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Abstract edge on the images' spatial layout, in principle we must
search every pixel to nd the correct match.

We introduce a fast deformable spatial pyramid (DSP)  To address these challenges, existing methods have
matching algorithm for computing dense pixel correspon- |argely focused on imposing geometric regularization on
dences. Dense matching methods typically enforce both apthe matching problem. Typically, this entails a smoothness
pearance agreement between matched pixels as well as geconstraint preferring that nearby pixels in one image get
ometric smoothness between neighboring pixels. Whereasnatched to nearby locations in the second image; such con-
the prevailing approaches operate at the pixel level, we pro  straints help resolve ambiguities that are common if match-
pose a pyramid graph model that simultaneously regular- ing with pixel appearance alone. If enforced in a naive way,
izes match consistency at multiple spatial extents—rangin however, they become overly costly to compute. Thus, re-
from an entire image, to coarse grid cells, to every sin- searchers have explored various computationally ef cient
gle pixel. This novel regularization substantially impesv  solutions, including hierarchical optimizatioh], random-
pixel-level matching in the face of challenging image vari- jzed searchZ], 1D approximations of 2D layoutl[l], spec-
ations, while the “deformable” aspect of our model over- tra| relaxations [ 3], and approximate graph matchin |
comes the strict rigidity of traditional spatial pyramidRe- Despite the variety in the details of prior dense matching
sults on LabelMe and Caltech show our approach outper- yads; we see that their underlying models are surpris-
forms state-of-the-art methods (SIFT Flow] ar_ld Patch- ingly similar: minimize the appearance matching cost of
Match [2]), both in terms of accuracy and run time. individual pixels while imposing geometric smoothness be-

tween paired pixels. That is, existing matching objectives
) center aroungbixels While suf cient for instances (e.g.,
1. Introduction MRF stereo matchingl[7]), the locality of pixels is prob-

Matching all the pixels between two images is a long- Ie_ma_tic_for_generic image matching; pi_xels sim_ply_ Ia<_:k the
standing research problem in computer vision. Traditional diScriminating power to resolve matching ambiguity in the
dense matching problems—such as stereo or optical ow— face of V|su_al varlatlor_13. Moreover, the computa.\t_lonatcos
deal with the “instance matching” scenario, in which the for dense pixels remains a bottleneck for scalability.

two input images contain different viewpoints of the same  To address these limitations, we introducgedormable
scene or object. More recently, researchers have pushed thépatial pyramid (DSP) model for fast dense matching.
boundaries of dense matching to estimate correspondenceather than reason with pixels alone, the proposed model
between images witHifferentscenes or objects. This ad- regularizes match consistency at multiple spatial extents
vance beyond instance matching leads to many interestfanging from an entire image, to coarse grid cells, to every

ing new applications, such as semantic image segmentasingle pixel. A key idea behind our approach is to strike a
tion [15], image completion], image classi cation {1], balance between robustness to image variations on the one

and video depth estimation . hand, and accurate localization of pixel correspondences
There are two major challenges when matching genericon the other. We achieve this balance through a pyramid

images: image variation and computational cost. Compareddraph: larger spatial nodes offer greater regularizatiberw

to instances, different scenes and objects undergo muctPpearance matches are ambiguous, while smaller spatial

more severe variations in appearance, Shape, and backﬂOdes h8|p localize matches with ne detail. FUrthermore,

ground clutter. These variations can easily confuse low- our model naturally leads to an ef cient hierarchical opti-

level matching functions. At the same time, the search Mization procedure.

space is much larger, since generic image matching permits To validate our idea, we compare against state-of-the-

no clean geometric constraints. Without any prior knowl- art methods on two datasets, reporting results for pixel la-
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bel transfer and semantic segmentation tasks. Compare!
to today's strongest and most widely used methods, SIFT
Flow [15] and PatchMatchZ—both of which rely on a Animage
pixel-based model—our method achieves substantial gains
in matching accuracy. At the same time, it is noticeably
faster, thanks to our coarse-to- ne optimization and other
implementation choices.
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2. Background and Related Work

We review related work on dense matching, and explain
how prior objectives differ from ours.

Traditional matching approaches aim to estimate very Pixel:
accurate pixel correspondences (e.g., sub-pixel error for

. . . a) DSP (Ours b) SIFT Flo d) PatchMatch
stereo matching), given two images of the same scene_. @ ( ) ( ) ) wo (@) .
with slight viewpoint changes. For such accurate local- Figure 1. Graph representations of different matching nsod&

ization, most methods de ne the matching cost on pixels. circle denotes a graph node and its size represents italpetnt.

. . Edges denote geometric distortion terni@) Deformable spatial
In particular, the pixel-level Markov random eld (MRF) pyramid (proposed): uses spatial support at various extefis.

model, combined with powerful optimization techniques \jierarchical pixel mode[15]: the matching result from a lower
like graph-cut or belief propagation, has become diee resolution image guides the matching in the next resoluti@
facto standard. It casts matching as a graph optimization Full pairwise mode[3, 13: every pair of nodes is linked for strong
problem, where pixels are nodes, and edges between neighgeometric regularization (though limited to sparse node))
boring nodes re ect the existence of spatial constraints be Pixel model with implicit smoothne$s]: geometric smoothness
tween them 4]. The objective consists of a data term for is enforced in an indirect manner via a spatially-consgdinor-
each pixel's matching cost and a smoothness term for theréspondence search (dotted lines denote no explicit links)de
neighbors' locations. from the proposed model (a), all graphs are de ned on a piridl g
Unlike traditional instance matching, recent work at-

tempts to densely match images containing different scenes qditi low d h hi h pixel
In this setting, the intra-class variation across imageg-is & ition, SIFT Flow de nes the matching cost at each pixe

ten problematic (e.g., imagine computing dense matched0d€ by asingle SIFT descriptor at a given (downsampled)

between a sedan and a convertible). Stronger geomet_resolution, which risks losing useful visual detail. In eon

fic regularization is one way to overcome the matching rast; we de ne the matching cost of each node usingi-
ambiguity—for example, by enforcing geometric smooth- Pl€descriptors computed at the imagefsginal resolution,
ness on all pairs of pixels, not just neighbogs [J (see  hUS Preservingricher visual information.

Fig. 1(c)). However, the increased number of pairwise con- ~ 1he PatchMatch algorithm computes fast dense corre-
nections makes them too costly for dense pixel-level corre-Spondences using a randomized search technique-pr
spondences, and more importantly, they lack the multiescal ef ciency, it abandons the usual global optimization that

0:0::0:0:-6:60-0

regularization we propose. enforces explicit smoothness on neighboring pixels. In-
The SIFT Flow algorithm pioneered the idea of dense Stéad, it progressively searches for correspondences; a re

ciency, it uses a multi-resolution image pyramid together locations of its nearby pixels, thus implicitly enforcing-g
with a hierarchical optimization technique inspired bysela  Ometric smoothness. See Figuiel).

sic ow algorithms. At rst glance it might look similar to Despite the variations in graph connectivity, computa-
our spatial pyramid, but in fact its objective is quite dif- tion techniques, and/or problem domains, all of the above
ferent. SIFT Flow relies on the conventional pixel-level approaches share a common basis: a at, pixel-level objec-
MRF model: each pixel de nes a node, and graphs from tive. The appearance matching cost is de ned at each pixel,
different resolutions are treated independently. Thatds, —and geometric smoothness is imposed between paired pix-
graph edges span between pyramid levels. Although pixelsels. In contrast, the proposed deformable spatial pyramid
from different resolution levels cover different spatia-e ~ model considers both matching costs and geometric regu-
tents, they still span sub-image (local) regions even at thelarization within multiple spatial extents. We show thasth
coarsest resolution. In contrast, our model explicitly ad- substantial structure change has dramatic impact on the ac-
dresses both global (e.g., an entire image) and local (e.g.curacy and speed of dense matching.

a pixel) spatial extents, and nodes are linked between pyra- Rigid spatial pyramids are well-known in image classi-
mid levels in the graph. Compare Figurds) and (b). In cation, where histograms of visual words are often com-



pared using a series of successively coarser grid cells at 1m1
xed locations in the imagesl[]2, 20]. Aside from our focus

on dense matching (vs. recognition), our work differs sub-
stantially from the familiar spatial pyramid, since we mbde
geometric distortions between and across pyramid levels in
the matching objective. In that sense, our matching relates
to deformable part models in object detectighdnd scene
classi cation [L6]. Whereas all these models use a few tens
of patches/parts and target object recognition, our model
handles millions of pixels and targets dense pixel matching

The use of local and global spatial support for image
alignment has also been explored for mosaicj pr lay- Figure 2. Sketch of our DSP matching method. First row shows
ered stereol]]. For such instance matching problems, how- Mage 1's pyramid graph; second row shows the match solotion
ever, it does not provide a clear win over pixel models in 'M29€ 2. Single-sided arrow in a node denotes its ow vetior

fi | trast h it vield bstantial gai double-sided arrows between pyramid levels imply paréiitc
practice. In contrast, we show it yields substantial gains ., ,qions between them (intra-level edges are also ugetbb

when matching generic images of different scenes, and OUlisplayed). We solve the matching problem at differentssiae

Im

Grid cells (Fast and robust) Pixels (Accurate

regular pyramid structure enables an ef cient solution. spatial nodes in two layers. Cells in the grid-layer (lefetnim-
ages) provide reliable (yet fast) initial corresponderibesare ro-
3. Approach bust to image variations due to their larger spatial supgsuided

. i by the grid-layer initial solution, we ef ciently nd accate pixel-
We rst de ne (_)ur deformable spatial pyramid (DSP) level correspondences (rightmost image). Best viewed lor.co
graph for dense pixel matching (Sécl). Then, we de ne

the matching objective we will optimize on that pyramid
(Sec.3.2). Finally, we discuss technical issues, focusing on rst image to match it to the second image, by minimizing

ef cient computation (Sec3.3). the energy function:
. X X
3.1. Pyramid Graph Model E(t) = Di(t) + Vi (tit); (1)
To build our spatial pyramid, we start from the entire i ij 2N

image and divide it into four rectangular grid cells and keep whereD; is a data termyj; is a smoothness term, is a

dividing until we reach the prede ned number of pyramid constant weight, antl denotes pairs of nodes linked by

levels (we use 3). This is a conventional spatial pyramid asgraph edges. Recall that edges span across pyramid levels,

seen in previous work. However, in addition to those three as well as within pyramid levels.

levels, we further add one more layer, a pixel-level layer,  Our dataternD; measures the appearance matching cost

such that the nest cells are one pixel in width. of nodei at translatiort;. It is de ned as the average dis-
Then, we represent the pyramid with a graph. See Fig-tance between local descriptors (e.g, SIFT) within nioite

uresl (a) and2. Each grid cell and pixel is a node, and the rst image to those located within a region of the same

edges link all neighboring nodes within the same level, as scale in the second image after shiftingthy

well as parent-child nodes across adjacent levels. For the X

pixel level, however, we do not link neighboring pixels; Di(ti) = % min(kdi(q) do(q+ t))ke; ) (2)

each pixel is linked only to its parent cell. This saves us q

a lot of edge connections that would otherwise dominate

run-time during optimization. where g denotes pixel coordinates within a noddrom
which local descriptors were extractedis the total num-

3.2. Matching Objective ber of descriptors, andh, andd, are descriptors extracted at

Now, we de ne our matching objective for the proposed the locationsj andq + t; inthe rstand second image, re-

pyramid graph. We start with a basic formulation for match- spectively. For robustness to outliers, we use a truncated L
ing images at a single xed scale, and then extend it to OrM for descriptor distance with a threshold Note that
multi-scale matching ’ z = 1 at the pixel layer, wherg contains a single point.

The smoothness terlj; regularizes the solution by pe-

Fixed-Scale Matching Objective Let p; = (X;;y;) de- nalizing large discrepancies in the matching locations of
note the location of nodein the pyramid graph, which is  neighboring nodesV; = min(kt; tjki; ): We again
given by the node's center coordinate. ttet= (u;;v;) be use a truncated L1 norm with a threshold

the translation of nodefrom the rst to the second image. How does our objective differ from the conventional

We want to nd the optimal translations of each node in the pixel-wise model? There are three main factors. First of all



where we see the corresponding location of descrigior
for a descriptord; is now determined by a translatidn
followed by a scaling; .

Note that we allow each node to take its own optimal
scale, rather than determine the best global scale between
two images. This is bene cial when an image includes both

(a) Fixed-scale match (b) Multi-scale match foreground and background objects of different scales, or
Figure 3. Comparing our xed- and multi-scale matches. Fisr v when individual objects have different sizes. See Figure
ibility, we show matches only at a single level in the pyramial Dense correspondence for generic image matching is of-

(a), the match for a node in the rst image remains at the same ten treated at a xed scale, though there are some multi-
xed scale in the second image. In (b), the multi-scale ofifec  gscale implementations in related work. PatchMatch has
allows the size of each node to optimally adjust when matched a multi-scale extension that expands the correspondence
search range according to the scale of the previously found
graph nodes in our model are de ned by cells of varying match P]. Asinthe xed-scale case, our method has the ad-
spatial extents, whereas in prior models they are restricte vantage of modeling geometric distortion and match consis-
to pixels. This allows us to overcome appearance matchtency across multiple spatial extents. While we handlesscal
ambiguities without committing to a single spatial scale. adaptation through the matching objective, one can akerna
Second, our data term aggregates many local SIFT matche§vely consider representing each pixel with a set of SIRTs a
within each node, as opposed to using a single match at eacmultiple scales{]; that feature could potentially be plugged
individual pixel. This greatly enhances robustness to ienag into any matching method, including ours, though its ex-
variations. Third, we explicitly link the nodes of differen  traction time is far higher than typical xed-scale featsire
spatial extents to impose smoothness, striking a balance beOur multi-scale matching is ef cient and works even with
tween strong regularization by the larger nodes and aceurat xed-scale features.
localization by the ner nodes. . .
We minimize the main objective function (Et) using ~ 3-3- Ef cient Computation

loopy belief propagationto nd the optimal correspondence  For dense matching, computation time is naturally a big
of each node (see Sex.3for details). Note that the result-  concern for scalability. Here we explain how we maintain

ing matching is asymmetric, mapping all of the nodes in the ¢f ciency both through our problem design and some tech-
rstimage to some (possibly subset of) positions in the sec- pical implementation details.

ond image. Furthermore, while our method returns matches Tnere are two major components that take most of the

for all nodes in all levels of the pyramid, we are generally time: (1) computing descriptor distances at every possible
interested in th_e nal Qense matches at the pixel level. They {,ansiation and (2) optimization via belief propagatiof}B

are what we will use in the results. For the descriptor distances, the complexityGgmik),
Multi-Scale Extension Thus far, we assume the matching wherem is the number of descriptors extracted in the rst
is done at a xed scale: each grid cell is matched to anotherimage,| is the number of possible translations, &nid the
region of the same size. Now, we extend our objective to descriptor dimension. For BP, we use a generalized dis-

allow nodes to be matched across different scales: tance transform technique, which reduces the cost of mes-
E(t:s) = sage passing between nodes fréfi?) to O(l) [8]. Even
X X so, BP's overall run-time i©(nl), wheren is the number
Di(ti;si) + Vi (tisty) + Wi (si;si): of nodes in the graph. Thus, the total cost of our method is
i ijj 2N ijj 2N

O(mlk + nl) time. Note thah, m, andl are all on the order
®) of the number of pixels (i.e., 1® 10°); if solving the

Eq.3is a multi-scale extension of Ef. We add a scale problem atonce, itis far frgm ef c!ent. .
variables; for each node and introduce a scale smoothness Therefore, W_e.l."S(.a a hlerarch|pal approac.h to improve
termW; = ks; s ks with an associated weight constant ef ciency. We initialize the solution by running BP for

. The scale variable is allowed to take discrete values from gr_aph bu'l_t on all the nodes except the p|xel-leve! ones
a speci ed range of scale variations (to be de ned below). (whichwe will call rst-layer), and then re ne it at the pixe

The data term is also transformed into a multi-variate func- nodes (W_h'Ch we will call second-_layer). In Figukethe
tion de ned as: rst three images on the left comprise the rst layer, and the

1X fourth depicts the second (pixel) layer.
Di(ti;si) = = min(kdi(q)  da(si(q + ti)k; ); Compared to SIFT Flow's hierarchical vgriaﬂﬁ[, ours
Z runs an order of magnitude faster, as we will show in the re-
4) sults. The key reason is the two methods' differing match-



ing objectives: ours is on a pyramid, theirs is a pixel model.

Hierarchical SIFT Flow solves BP on tipéxel gridsin the
image pyramid; starting from a downsampled image, it pro-
gressively narrows down the possible solution space as it

Approach LT-ACC | IOU | LOC-ERR | Time (s)

DSP (Ours) 0.732 0.482 0.115 0.65
SIFT Flow [15] 0.680 | 0.450 0.162 12.8
PatchMatch ] 0.646 | 0.375 0.238 1.03

moves to the ner images, reducing the number of possible
translations. Howevern andm are still on the order of the
number of pixels. In contrast, the number of nodes in our
rst-layer BP is just tens. Moreover, we observe that sparse
descriptor sampling is enough for the rst-layer BP: as long
as a grid cell includes 100s of local descriptors within it,
its average descriptor distance for the data term ZEpgro-
vides a reliable matching cost. Thus, we don't need dense
descriptors in the rst-layer BP, substantially reducing

In addition, our decision not to link edges between pixels
(i.e., no loopy graph at the pixel layer) means the second-
layer solution can be computed very ef ciently in a non-
iterative manner. Once we run the rst-layer BP, the optimal
translationt; at a pixel-level node is simply determined
by: ti =argmin(D;(t) + Vj (t;tj)), where a nod¢ is

t

a parent grid cell of a pixel node andt; is a xed value
obtained from the rst-layer BP.

Our multi-scale extension incurs additional cost due to w

| W

Table 1. Object matching on the Caltech-101. We outperfdren t
state-of-the-art methods in both matching accuracy aneidspe

Approach LT-ACC | Time (s)

DSP (Ours) 0.706 0.360
SIFT Flow [15] 0.672 11.52
PatchMatch?] 0.607 0.877

Table 2. Scene matching on the LMO dataset. We outperform the
current methods in both accuracy and speed.

20. This reduction saves about 1 second per image match
without losing matching accuraéyFor multi-scale match,

e use seven scales between 0.5 and 2.0—we choose the
search scale as an exponenﬁbfi, wherei =1;:::;7.

Evaluation metrics: To measure image matching qual-
ity, we use label transfer accuracy (LT-ACC) between pixel
correspondences&{]. Given a test and an exemplar image,
e transfer the annotated class labels of the exemplarspixel

the scale smoothness and multi-variate data terms. The forio the test ones via pixel correspondences, and count how

mer affects message passing; the latter affects the descrip
distance computation. In a naive implementation, both lin-

many pixels in the test image are correctly labeled.
For object matching in Caltech-101 dataset, we also use

early increase the cost in terms of the number of the scaleshe intersection over union (I0U) metrié]] Compared to

considered. For the data term, however, we can avoid re-|
peating computation per scale. Once we obEift;; s =

1:0) by computing the pairwise descriptor distanca;jat

1:0, it can be re-used for all other scales; the data term
Di(ti;si) atscalesi mapstoD;((si 1)g+ siti;si =1:0)

of the reference scale (see supplementary le for details).
This signi cantly reduces computation time, in that SIFT
distances dominate the BP optimization simseis much
higher than the number of nodes in the rst-layer BP.

4. Results

The main goals of the experiments are (1) to evaluate
raw matching quality (Seel.1), (2) to validate our method
applied to sematic segmentation (S€¢€), and (3) to verify
the impact of our multi-scale extension (Séc).

We compare our deformable spatial pyramid (DSP) ap-
proach to state-of-the-art dense pixel matching methods,
SIFT Flow [L5] (SF) and PatchMatchZ] (PM), using the
authors' publicly available code. We use two datasets: the
Caltech-101 and LabelMe Outdoor (LMQ)4].

Implementation details: We x the parameters of our
method for all experiments: = 0:005in Eq.1, =0:25,
and = 500. For multi-scale, we set = 0:005and

= 0:005in Eq.3. We extract SIFT descriptors of 16x16
patch size at every pixel using VLFedt]. We apply PCA
to the extracted SIFT descriptors, reducing the dimension t

LT-ACC, this metric allows us to isolate the matching qual-
ity for the foreground object, separate from the irrelevant
background pixels.

We also evaluate the localization error (LOC-ERR) of
corresponding pixel positions. Since there are no avalabl
ground-truth pixel matching positions between images, we
obtain pixel locations using an object bounding box: pixel
locations are given by the normalized coordinates with re-
spect to the box's position and size. For details, please see
the supplementary le.

4.1. Raw Image Matching Accuracy

In this section, we evaluate raw pixel matching quality in
two different tasks: object matching and scene matching.

Object matching under intra-class variations:  For this
experiment, we randomly pick 15 pairs of images for each
object class in the Caltech-101 (total 1,515 pairs of impages
Each image has ground-truth pixel labels for the foreground
object. Tablel shows the result. Our DSP outperforms
SIFT Flow by 5 points in label transfer accuracy, yet is
about 25 times faster. We achieve a 9 point gain over Patch-
Match, in about half the runtime. Our localization error and
IOU scores are also better.

1We use the same PCA-SIFT for ours and PatchMatch. For SIRF, Flo
however, we use the authors' custom code to extract SIFT; oveodbe-
cause we observed SIFT Flow loses accuracy when using PER-SI
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Figure 4. Example object matches per method. In each matn@e (rows 2-4), the left image shows the result of warpirggsecond
image to the rst via pixel correspondences, and the righg shows the transferred pixel labels for the rstimage (@hifg, black:

bg). We see that ours works robustly under image variatidesdlackground clutter (1st and 2nd examples), appeardrargge (4th and
5th ones). Further, even when objects lack texture (3rd pl&@mours nds reliable correspondences, exploiting glaibject structure.
However, the single-scale version of our method fails wHgecis undergo substantial scale variation (6th examplest viewed in color.

SF Ours Images

PM

i A T L s s e
Figure 5. Example scene matches per method. Displayed dg.id,Fexcept here the scenes have multiple labels (not just fgmigel
labels are marked by colors, denoting one of the 33 clasgbe ibMO dataset. Best viewed in color.

Figure4 shows example matches by the different meth- Scene matching: Whereas the object matching task is
ods. We see that DSP works robustly under image varia-concerned with foreground/background matches, in the
tions like appearance change and background clutter. Orscene matching task each pixel in an exemplar is annotated
the other hand, the two existing methods—both of which with one of multiple class labels. Here we use the LMO
rely on only local pixel-level appearance—get lost under dataset, which annotates pixels as one of 33 class labels
the substantial image variations. This shows our spatial(e.qg., river, car, grass, building). We randomly split testt
pyramid graph successfully imposes geometric regulariza-and exemplar images in half (1,344 images each). For each
tion from various spatial extents, overcoming the matching test image, we rst nd the exemplar image that is its near-
ambiguity that can arise if considering local pixels alone. est neighborin GIST space. Then, we match pixels between
We also can see some differences between the two exthe test image and the selected exemplar. When measuring
isting models. PatchMatch abandons explicit geometric label transfer accuracy, we only consider the matchable pix
smoothness for speed. However, this tends to hurt matchingels that belong to the classes common to both images. This
quality—the matching positions of even nearby pixels are setting is similar to the one inLf].

quite dithered, making the results noisy. On the other hand, 15pie2 shows the results Again, our DSP outperforms
SIFT Flow imposes stronger smoothness by MRF connec-ihe current methods. Figur compares some example
tions between nearby pixels, providing visually more pleas gcene matches. We see that DSP better preserves the scene
ing results. In effect, DSP combines the strengths of thestructure; for example, the horizons (1st, 3rd, and 4th ex-

other two. Like PatchMatch, we remove neighbor links in 5 mpjes) and skylines (2nd and 5th) are robustly estimated.
the pixel-level optimization for ef ciency. However, werca

do this without hurting accuracy since larger spatial nodes

in our model enforce a proper smoothness on pixels. 2The IOU and LOC-ACC metrics assume a gure-ground settimgi a
hence are not applicable here.




Approach LT-ACC | 10U Approach |LT-ACC (GT) | LT-ACC (GIST)| LT-ACC (SVM)
DSP (Ours) 0.868 0.694 DSP (Ours) 0.868 0.745 0.761
SIFT Flow[15 | 0.820 | 0.641 SIFT Flow [15] 0.834 0.759 0.753
PatchMatch?] 0.816 | 0.604 PatchMatch?] 0.761 0.704 0.701
Table 3. Figure-ground segmentation results in Caltech-10 Table 4. Semantic segmentation results on the LMO dataset.

Ours

SF

2

Figure 6. Example gure-ground segmentations on Calte@h-1

4.2. Semantic Segmentation by Matching Pixels

Next, we apply our method to a semantic segmentation
task, following the protocol in14]. To explain brie y, we
match a test image to multiple exemplar images, where pix-
els in the exemplars are annotated by ground-truth class la-
bels. Then, the best matching scores (SIFT descriptor dis-
tances) between each test pixel and its corresponding exem
plar pixels de ne the class label likelihood of the test pixe
U_Sing this label likelihood, yve use a standard MRF_ to as- scene layout (e.g., the rst and the third row). On the otheandy
sign a CI&,‘SS label to each pixel. See][for details. Bl‘!'ld' PatchMatch (PM) results are quite noisy. The last row shaws o
ing on this common framework, we test how the different gjjyre case, where we fail to segment small objects (cars).
matching methods in uence segmentation quality.

Images GT labels  Our: SF PM

Figure 7. Example semantic segmentations on the LMO dataset
Our DSP and SIFT Flow (SF) both work reasonably on this
dataset, though our segmentation is more consistent tontgea's

Category-specic gure-ground segmentation: First,  categories, and then retrieving GIST neighbors among only
we perform binary gure-ground segmentation on Caltech. exemplars from that scene label (SVM).

We randomly select 15/15 test/exemplar images from each  Taple 4 shows the results. The segmentation accuracy
class. We match a test image to exemplars from thegepends on the shortlist mechanism, for all methods. When
same class, and perform gure-ground segmentation with ysjng ground-truth annotations to choose the shortlist, ou
an MRF as described above. TaBlshows the result. Our  method clearly outperforms the others. On the other hand,
DSP outperforms the current methods substantially. Fig-\when using automatic methods to generate the shortlist
ure 6 shows example segmentation results. We see that(G|5-|- and SVM), our gain becomes smaller. This is be-
our method successfully delineates foreground objects fro  ~gse (1) the shortlist misses reasonable exemplar images
confusing backgrounds. that share class labels with the test image and (2) SIFT fea-
Multi-class pixel labeling: Next, we perform semantic tcllj;zz en;?%/ : ?]L:le)/ ?r:g?tﬁs?Ts%%] et(;lgfscer;nzggt? gi‘;;gfsg:g

segmentation o_n_t_he LMO data“set. F(_)r ?aCh testimage, we, 4 tree) are too similar to be distinguished by SIFT match
rst retrieve an initial exemplar “shortlist”, following14].

. . . . scores alone. Again, our method is more ef cient; 15-20
The test image is matched against only the shortlist exem-_. .
. L2 : times faster than SIFT Flow, and about twice as fast as Patch
plars to estimate the class likelihootlgVe test three differ-

. . Match. Figure7 shows example segmentation results.
ent ways to de ne the shortlist: (1) using the ground truth 9 P g

(GT), (2) using GIST neighbors (GIST), and (3) using an 4.3, Multi-scale Matching

SVM to classify the images into one of the 8 LMO scene

Finally, we show the results of our multi-scale formu-
30ur test/exemplar split, shortlist, and MRF are all ideaiti those lation. For this experiment, we test using the same image

in [14], except we do not exploit any prior knowledge (e.g., likethd of pairs from Caltech as used in Secl We compare our

possible locations of each class in the image) to augmertotefunction . . . . .

of the MRF. Instead, we only use match scores in order to miosttty multi-scale method to various baselines, including all the

compare the impact of the three matching methods. xed-scale methods in the previous section and PatchMatch
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Figure 8. Matching accuracy as a function of scale variatidnS =
and SS denote multi-scale and single-scale, respectively. §
Figu

with its multi-scale option on.
Figure 8 plots the matching accuracy as a function of

re 9. Example matching results by our multi-scale matgh

For comparison, we also show results from our xed-scale ver
sion.

Our multi-scale method successfully nds the coriszile

scale variation. The scale variation between two objectspetyeen objects, providing accurate matching. On the dtaed,

is de ned by: %, whereO; and O, are the size

of matched objects in the rst and the second image re- gros

a single-scale one prefers the xed size between objectsicg

s errors: e.g., in the 3rd example, Snoopy matches tobe gl

spectively. We see that the curves from multi-scale meth- since they have similar size.

ods (DSP-MS and PM-MS) are atter than the single-scale
ones, verifying their relative scale tolerance. In additio
our multi-scale method (DSP-MS) outperforms multi-scale
PatchMatch (PM-MS) by a substantial margin. However, [l
we also see our curve is not perfectly at across the scale [4]
changes. This is because scale is not the only factor that af-
fects the matching. In fact, as scale variation increases, w [5]
observe that objects undergo more variations in viewpoint
or shapes as well, making the matching more challenging. (61
Figure9 shows some matching examples by our multi-
scale method, compared to our single-scale counterpart.[7]
The examples show that our multi-scale matching is ex-
ible to scale variations. (8]
[9]

[10]

(2]

5. Conclusion

We introduced a deformable spatial pyramid model for
dense correspondences across different objects or scenegy)
Through extensive evaluations, we showed that (1) various
spatial supports by our spatial pyramid improve matching [12]
quality, striking a balance between geometric regulariza-
tion and accurate localization, (2) our pyramid structuee p
mits ef cient hierarchical optimization, enabling fastrase
matching, and (3) our model can be extended into a multi- [14]
scale setting, working exibly under scale variations. As [15]
such, compared to the existing methods that rely on a at
pixel-based model, we achieve substantial gains in both[16]
matching accuracy and runtime. We share our code at
http://vision.cs.utexas.edu/projects/dsp.
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