phases. In the first phase,
it queries a certain number of random triples compar-
ing each object a ∈ [n] to random pairs of distinct
b, c. (Note that we never present a triple where a = b
or a = c except for quality control purposes.) Sub-
sequently, it fits the results to a matrix M ∈ Rn×d
(equivalently, fits K � 0) using the probabilistic rela-
tive similarity model described below. Then it uses our
adaptive selection algorithm to select further random
triples. This iterates: in each phase all previous data
is refit to the relative model, and then the adaptive
selection algorithm generates more triples.

• For each item a ∈ [n], crowdsource labels for R
random triples with head a.

• For t = 1, 2, . . . , T :

– Fit Kt to the labeled data gathered thus far,
using the method described in Section 5.1
(with d dimensions).

– For each a ∈ [n], crowdsource a label for the
maximally informative triple with head a, us-
ing the method described in Section 6.

Typical parameter values which worked quickly and
well across a number of medium-sized data sets of
(hundreds of objects) were R = 10, T = 25, and d = 3.
These settings were also used to generate Figure 2. We
first describe the probabilistic MDS model and then
the adaptive selection procedure. Further details are
given in Section 7.

5.1. Relative similarity model

The relative similarity model is motivated by the scale-
invariance observed in many perceptual systems (see,
e.g., Chater & Brown, 1999). Let δab = ‖Ma−Mb‖2 =
Kaa + Kbb − 2Kab. A simple scale-invariant proposal
takes p̂abc = δac

δab+δac
. Such a model must also be reg-

ularized or else it would have Θ(n2) degrees of free-
dom. One may regularize by the rank of K or by
setting Kii = 1. Due to the scale-invariance of the
model, however, this latter constraint does not have
reduced complexity. In particular, note that halving
or doubling the matrix M doesn’t change any proba-
bilities. Hence, descent algorithms may lead to very
small, large, or numerically unstable solutions. To ad-
dress this, we modify the model as follows, for distinct
a, b, c:

p̂abc =
µ+ δac

2µ+ δab + δac
and Kii = 1, (1)

for some parameter µ > 0. Alternatively, this change
may be viewed as an additional assumption imposed
on the previous model – we suppose each object pos-
sesses a minimal amount of “uniqueness,” µ > 0, such
that K = µI + T , where T � 0. We fit the model by
local optimization performed directly on M (with ran-
dom initialization), and high-quality adaptive triples
are produced even for low dimensions.5 Here µ serves
a purpose similar to a margin constraint.

There are two interesting points to make about our
choice of model. First, the loss is not convex in K,
so there is a concern that local optimization may be
susceptible to local minima. In Section 6.1, we state
a theorem which explains why this does not seem to
be a significant problem. Second, in Section 6.2, we
discuss a simple convex alternative based on logistic
regression, and we explain why this model, in combi-
nation with our adaptive selection criterion, gives rise
to poor adaptively-selected triples.

6. Adaptive selection algorithm

The idea is to capture the uncertainty about the lo-
cation of an object through a probability distribution
over points in Rd, and then to ask the question that
maximizes information gain. Given a set of previous
comparisons of n objects, we generate, for each object
a = 1, 2, . . . , n, a new triple to compare a to, as fol-
lows. First, we embed the objects into Rd as described
above, using the available comparisons. Initially, we

5For high-dimensional problems, we perform a gradient
projection descent on K. In particular, starting with K0 =
I, we compute Kt+1 = ΠB(Kt − η∇L(K)) for step-size η
(see Preliminaries for the definition of ΠB).

Adaptively Learning the Crowd Kernel

use a seed of randomly selected triples for this pur-
pose. Later, we use all available comparisons - the
initial random ones and those acquired adaptively.

Now, say the crowd has previously rated a as more
similar to bi than ci, for i = 1, 2, . . . , j−1, and we want
to generate the jth query, (a, bj , cj) (this is a slight
abuse of notation because we don’t know which of bj
or cj will be rated as closer to a). These observations
imply a posterior distribution of τ(x) ∝ π(x)

∏
i p̂
x
bici

over x ∈ Rd, where x is the embedding of a, and π(x)
is a prior distribution, to be described shortly.

Given any candidate query for objects in the database
b and c, the model predicts that the crowd will
rate a as more similar to b than c with probability

p ∝
∫
x

δ(x,c)
δ(x,b)+δ(x,c)τ(x)dx. If it rates a more simi-

lar to b than c then x has a posterior distribution of

τb(x) ∝ τ(x) δ(x,c)
δ(x,b)+δ(x,c) , and τc(x) (of similar form)

otherwise. The information gain of this query is de-
fined to be H(τ)− pH(τb)− (1− p)H(τa), where H(·)
is the entropy of a distribution. This is equal to the
mutual information between the crowd’s selection and
x. The algorithm greedily selects a query, among all
pairs b, c 6= a, which maximizes information gain. This
can be somewhat computationally intensive (seconds
per object in our datasets), so for efficiency we take
the best pair from a sample of random pairs.

It remains to explain how we generate the prior π.
We take π to be the uniform distribution over the set
of points in M . Hence, the process can be viewed as
follows. For the purpose of generating a new triple,
we pretend the coordinates of all other objects are
perfectly known, and we pretend that the object in
question, a, is a uniformly random one of these other
objects. The chosen pair is designed to maximize the
information we receive about which object it is, given
the observations we already have about a. The hope is
that, for sufficiently large data sets, such a data-driven
prior is a reasonable approximation to the actual dis-
tribution over data. Another natural alternative prior
would be a multinormal distribution fit to M .

6.1. Optimization guarantee

The relative similarity model is appealing in that it
fits the data well, suggests good triples, and also repre-
sents interesting features on the data. Unfortunately,
the model itself is not convex. We now give some
justification for why gradient descent should not get
trapped in local minima. As is sometimes the case
in learning, it is easier to analyze an online version
of the algorithm, i.e., a stochastic gradient descent.
Here, we suppose that the sequence of triples is pre-

sented in order: the learner predicts Kt+1 based on
(a1, b1, c1, y1), . . . , (at, bt, ct, yt). The loss on iteration
t is `t(K

t) = log 1/p where p is the probability that
the relative model with Kt assigned to the correct out-
come.

We state the following theorem about stochastic gra-
dient descent, where K0 ∈ B is arbitrary and Kt+1 =
ΠB(Kt − η∇`t(Kt)). Due to space limitations, the
proof is omitted6.

Theorem 1 Let at, bt, ct ∈ [n] be arbitrary, for t =
1, 2, Suppose there is a matrix K∗ ∈ B such that

Pr[yt = 1] =
µ+2−2K∗

ac

2µ+4−2K∗
ab−2K∗

ac
. For any ε > 0, there

exists an T0 such that for any T > T0 and η = 1/
√
T ,

E

[
1

T

T∑
t=1

`t(K
t)− `t(K∗)

]
≤ ε.

6.2. The logistic model: A convex alternative

As a small digression, we explain why the choice of
probabilistic model is especially important for adap-
tive learning. To this end, consider the following logis-
tic model. This model is a natural hybrid of logistic
regression and MDS.

p̂abc =
eKab

eKab + eKac
=

1

1 + eKac−Kab
. (2)

Note that log 1 + eKac−Kab is a convex function of
K ∈ Rn×n. Hence, the problem of minimizing its
empirical log loss over a convex set is a convex op-
timization problem.

Experiments indicate that the logistic model fits data
well and reproduces interesting features, such as
vowel/consonant or stripedness. However, empirically
it performs poorly in terms of deciding which triples to
ask. Note that the logistic model (and any generalized
linear model) will select extreme comparisons, where
the inner products are as large as possible. To give an
intuitive understanding, suppose that hair length was
a single feature and one wanted to determine whether
a person has hair length x or x+1. The logistic model
would compare that person to a bald person (x = 0)
and a person with hair length 2x+1, while the relative
model would ideally compare him to people with hair
lengths x and x+ 1.

7. System parameters & quality control

Experiments were performed using Amazon’s Mechan-
ical Turk web service, where we defined ‘Human Intel-

6The proof is included in the full version of the pa-
per (Tamuz et al., 2011)

Adaptively Learning the Crowd Kernel

ligence Tasks’ to be performed by one or more users.
Each task consists of 50 comparisons and the inter-
face is optimized to be performed with 50 mouse clicks
(and no scrolling). The mean completion time was
approximately 2 minutes. This payment was deter-
mined based upon worker feedback. Initial experi-
ments revealed a high percentage of seemingly random
responses, but after closer inspection the vast major-
ity of these poor results came from a small number of
individuals. To improve quality control, we imposed a
limit on the maximum number of tasks a single user
could perform on any one day, we selected users who
had completed at least 48 tasks with a 95% approval
rate, and each task included 20% triples for which
there was tremendous agreement between users.

7.1. Question phrasing and crowd alignment

One interesting issue is how to frame similarity ques-
tions. On the one hand, it seems purest in form to
give the users carte blanche and ask only, “is a more
similar to b than c.” On the other hand, in feedback
users complained about these tasks and often asked
what we meant by similarity. Moreover, different users
will inevitably weigh different features differently when
performing comparisons.

Two natural goals of question phrasing might be: (1)
to align users in their ranking of the importance of
different features and (2) to align user similarity no-
tions with the goals of the task at hand. For example,
if the task is to find a certain person, the question,
“which two people are most likely to be (genealogi-
cally) related to one another,” may be poor because
users may overlook features such as gender and age.
In our experiments on neckties, for example, the task
was titled “Which ties are most similar?” and the
complete instructions were: “Someone went shopping
at a tie store and wanted to buy the item on top, but it
was not available. Click on item (a) or (b) below that
would be the best substitute.”

8. Experiments and Applications

We experiment on four datasets: (1) twenty-six im-
ages of the lowercase roman alphabet (Calibri font)
(2) 223 country flag images from flagpedia.net, (3)
433 floor tile images from Amazon.com, and (4) 300
product images from an online tie store also hosted
at Amazon.com. We also consider a hand-selected
“mixed” dataset consisting of 225 images: 75 ties, 75
tiles, and 75 flags. Surprisingly, it seems that for these
datasets about 30-40 triples per object suffice to learn
the Crowd Kernel well, according to the 20Q metric
that we describe below.. Figure 2 shows the results on

10 20 30

3.5

4

4.5

5

triples per object (training)

lo
g
 o

f
ra

n
k
 i
n
 p

o
s
te

ri
o
r

20 Random Questions

10 20 30

3.5

4

4.5

5

triples per object (training)

20 Adaptive Questions

adaptive triples

random triples

adaptive triples

random triples

Figure 2. The 20Q plots comparing training based on
adaptively selected triples to randomly selected training
triples. The left plot shows the mean predicted log-ranks
of randomly chosen objects after 20 randomly chosen ques-
tions. The right plot shows the mean predicted log-ranks
of randomly chosen objects after 20 adaptive queries. Plots
were generated using the mixed dataset consisting of n =
225 objects, with 10 initial random triples per object. In
both plots, the performance using 22 = (10 random) + (12
adaptively chosen) triples was matched using all 35 random
triples. Hence, approximately 60% more random triples
were required to match this particular performance level
of the adaptive algorithm.

the mixed dataset, comparing the 20Q metric trained
on random vs. adaptive triples. For both adaptive and
random questions, for certain performance levels, one
requires about 60% more random queries than adap-
tive queries. Given very little data or a lot of data, one
does not expect the adaptive algorithm to perform sig-
nificantly better.

Figure 3 shows the adaptive triples selected on an il-
lustrative dataset composed of a mixture of flags, ties
and tiles.

For ease of implementation, we assume all users are
identical. This is a natural starting point, especially
given that our main focus is on active learning.

8.1. 20 Questions Metric

Since one application of such systems is search, i.e.,
searching for an item that a user knows what it looks
like (we assume that the user can answer queries as
if she even knows what the store image looks like),
it is natural to ask how well we have “honed in” on
the desired object after a certain number of questions.
For the 20 Questions (20Q) metric, two independent
parts of the system are employed, an evaluator and a
guesser. First, the evaluator randomly and secretly se-
lects an object in the database, x. The guesser is aware

Adaptively Learning the Crowd Kernel

Figure 3. Six objects in the mixed dataset along with the
adaptive pairs to which that object was compared, below,
and user selections in red. The first pair below each large
object was chosen adaptively based upon the results of ten
random comparisons. Then, proceeding down, the pairs
were chosen using the ten random comparisons plus the
results of the earlier comparisons above.

Figure 4. Nearest-neighbors for some neckties from the tie-
store dataset. Nearest neighbors are displayed from left to
right. Note that neck ties were never confused for bow ties,
tie clips or scarves.

Figure 5. Examples of nearest neighbors for floor tiles.

Figure 6. The flag images displayed according to their pro-
jection on the top two principal components of a PCA. The
principal component is the horizontal axis.

Figure 7. For fun: the faces of 186 colleagues displayed
according to their projection on the top two principal com-
ponents. The principal component is the horizontal axis.

Dataset Feature LOO error rate

Tiles Ornate 4.1%
Ties Bow tie vs. neck tie 0.0%
Ties Multicolor vs. plain 0.5%
Flags Striped 0.0%
Letters Vowel 4.0%
Letters Short/tall 5.3%

Figure 8. Empirical results of an SVM using the crowd ker-
nel, based on leave-one-out cross validation. Note that in
many cases we hand-selected “easy” subsets of objects to
label. For example, when judging whether a flag is striped
or not, we removed flags which might be interpreted ei-
ther way. The selection was based on how unambiguous
the objects were, with respect to the desired label, and not
related to the target kernel.

Adaptively Learning the Crowd Kernel

of the database but not of which item x has been se-
lected. The guesser is allowed to query 20 triples (as in
the game “20 Questions”) with head x, after which it
produces a ranking of items in the database, from most
to least likely. Then the evaluator reveals the identity
of x and hence its position in the ordered ranking, as
well. The metric is the average log of the position of
the random target item in this list. The log reflects the
idea that the position of lower-ranked objects is less
import – it weights moving an object from position 2
to 4 as important as moving an object from position
20 to 40. This metric is meant to roughly capture
performance, but of course in a real system users may
not have the patience to click on twenty pairs of im-
ages and may prefer to have fewer clicks but use larger
comparison sets. (Our GUI has the user select one
of 8 or 9 images, which could potentially convey the
same information as 3 binary choices.) Now, the ques-
tions that the guesser asks could be random questions,
which we refer to as the 20 Random Questions metric,
or adaptively chosen, for the 20 Adaptive Questions
metric. In the latter case, the guesser uses the same
maximum information-gain criterion as in the adap-
tive triple generation algorithm, relative to whichever
model was learned (based on random or adaptively se-
lected training triples).

8.2. Using the Kernel for Classification

The learned Kernels may be used in a linear classifier
such as a support vector machine. This helps elucidate
which features have been used by humans in labeling
the data. In the experiments below, an unambigu-
ous subset of the images were labeled with binary ±
classes. For example, we omitted the letter y in label-
ing vowels and consonants (y was in fact classified as a
consonant, and c was misclassified as a vowel), and we
selected only completely striped or unstriped flags for
flag stripe classification. The SVM-Light (Joachims,
1998) package was used with default parameters and
its leave-one-out (LOO) classification results are re-
ported in Figure 8.

8.3. Visual Search

We provide a GUI visual search tool, exemplified in
Figure 1. Given n images, their embedding into Rd and
the related probabilistic model for triples, we would
like to help a user find either a particular object she
has in mind, or a similar one. We do this by playing
“20 Questions” with 8- or 9-tuple queries, generated by
an information-gain adaptive selection algorithm very
similar to the one described in Section 6.

Acknowledgments. We thank Sham Kakade and

Varun Kanade for helpful discussions. Serge Belongie’s
research is partly funded by ONR MURI Grant
N00014-08-1-0638 and NSF Grant AGS-0941760.

References

Agarwal, Sameer, Wills, Josh, Cayton, Lawrence,
Lanckriet, Gert, Kriegman, David, and Belongie,
Serge. Generalized non-metric multidimensional
scaling. In AISTATS, San Juan, Puerto Rico, 2007.

Chater, N and Brown, G D. Scale-invariance as a uni-
fying psychological principle. Cognition, 69(3):B17–
24, 1999.

Huang, Kaizhu, Ying, Yiming, and Campbell, Colin.
Generalized sparse metric learning with relative
comparisons. Knowledge and Information Systems,
pp. 1–21, 2010. ISSN 0219-1377. 10.1007/s10115-
010-0313-0.

Joachims, Thorsten. Making large-scale svm learning
practical. LS8-Report 24, Universität Dortmund, LS
VIII-Report, 1998.

Kendall, Maurice and Gibbons, Jean D. Rank Corre-
lation Methods. A Charles Griffin Title, 5 edition,
September 1990.

Lee, Jason, Recht, Ben, Salakhutdinov, Ruslan, Sre-
bro, Nathan, and Tropp, Joel. Practical large-scale
optimization for max-norm regularization. Advances
in Neural Information Processing Systems 23, pp.
1297–1305, 2010.

McFee, B. and Lanckriet, G. R. G. Heterogeneous
embedding for subjective artist similarity. In Tenth
International Symposium for Music Information Re-
trieval (ISMIR2009)), October 2009.

Schultz, Matthew and Joachims, Thorsten. Learn-
ing a distance metric from relative comparisons. In
Advances in Neural Information Processing Systems
(NIPS). MIT Press, 2003.

Srebro, Nathan and Shraibman, Adi. Rank, trace-
norm and max-norm. In COLT, pp. 545–560, 2005.

Tamuz, O., Liu, C., Belongie, S., Shamir, O., and
Kalai, A. Tauman. Adaptively Learning the Crowd
Kernel. Arxiv preprint arXiv:1105.1033, 2011.

Xing, Eric P., Ng, Andrew Y., Jordan, Michael I.,
and Russell, Stuart. Distance metric learning, with
application to clustering with side-information. In
Advances in Neural Information Processing Systems
15, pp. 505–512. MIT Press, 2003.

