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Automatic Eyeglasses Removal System

Figure 1. Automatic eyeglasses removal system overview. (a) An input face image. (b) Face localization by ASM. (c) Glasses
recognition by a classifier. (d) Glasses localization by MCMC. (e) Glasses removal based on a set of training examples.
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Abstract
In this paper, we present a system that can automatically

remove eyeglasses from an input face image. Our system
consists of three modules: eyeglasses recognition, local-
ization and removal. Given a face image, we first use an
eyeglasses classifier, to determine if a pair of eyeglasses
is present. Then we apply a Morkov chain Monte Carlo
method to accurately locate the glasses by searching for the
global optimum of the posteriori. Finally, a novel example-
based approach is developed to synthesize an image with
eyeglasses removed from the detected and localized face
image. Rather than applying conventional image process-
ing techniques to the input image, we propose a statistical
analysis and synthesis approach employing a database con-
taining pairs of face images, one with eyeglasses while the
other without. Experiments demonstrate that our approach
produces good quality of face images with eyeglasses re-
moved.

1. Introduction
In the last decade, face analysis and synthesis has be-

come one of the most active research topics in computer
vision and pattern recognition, where statistical learning-
based methods have been successfully used. In face recog-
nition and detection, eigenface [14], neural network [10, 12]
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and support vector machine (SVM) [9] are some of the typ-
ical approaches. Deformable models such as [7] and Ac-
tive Shape Model (ASM) [2] have been demonstrated to
be effective to localize faces. Recently, face hallucination
[8] and facial sketch generation [1] can synthesize high-
resolution face images and good-quality face sketches, re-
spectively. Most of above methods need to extract facial
features such as eye, eyebrows and nose with a non-glasses
assumption on human faces, despite the fact that many peo-
ple wear glasses. A person wearing glasses is likely to be
missed by a face detector training on faces without glasses,
or be mistaken to others by an identification system. There-
fore, it is of great importance to analyze glasses for face
detection, recognition and synthesis.

There are good reasons why people avoided dealing with
eyeglasses. First, the appearance of glasses frames is so di-
verse due to various material properties such as metal and
plastic. Second, the reflectance property of glasses differs
significantly from that of human skin. Sometimes the reflec-
tion on the glasses is the brightest area on face. Third, faces
are always well separated with the background whereas the
glasses are stuck to the face and mixed by eyebrows. Thus
tracking or stereo techniques may not be of help for eye-
glasses detection.

There has been some recent work on glasses recogni-
tion, localization and removal. Jiang et al. [4] studied de-
tecting glasses on facial images by a glasses classifier. Wu
et al. [15] devised a sophisticated glasses classifier based
on SVM. The recognition rates reported in their articles are
close to 90%. Jing and Mariani [5] employed a deformable
contour method to detect glasses under a Bayesian frame-
work. In their work, 50 points are used to define the shape
of glasses, and the position of glasses is found by maxi-



mizing the posteriori. Saito et al. did the glasses removal
work by using principal component analysis (PCA) [11].
The eigen-space of eyeglassless patterns is learnt by PCA
to retain their principal variance. Projecting a glasses pat-
tern into this space will get the corresponding non-glasses
one.

In this paper we present a system that can automati-
cally recognize, locate and remove eyeglasses from an input
face image. Our system consists of three modules: glasses
recognition, localization and removal. The first two mod-
ules are essential to make the glasses removal automatic.
For recognition, we perform classification according to the
reconstruction errors in the eigen-spaces which are learnt
through principal component analysis (PCA). For localiza-
tion, we use an Active Shape Model and learn the prior
by PCA and the likelihood in a nonparametric way. We
apply a Markov chain Monte Carlo (MCMC) technique to
search for a global optimum of the glasses localization. For
removal, in order to capture the global correspondence of
glasses and non-glasses patterns, we again model their joint
distribution in eigen-space by PCA. A solution is searched
for in the eigen-space such that its glasses part is the closest
to the input. The non-glasses part of the solution is naturally
the result, and is intelligently pasted on the glasses region.
This enables us to capture global properties of glasses such
as symmetry, contours and illumination.

This article is organized as follows. Section 2 describes
feature extraction and classifier designing for glasses recog-
nition. Section 3 shows how to model the posteriori of
the glasses frame given an face image, and how to find the
global optimum of the posteriori by MCMC. The details of
the glasses removal module, together with a number of re-
moval results, are provided in Section 4. We conclude this
paper with a discussion in Section 5.

2. Glasses Recognition
In our system we choose orientation pattern as the fea-

ture and devise a reconstruction error based classifier to dis-
criminate glasses and non-glasses patterns.

2.1 Feature extraction
Although there exist many cues of eyeglasses from hu-

man knowledge, most of them are not robust discriminative
features. The symmetry of glasses can not be selected as
features since the face area around eyes is also symmetric. It
is the same to the loop-like pattern which would be confused
by the eyebrows and eyes, in particular for face images with
heavy shadows. However, we observe that there exists more
prominent orientation in glasses region than other face re-
gions. It implies that in the glasses region theanisotropy,
which indicates how concentrated local orientations are, is
strong. Therefore we select the orientation and anisotropic
measure, computed as [6, 1],
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 Figure 2. Feature extraction. (a) Original intensity im-
age. (b) Histogram equalized image. (c) Feature image
with orientations and anisotropic measure. (1) to (2) are
non-glasses and glasses, respectively.
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where I ′x and I ′y are x and y components of the gradi-
ent vectorsG(x, y) = (I ′x, I

′
y) respectively, andΩ(u, v) is

the neighborhood of(u, v) with size 3× 3 chosen in our
implementation. θ(u, v) ∈ [0, π) andχ(u, v) ∈ [0, 1] are
orientation and anisotropic measures at(u, v) respectively.
χ(u, v) ∈ [0, 1] counts the concentration of local gradients
in the neighborhood of(u, v). If local gradients uniformly
distribute between0 andπ, thenχ(u, v) is small. On the
contrary, if all the local gradients point the same way, then
χ(u, v) is strong and the pixel(u, v) is most likely to be on
a meaningful edge.

Sinceθ(u, v) ∈ [0, π), the difference between orienta-
tionsπ − ε and0 + ε (ε is a very small value) will be the
most distinct, but in fact they are all horizontal edges and
very close in visual appearance. To solve this problem, we
transfer the polar coordinates into a Cartesian one by dou-
bling the orientation angle{

x(u, v) = χ(u, v) cos(2θ(u, v))
y(u, v) = χ(u, v) sin(2θ(u, v)) (3)

We list some results in Figure 2 for histogram equalization
and feature extraction, where the feature image is displayed
as an orientation field in vector form. We notice that the
glasses and non-glasses image appear distinct in the feature
image as we expected .

2.2 Classifier Designing
The ideal feature space in pattern recognition should

make the two classes far away on their centers in compari-
son with their own variations, such that they can be easily
separated by a linear hyperplane. But the glasses and non-
glasses patterns are so close on the centers no matter what
feature spaces are chosen due to the position uncertainty of
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Figure 3. Results of reconstruction by glasses and non-
glasses eigen-spaces. From (a) to (c) are input feature im-
age, reconstructed by glasses and reconstructed by non-
glasses respectively. (1) and (2) are results of glasses and
non-glasses images respectively.

glasses. After applying PCA to these two classes, we get
two groups of meansµF andµG, and eigenvectorsΦF =
[φ(1)

F , φ
(2)
F , · · · , φ(nF )

F ] andΦG =[φ(1)
G , φ

(2)
G , · · · , φ(nG)

G ] for
non-glasses and glasses pattern respectively. We find that
µF andµG are very close in feature space while the inner
products between the two groups of eigenvectors are always
very close to zero,i.e. <φ(i)

F , φ
(j)
G >≈0 in most cases. This

indicates that glasses and non-glasses patterns vary in nearly
orthogonal directions.

To discriminate these two patterns in feature space, we
design a classifier based on thereconstruction error by
eigen-space. We project the input feature vectorI into the
two eigen-spaces, reconstruct it by their eigenvectors and
compute the error respectively. Mathematically,{

IF = ΦF ΦT
F (I − µF ) + µF

IG = ΦGΦT
G(I − µG) + µG

(4)

where IG and IF are reconstructed feature images by
glasses and non-glasses eigen-space respectively. Thus the
verification functionV (I) is defined as

V (I) = sgn(|I − IF | − λG|I − IG|), (5)

where sgn(·) is a signal function andλG balances the priors
of each classes. IfV (I) = 1, we classify the input image to
glasses. Otherwise, it will be classified to non-glasses.

A reconstruction example is illustrated in Figure 3. It is
shown that the input feature image can be best reconstructed
by its own eigen-space, which demonstrates the criterion of
our classifier. Then we do a leave-one-out experiment to test
our method. A recognition rate of 94.2% is achieved in our
glasses recognition subsystem with 220 samples. Almost
all missed glasses by our algorithm are the non-frame ones
which have weak edge features, and the false alarms are
always with strong shadow features.

3. Glasses Localization
To locate the precise position of glasses, we use a de-

formable contour model [7] or ASM [2] to describe the ge-
ometric information and position of the glasses. We define
15 key points on the glasses frame, denoted byW ={wi =
(xi, yi), i=1, · · · , n} wheren=15. In the following com-
putation,W is regarded as a long vector with dimension
2n. Based on the Bayesian law, to locate the position is to
find an optimalW ∗ in glasses regionIG by maximizing the
posteriori, or the product of the prior and likelihood

W ∗=arg max
W

p(W |IG)=arg max
W

p(IG|W )p(W ). (6)

Based on (6), we should first learn the priorp(W ) and es-
timate likelihoodp(IG|W ) respectively, and then design an
optimization mechanism to search for the optimal solution.

3.1 Prior Learning
Physically the prior distribution ofW comprises two in-

dependent parts: theinner parameters, or the position in-
variant shapeW ′, and theouter parameters, or the position
relevant variables such as the orientation, scale and central
points. Mathematically, each key point can be described by

wi = sRθw
′
i + Cxy (7)

wheres is the scale parameter,Rθ is the rotation matrix
controlled byθ, andCxy is the centroid of the key points.
W ′ = {w′

i = (x′i, y
′
i), i = 1, · · · , n} is the centralized and

scale normalized key points. It is obvious that
∑n

i=1w
′
i =

0 and
∑n

i=1wi = Cxy. Since the position invariant shape
w′ in the inner parameter space and the position correlated
s, θ andCxy in the outer parameter space are statistically
independent, we can decouple the prior distribution into

p(W ) = p(W ′)p(s)p(θ)p(Cxy). (8)

We shall model theinner andouter priors in different ways.
Just as in the work of ASM and many other points distri-

bution models, the distribution of theinner parametersW ′

is simply assumed Gaussian and learnt by PCA. The distri-
bution has the form Suppose

p(W ′)=
1
Z

exp{−(W ′−µW ′)TBΛ−1BT(W ′ − µW ′)} (9)

whereµW ′ is the mean shape,B = [b1,b2, · · · ,bm] and
Λ = diag(σ2

1 , σ
2
2 , · · · , σ2

m) are eigenvectors and eigenval-
ues ofW ′ analyzed by a set of training examples{W ′

k, k=
1, · · · ,M} respectively, andZ is the normalization con-
stant. The principal components{bi} denote the main vari-
ations of the shapeW ′. Let u = BT(W ′ − µW ′) be the
variable in eigen-space, then varyingu along the principal
components is always much more meaningful than varying
a single point.

The outer parameters, the scale, orientation and central
point are all in low dimension(s). We simply use histograms
to represent their distributions.
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 Figure 4. The results of glasses localization by MCMC.

3.2 Likelihood Learning
In analysis rather than synthesis, the likelihoodp(IG|W )

is used to measure if the local featuresF (i)
G on pointwi is

similar to those of that key point in terms of the appearance.
Usually it can be simplified to

p(IG|W ) = p(FG|W ) =
n∏

i=1

p(F (i)
G |wi), (10)

whereFG = {Fj ∗ IG|j = 1, · · · , l} is the feature image of
the intensity image, and{Fj} are the local filters. What we

should learn is the local feature distributionp(F (i)
G |wi) for

each key point.
Since the key points of glasses are defined on the frame,

they are distinct in edge and orientation, as we already de-
scribed in glasses recognition. We choose the responses of
local edge detectors as the features, including a Laplacian
operator, the first and second order Sobel operators with 4
directions. They are all band-pass to capture the local space-
frequency statistics. For each key pointwi, we can get the
training 9-d features{F (i)

G (k)}M
k=1. The likelihood of each

key point is obtained by Parzen window method,

p(F (i)
G |wi) =

1
M

M∑
k=1

G(F (i)
G ;F (i)

G (k), σi), (11)

whereG(·;F (i)
G (k), σi) is the Gaussian kernel function cen-

tered at the exampleF (i)
G (k) with varianceσi.

3.3 MAP Solution by Markov Chain Monte Carlo
After the prior and likelihood models are built, we should

find the optimalW ∗ by maximizing the posteriori under
the MAP criterion. However the objective function,i.e.
the posteriori, is very complex with many local maximums.
Thus traditional deterministic gradient ascent algorithm will

be stuck at local optima. Recently, Markov chain Monte
Carlo (MCMC) has been used in solving Bayesian infer-
ence problems such as image segmentation [13]. We choose
Gibbs sampling in optimization due to the low rejecting ra-
tio. Since the key pointsW has been decoupled to thein-
ner andouter parameters, the solution space is simplified
to X = {u, s, θ, Cxy}. SupposeX = (xi)k

i=1, the Markov
chain dynamics in Gibbs sampling is given by

x
(t+1)
1 ∼ p(x1|x(t)

2 , x
(t)
3 , · · · , x(t)

k )
x

(t+1)
2 ∼ p(x2|x(t+1)

1 , x
(t)
3 , · · · , x(t)

k )
...

x
(t+1)
k ∼ p(xk|x(t+1)

1 , x
(t+1)
2 , · · · , x(t)

k−1)

(12)

By sequentially flipping each dimension, the Gibbs sampler
walks through the solution space with the target posterior
probability density given by (6), (9) and (11). The optimal
solutionX∗ is obtained in a sequence of independent sam-
ples after several sweeps, 20 for instance. Some localization
results are shown in Figure 4.

The intuitive explanation of Gibbs sampling is that we
can keep other dimensions unchanged and flip current di-
mension to a better (not the best) position with a certain
probability. The components ofX are independent, at least
the variations in shape and position are uncorrelated. There-
fore searching in this space is much more efficient than
merely moving one key point once in previous localization
methods. Our method is also insensitive to the initialization,
guaranteed by MCMC global convergence. Unlike other
MCMC algorithms, it takes no more than 0.5 second for the
Gibbs sampler to find a globally optimal solution.

4. Glasses Removal
Once the glasses localization module accurately finds

the position of the glasses, we shall do glasses removal to
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Figure 5. The flowchart of glasses removal module. (1) Learning procedure. (2) Automatic removal procedure. (a) Preceding
work until the localization of the glasses. (b) Warping the glasses region to a normal template. (c) Inverse warping to the original
image domain. (d) Paste the inferred non-glasses image onto the input with boundary blended.

replace the glasses pattern with the best non-glasses pat-
tern fit. Since there is too much uncertainty to infer the
lost information under the glasses, we adopt learning-based
method for non-glasses pattern inference,i.e. to “guess” the
underlying non-glasses pattern from a set of training glasses
and non-glasses pairs. This kind of learning-based methods
has been successfully applied to facial sketch synthesis [1]
and super-resolution [8, 3]. Before learning, it is signifi-
cant to calibrate each training sample with respect to a nor-
mal template, on which the learning machine learns the pre-
cise statistical relationship between glasses and non-glasses
patterns, avoiding extra position and scale uncertainties in-
volved. Given a new glasses sample, we should first warp
it to the normal template, infer the non-glasses pattern, in-
versely warp the inferred one to the original face image, and
finally paste it on the glasses area, as illustrated in Figure 5.
We adopt the warping method introduced in [2].

Let us denote the warped glasses and non-glasses im-
age byI ′G and I ′F , respectively. Given the glasses image
I ′G, our task is to infer the non-glasses patternI ′F based on
a set of training pairs{I ′G(i), I ′F (i)M

i=1}. After warping,
the difference between these two patterns is only in the ap-
pearance of glasses (the training pair of each individual is
taken under nearly the same lighting condition). We again
choose PCA to learn the correspondence between the pairs.
Let Y T = [I ′TG I ′TF ], and the training examples become
{Y(i)}M

i=1. Through singular value decomposition (SVD),
we can get principal components matrixΨ=[ψ1 ψ2 · · · ψh]
with ψj thejth eigenvector, eigenvalues{σ2

i }h
i=1 and mean

µY . Let V be the hidden variable lying in the eigen-space
V ∈Rh. ThenV=ΨT(Y −µY ) records the main variation
of Y . On the contraryY can be well approximated byV :
Y=ΨV +µY +εY , whereεY is noise. Therefore the distri-
bution ofY , i.e. the joint distribution ofI ′G andI ′F can be

replaced byV with a Gaussian form

p(V ) =
1
Z ′ exp{−V T Λ−1V }, (13)

whereΛ = diag[σ2
1 , · · · , σ2

h] andZ ′ is the normalization
constant. Once givenI ′G, we should infer the optimalV ∗

based on the Bayesian law

V ∗ = arg max
V

p(V |I ′G) = arg max
V

p(I ′G|V )p(V ), (14)

then the second part ofY ∗ corresponding toV ∗ is the de-
sirable result. SinceI ′G is the first half component ofY , we
model the likelihood as a soft constraint

p(I ′G|V ) =
1
Z ′′ exp{−‖Ψ1V + µY1 − I ′G‖2/λ}, (15)

whereΨ1 = [ I 0 ]Ψ is the first half ofΨ, µY1 = [ I 0 ]µY

is the first half ofµY , λ scales the variance andZ′′ is the
normalization constant. This likelihood enforces the glasses
part of the reconstructedY ∗ close to the observedI ′G.

To maximize the posteriori in (14) is equivalent to

V ∗=arg min
V

{λV TΛ−1V + ‖Ψ1V + µY 1 − I ′G‖2}, (16)

with straightforward solution

V ∗ = (ΨT
1 Ψ + λΛ−1)−1ΨT

1 (I ′G − µY 1). (17)

Finally the optimal non-glasses patternI ′∗F is calculated by
I ′∗F =Ψ2V

∗+µY 2, whereΨ2 =[0 I ]Ψ is the second half of
Ψ andµY 2 = [ 0 I ]µY is the second half ofµY . ThenI ′∗F
is inversely warped to the glasses region ofIG and pasted
onto the face image with the abutting area blended around
the boundary. Some glasses removal results are displayed
in Figure 6. Note that different types of glasses have been
used in our experiment. Even though the synthesized non-
glasses images are a little bit blurred and different from the
original non-glasses ones, the glasses have been success-
fully removed from the input image.
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Figure 6. The results of glasses removal. (a) Input faces with glasses. (b) Removal results. (c) Original non-glasses faces of (a).

5. Discussion and Conclusion
In this paper, we have designed an automatic glasses re-

moval system which includes glasses recognition, localiza-
tion and removal modules. The orientation and anisotropic
measures are extracted as features in recognition, and a
reconstruction-error based classifier is designed due to the
special distribution of glasses and non-glasses patterns. We
apply MCMC or Gibbs sampling to accurately locate the
glasses by searching for the global optimum of the posteri-
ori. Finally a learning based approach is developed to syn-
thesize a non-glasses image with the glasses removed from
the detected and localized face image, by maximizing the
joint distribution of the glasses and non-glasses patterns in
eigen-space. A recognition rate of 94.2%, and the localiza-
tion and removal results shown in Figures 4 and 6 demon-
strate the effectiveness of our system. In addition, running
through the three subsystems takes less than 5 seconds on a
regular PC.

For future work, we shall incorporate more sophisticated
methods in the glasses removal module to solve the blur-
ring problem. We also plan to push our system to glasses
removal in a video sequence. Finally, we can realize an au-
tomatic glasses wearing system by exchanging the training
pairs in our current system.
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